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Abstract: In this paper we discuss a two-phase Stefan prob­
lem with convection in a non-cylindrical (time-dependent) domain. 
This work is motivated by phase change phenomenon arising in the 
Czochralski process of crystal growth. The time-dependence of do­
main is a mathematical description of the situation in which the 
material domain changes its shape with time by crystal growth. We 
consider the so-called enthalpy formulation for it and give its solv­
ability, assuming that the time-dependence of the material domain is 
prescribed and smooth enough in time, and the convective vector is 
prescribed, too. Our main idea is to apply the theory of quasi-linear 
equations of parabolic type. 
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1. Introduction 

The Czochralski process is widely used for the production of a column of simple 
crystal from the melt. But its theoretical analysis seems still incomplete, though 
many interesting phenomena are observed in this process from the mathemati­
cal point of view. Recently, models of the Czochralski process were discussed in 
Pawlow (2000) in a more ~rem~ral RP.t.t.inP" an rl ~nmP ,m,,.;,1 " " '""' ,..,f +hr.M ~~ ...1 ~ 1 
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In the original model of crystal growth the shape of material (crystal and 
melt) is determined by three (unknown) interfaces of solid-liquid, liquid-gas and 
solid-gas. But, in this paper, supposing that the material domain is prescribed 
we consider the solid-liquid phase transition in the material domain. 

We use the following notation: For 0 < T < +oo and t E [0, T], 
Ot(t): liquid (melt) region, Os (t): solid (crystal) region, 
S(t) : solid-liquid interface, 
Om(t) := Ot(t) u Os(t) u S(t) : material domain, 
r(t) := anm(t) = ft(t) u fs (t): material boundary, 
v = v(t,x): 3-dimensional unit vector outward normal to f(t) at x E r(t), 
n = n(t, x): 3-dimensional unit vector normal to S(t) at x E S(t) pointing 

to Ot(t), 
Qi := UtE(O,T) { t} X ni(t), i = m, l, s, E := UtE(O,T) { t} X r(t), 
Ei := Ute(o,r){t} x r i(t), i = e, s, s := Ute(o,r){t} x s(t). 
Note that ft(t) is the union of the the liquid-gas interface and the liquid 

boundary attached to the crucible, and f s(t) is the solid-gas interface. 
Next we denote by vy; := vE(t,x) and vs := vs(t,x) the normal speed of 

fm(t) at (t,x) E Em and of S(t) at (t,x) E S, respectively. Then, the 4-
dimensional (with respect to ( t, x )-space) unit vectors iJ outward normal to E 
and ii normal to S pointing to the liquid region Qi are given by 

These notations will be used in the derivation of our weak formulation. 
It is easily understood that by the crystal growth the shape of material 

domain Om(t) changes with time and hence a 3-dimensional convective vector 
field v := v(t,x) is caused in Qm. The determination of vis also one of the 
important questions in the mathematical modeling of the Czochralski crystal 
growth process. It is reasonable to postulate that v is equal to the pulling 
velocity Vp in the crystal and is a sol tion of the incompressible Navier-Stokes 
(or simply Stokes) equation in the melt (see Crowley, 1983, DiBenedetto and 
O'Leary, 1993). Nevertheless, in this paper, we suppose that the convective field 
v is prescribed, too, assumed to be sufficiently smooth and satisfying 

divv = 0 in Qm, 

v · v = Vy; on E. 

(1.1) 

(1.2) 

Now, from the usual energy balance laws we derive the following system to 
determine the temperature field(} := O(t ,x) and the interface S(t); note that 
O(t, x) together with S(t) is a solution of the two-phase Stefan problem (SPC):= 
{ (1.3)-(1.6)} with prescribed convection v formulated in the non-cylindrical 
domain Qm, 
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Ot = o. = 0, (kt aOt- ks ao.) = L(v · n - vs) on S, an an 
ao . 

ki-' + nokiOi = p on Ei, i = £, s, av 
0(0, ·) = Oo on 0(0), S(O) =So, 
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(1.4) 

(1.5) 

(1.6) 

where Oi,t := aOifat, Ot and 08 denote the temperature in the liquid and solid 
region, respectively, and the phase change temperature is supposed to be 0 for 
simplicity; kt, ks and L are positive constants which are the heat conductivities 
and latent heat, respectively; f is a given heat source on Qm, p is a boundary 
datum prescribed on E and no is a positive constant; Oo is the initial temperature 
on Dm(O) and So is the initial location of the solid-liquid interface, satisfying 
that 

Oo > 0 on Dt(O), Oo < 0 on n.(O), Oo = 0 on So. (1. 7) 

When the material domain does not change in time, the Stefan problem 
without convection was skillfully treated by Damlamian (1977) in the time­
dependent subdifferential operator theory and the problem with convection was 
discussed in Rodrigues and Yi (1990), Rodrigues (1994), in connection with 
models of the continuous casting process of steel. On the other hand, the case 
of non-cylindrical domains was treated by Kenmochi and Pawlow (1986) and 
only the existence result was there obtained, but the uniqueness question has 
been left open. The main difficulty apparently comes from the time-dependence 
of the material domain and the analysis is much harder, for instance, in getting 
uniform estimates for approximate solutions. Another point of our approach is 
the use of properties (1.1) and (1.2) required for the convection vector v. The 
main result of this paper says that these properties of convection vector v are 
significant especially for our weak variational formulation. 

This paper is organized as follows. In Section 2 we derive a weak variational 
formulation, which is called the enthalpy formulation, from the system (1.3)­
(1.6). In Sections 3 and 4 we propose regular approximate problems for it and 
give various uniform estimates for approximate solutions. In the final section we 
discuss the convergence of approximate solutions and construct a weak solution 
of our problem as a limit , and the uniqueness is also proved. 

2. Weak formulation 

The enthalpy u and a function f3 : R -t R are defined as follows: 

{ 

0 + L if 0 > 0, 
u := [0, L] if 0 = 0, 

0 if 0 < 0, { 

k r if r < 0, 
f3(r) := o" if 0 :=::; r :=::; L, 

kt(r- L) if r > L. 

Then, f3 is a non-decreasing Lipschitz continuous function on R, and its Lipschitz 
,....., ....................... ;,.., r _ ·- ._...,.,_. r '- 1 .. 1 
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By using the enthalpy function u our problem (SPC) is reformulated as 
an initial-boundary value problem for a degenerate parabolic equation in the 
non-cylindrical domain Qm of the following form 

{ 

Ut- 6..(3(u) + v · "Vu = f in Qm, 

(E) 8~Lu) + no f3 (u) = p on~' 

u(O) = uo on n m(O), 

where Uo := Bo + Lxnt(O) with the characteristic function Xnt(O) of ne(O). In 
fact, we multiply equations (1.3) by any test function TJ E C2(Qm) with TJ = 0 on 
nm(T), and then integrate them over Qe and Q8 , respectively, and add these two 
resultants. Then, with the help of the Green-Stokes ' formula and the relations 
d~i = (ivEI 2 + 1) 112dri(t)dt, i = £, s , utilizing the first condition in (1.4), we 
have 

1 Be ,tTJdxdt + 1 Bs,tTJdxdt 
Ql Q, 

= - { BeTJtdxdt + { BeTJ( -(ii/)dS + { BeTJ(iJ)td~e- { BoTJ(O)dx 
JQt Js JEt Jnt(D) 

- { BsTJtdxdt + { BsTJ(ii/dS + { BsTJ(iJ)td~s - { BoTJ(O)dx 
JQ , Js JE, Jn,(o) 

= - { Ur]tdxdt- { UoTJ(O)dx 
JQm Jnm(O) 

+ r LT]tdxdt + r LTJ(O)dx- r BeT)VEdre(t)dt- r BsTJVEdr s(t)dt, 
JQt Jnt(O) JEt JE, 

where (v)t and (ii)t denote the time-axis component of vectors;; and ii, respec­
tively. Next, by (1.4) and (1.5) we have 

-1 ktD.BtT)dxdt -1 k8 6..88 T)dxdt 
Qt Q. 

= { "V(J(u) · "VT]dxdt + { (n0(3(u)- p)TJdr(t)dt 
JQm JE 

-h L(v · n- vs)TJdS(t)dt. 

Moreover, recalling (1.1) and (1.2), by the first condition in (1.4) and the con­
tinuity of v · n on S(t), we see that 

1 (v · "VBt)TJdxdt + 1 (v · "V88 )TJdxdt 
Qt Q, 

=- r u(v. "VTJ)dxdt + r L(v. "VTJ)dxdt + r BeVET]dre(t)dt 
JQm JQt JEt 

. r lJ ·--~riT' {+)A+ 
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Here, with the help of the Green-Stokes' formula, we see from conditions (1.1)­
(1.2) again and the relation dS = (lvsl 2 + 1) 112 dS(t)dt that 

{ Lrytdxdt + { Lry(O)dx + { L(v · \lry)dxdt 
JQl lnt(O) JQl 

=is L(v · n- vs)rydS(t)dt. (2.1) 

Summing up these equalities, we obtain that 

-1 U'f/tdxdt + 1 \1(3(u) · \lrydxdt +no 1 (3(u)rydl'(t)dt 
Qm Qm E 

-1 u(v · \lry)dxdt 
Qm 

= r frydxdt + r prydr(t)dt + r Uo'fJ(O)dx (2.2) 
}Qm JE Jnm(O) 

for all 'TJ E C2 (Qm) with 'TJ = 0 on nm(T). As usual, this is regarded as a 
variational form of (E). 

Now, we define a weak solution of our problem. 

DEFINITION 2.1 A function u is called a weak solution of(SPC), ifu, (3(u) E 
L2 (Qm) and (3(u(t, ·)) E H 1(nm(t)) for a. e. t E [0, T] with 

1T lf3(u(t))ltl(!1m(t))dt < 00, 

u(t, ·) E L 2 (nm(t)) for each t E [0, T], the function 

t ~ { u(t,x),(x)dx is continuous on [O,T] for all' E L 2(R3
), 

Jnm(t) 

and u satisfies the variational identity {2.2). 

We suppose that the material domain nm(t) depends smoothly on time t 
in the sense that there is a transformation y = X(t,x) := (X1(t,x), X2(t,x), 
X 3 (t,x)) of C2-class from Qm into R 3, satisfying that 

{ 
X(t, ·) maps nm(t) onto nm(O) and for all t E [0, T], 
X(O, ·)=I (identity) on nm(O). 

Now, fix the following notation: 

no := nm(O), ro := r(O), 

Qo := (0, T) X no, Eo := (0, T) X ro, y = (Yl, Y2, Y3) E no; 

and denote the inverse of X by x = Y(t,y) := (Y1(t,y), Y2(t,y), Y3(t,y)). 
. . . . .. - . 
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THEOREM 2.1 Assume that f E L2(Qm), p E C1(f), uo E L2(no) and {3(uo) E 
H 1(no). Also, assume that v E C1(Qm)3 and (1.1), (1.2) are satisfied. Then, 
there is one and only one weak solution u of (SPC). 

The proof of our theorem is given in the Sections 3 through 5. 
As will be understood from our proof given in Section 5, the presence of 

the convection term v plays an important role for the uniqueness of weak solu­
tions of Stefan problems formulated in non-cylindrical domains. This is one of 
interesting aspects of Theorem 2.1. 

3. Regular approximation to (SPC) 

In this section, let us consider an approximate problem (SPC)6 := {(3.1)-(3.3)} 
in the non-cylindrical domain Qm, with parameter /j E (0, 1], to (SPC): 

U6,t- /:1f36(u6) + v · V'u6 = /6 in Qm, 
8f36(u6) 

av + no/36 ( U6) = P6 on I:, 

U6(0) = Uo6 On no, 

(3.1) 

(3.2) 

(3.3) 

where /36, /6, P6 and Uo6 are regular approximations of {3, f, p and uo , respec­
tively, as follows: 

(1) /36 is a smooth, increasing and Lipschitz continuous function on R such 
that 

li:::; f3~(r) ( = :rf36(r )) :::; Co for all r E R, 

for a positive constant Co independent of 8, and such that 
/36 -+ {3 uniformly on R as 8 -+ 0; 

we put /36(r) := J; f36(s)ds as well as /3(r) := J; f3(s)ds for all r E R. 
(2) /6 is a smooth function on Qm such t hat 

/6-+ f in L2 (Qm) as 8-+ 0. 
(3) P6 is a smooth function on~ such that 

P6 -+ p in C1(f) as 8-+ 0. 
( 4) u06 is a smooth function on no such that uo6 -+ uo in L 2 (no), !36 ( uo6) -+ 

f3(u0) in H 1(no) as 8-+ 0 and the compatibility condition 
8/36( uo6) av + nof36(Uo6) = P6 on ro, (3.4) 

holds. 
We give first an existence-uniqueness result for the approximate problem 

(SPC)6. 

LEMMA 3.1 (SPC).s has one and only one solution U6 such that u6 and a.!.!...!_he 
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Proof. Using y = X(t,x) we transform (SPC).s to a problem (SPC).s := 
{(3.5)-(3.7)} formulated in the cylindrical domain Q0 : 

Here 

on Eo, 

u.s(t, y) := u.s(t, Y(t, y)), f.s(t, y) := f.s(t, Y(t, y)), 

no(t, y) := (ll]y(t, y)ll/llly(t, y)ll)no, 

P.s(t, y) := (ll]y(t, y)ll/ll]y(t, y)ii)p.s(t, Y(t, y)), 
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(3.5) 

(3.6) 

(3.7) 

where Jy(t, ·)denotes the Jacobian of x = Y(t, ·)with its determinant ll ]y(t, ·) II, 
and ll]y(t, ·)II denotes the ratio between the surface elements dr(t) and dro, 
which is determined by the restriction of x = Y(t, ·)on r 0 ; hence 

dx = IIJylldy on flo, dr(t) = ll]ylldro on r o. 

Moreover 

3 
"8Xi 8X3 ai3(t,y) := L- a(t,Y(t,y))a(t,Y(t,y)), i,j = 1,2,3, 
k=l Xk Xk 

~ 8 (8Xt. ) 8X3 Wij(t, y) == L- 8 8 (t, Y(t, y)) 8 (t, Y(t, y)), j = 1, 2, 3, 
k,i=l Yi Xk Xk 

~ 8X3 ( 8Xk ) W2j(t, y) := ~ 8xk (t, Y(t, y)) Vk(t, Y(t, y))- Tt(t, Y(t, y)) ' 

j = 1,2,3, 

8(-) ~ 8(·) _ ll ]y ll 8(·) 
8 := L- awa--:vj = -IIJ II a on Eo, 

VA i,j=l y, y V 

where fl = (i/1, i/2, i/3) is the unit vector outward normal to r 0. 

Since X (0, ·) = I on 0 0 , the matrix { aij (0, y)} is the unit on 0 0 and hence 
{ aij ( t, y)} is strictly positive definite on 0 0 for t E [0, T'] with a certain positive 
T '(5. T). Therefore, (SPC).s is uniformly parabolic quasi-linear equation with 
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condition for initial and boundary data is satisfied. Now, apply the general 
existence and uniqueness theorem due to Chapter 5, Section 7 of Ladyzhen­
skaya, Solonnikov and Ural'tseva (1968) to (SPC)6. Then we see that (SPC) 0 

has a unique solution u0 in the Holder space H2+et,l+et/ 2 (Q0(T')) for a certain 
exponent a E (0, 1). It is also easy to check that u0(t, x) := iis(t, X(t, x)) is a 
solution of (SPC)o on Qm(T') := UtE(O,T') {t} X Om(t), satisfying the required 
regularities. If T' < T, then the solution us can be extended beyond time T' 
by repeating the same argument as above with initial time T'. Finally we can 
construct a unique solution u0 of (SPC)s on Qm in the Holder class. • 

Next we prepare two lemmas about uniform estimates of approximate solu­
tions. 

LEMMA 3.2 There exists a positive constant M1, independent of parameter 8 E 
(0, 1], such that 

sup lu6(t)i1,2(f!m(t)) + ( 1/Js(us(t))lt'(f!m(t))dt ~ M1 
tE[O,TJ lo 
for all 8 E (0, 1]. (3.8) 

Proof. We use essentially the conditions (1.1) and (1.2) in order to get the 
uniform estimates (3.8). For each t E [0, T], put Qm(t) := UrE(O,t) { T} X Om( r). 
First, by multiplying (3.1) by f36(us) and integrating the resultant over Qm(t), 
we get 

{ a"'us ,Bs(us)dxdr- { D.,Bs(us),Bs(us)dxdr 
}Qm(t) UT } Qm(t) 

+ { (v · 'Vus)!Js (us)dxdr = { fs!Js(us)dxdr. 
}Qm(t) }Qm(t) 

(3.9) 

Here, by the Stokes' formula, 

{ O!ClUS (30(u0 )dxdT = { ~ ~o(us)dxdT 
}Qm(t) UT }Qm(t ) UT 

= t f ~s(us) -VE , dE+ { ~s(us(t))dx- { ~s(uos)dx 
Jo }qr) (!vE I2 + 1)2 Jnm(t) Jno 

=- t { ~s(us)vEdr(r)dr + { ~s(u6(t))dx - { ~s(uos)dx, 
Jo Jr(r) Jnm(t) Jn0 

and by the boundary condition (3.2) , 

- { D.,Bs(us)!Js(us)dxdr 
}Qm(t) 

r ,......, a f • . \i2.J_.]_ rt r 
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Moreover, we have, by (1.1) and (1.2) 

r (v 0 '\1u6)/36(Uo)dxdT = r V 0 '\1~6(Uo)dxdT 
}Qm(t) }Qm(t) 

= t r ~0 (u0 )(v o v)dr(T)dT 
Jo Jr(r) 

= t r tJ6(u0 )VEdr(T)dTo 
Jo Jr{r) 
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Now, substituting the above expressions in (309), we obtain with the help of 
Schwarz's inequality that for each c: > 0 

r ~o(uo(t))dx + t r I'Vf36(u6)1 2dxdT 
Jnm(t) Jo Jnm(r) 

+(no-t:) t r lf3o(U6)I 2dr(T)dT Jo Jr(r) 

::::; ~ r l/61 2dxdT + t: t r l/36(u6WdxdT + ~ r IPol 2dr(T)dT 
4t: }Qm Jo Jnm(r) 4t: JE 

+ { ~6(uo0 )dx for all t E (0, T]o (3010) 
Jno 

From the definitions of /30 and tJo it follows that there exist positive constants 
Cf3, c~ and c~, independent of parameter 8 E (0, 1], such that 

~6(r) ~ c13lrl 2
- c~ and l/3o(r)l 2

::::; c~(lrl 2 + 1) for all r E Ro (3°11) 

Therefore, by choosing c: > 0 small enough in (3010) and using Gronwall's in­
equality we obtain a uniform estimate of the form (308) for a positive constant 
M1 independent of 8 E (0, 1] 0 • 

LEMMA 303 There exists a positive constant M2, independent of 8 E (0, 1], such 
that 

1 f3~(uo)I'Vu6l 2 dxdt::::; M2 for all 8 E (0, 1]0 
Qm 

(3012) 

Proof. Just as in the proof of Lemma 302, by multiplying (301) by u0 and inte­
grating over Qm, and noting that (v 0 'Vu6)U6 = 1/2(div(u~v)), we get 

1 18 2 1 -!lluol dxdt+ 'Vf3o(u6) 0 'Vuodxdt 
Qm 2 ut Qm 

_ {T r of3o(Ub) n criT'(t)rlt =- r ~rl;"f.- 2 .,\ArrA-1- - { 
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Now, by using (1.2) , (3.8) and Young's inequality, 

~ [ iu6(T)j 2dx + [ .B~(u6 )IY'u6i 2dxdt 
Jnm(T) }Qm 

1 1T 1 2 -VE 1 1T 1 2 ~ --
2 

lu61 .ldE- -
2 

ju61 (v· v )dr(t)dt 
o r(t) (lvEI 2 + 1)2 o r(t) 

+ ( [ (P6- no.B6(u6) )u6dr(t)dt + ~ [ lf6l 2dxdt 
Jo Jr(t) 2 JQm 

+ ~ [ iu6j 2dxdt + ~ [ iuo6l 2dx 
}Qm Jno 

~ ~ fT f IP6i 2dr(t)dt + ~~ ( f I.B6(u6)1 2dr(t)dt 
lo lr(t) lo lr(t) 

+loT lr(t) lu6l
2
dr(t)dt + ~1!61 i2(Qm) + (~ + ~) M1 . 

By (3.11) again we have 

1 c' 
lu6(t,x)l 2 ~ -I.B6(u6(t,x))l 2 + _p_ for all (t,x) E Qm, 

C[J C[J 

so that there exists a positive constant M2 , independent of 8 E (0, 1], such that 

1 .B~(u6)iV'u61 2dxdt 
Qm 

~ M~ loT I.B6(U6{t))l ~fl(Om (t))dt + ~IP61i2 (E) + ~lf6li2 (Q.,.) + M1M~. 
This, together with (3.8) gives a uniform estimate of the form (3.12) for a 
constant M2, which is independent of 8 E (0, 1]. • 

4. Estimates of regular approximate solutions 

In this section we prove some uniform estimates of the time derivative of .86 ( U6) 
and the H 1-norm of .86(u6)· These estimates seem to be more complicated in 
the non-cylindrical case t han in the cylindrical one. 

LEMMA 4.1 There exists a positive constant M3, independent of parameter 8 E 

(0, 1], such that 

[ I :t.B6(u6)1
2 

dxdt + sup I.B6(u6(t))l~~(n.,. ( t)) ~ M3 
}Qm tE[O,T) 

( 4.1) 
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Proof. For each 8 E (0, 1) and t E (0, T] we consider the time-dependent convex 
functional <I>.s(t, ·)on L2 (n0 ) defined by 

1 
3 1 oz az - L aij(t)--dy 

2 .. _
1 

no oyi oyi 
l,J-

+~ { no(t)z2di'o- { p,s(t)zdfo if z E H 1(no), 
lro lro 

+ oo if z E L2 (no) \ H 1(no). 

<I>0(t, z) := 

Then, it is easy to see that <I> 0 ( t, ·) is proper and lower semi-continuous on L 2 ( n0) 

and <I>.s(·, z) is Lipschitz continuous on [0, T) for each z E H 1(n0 ); actually, it 
holds that 

:t <I>.s( t, z) ~ Ko(K~ + <I> 6 ( t, z)) 

for a.e. t E [0, T) and all z E H 1 (no), (4.2) 

where Ko and Kb are positive constants determined only by the Lipschitz con­
stants of aij, no and p0 ; they can be chosen so as to be independent of 8, 
too. It is derived from this property in the same way as Lemma 1.2.5 in Ken­
mochi (1981) (or Lemma 2.3 in Kenmochi and Pawlow, 1986), namely that if 
v E W1•2(0, T; L2 (no)), 8<1>6(·, v(-)) E £ 2(0, T; L2 (n)) and v(O, ·) E H 1(n0 ), 

then <I>.s( ·, v(-)) is absolutely continuous on [0, T) and 

:t <l>.s(t, v(t))- (vt(t), o<I>.s(t, v(t)))£2(flo) ~ Ko(K~ + <I>.s(t, v(t))), (4.3) 

for a.e. t E [0, T), where 8<I>0(t, ·) is the subdifferential of <l> 0 (t, ·). In fact, for 
each s, t E [0, T) with s < t by the definition of the subdifferential and ( 4.2) we 
get 

1 
-{<I>.s(t,v(t))- <l> 0(s,v(s))} 
t-s 

~ (a<I>6 (t ,v(t)), v(t)- v(s)) + - 1
- jt Ko(K~ + <I>.s(r,v(s)))dr, 

t- S £2(flo) t- S 8 

where (·, ·}L2(flo) stands for the standard inner product in L2 (no). For a.e. 
t E [O,T) at which <l> 0(·,v) and v are differentiable, we have (4.3) by letting 
s / t. Moreover, 8<I>0(t, v(t)) is characterized by 

(o<I>o(t, v(t)), w)u(no) 
3 

= L r aij(t) a;(t) ;w dy + r no(t)v(t)wdfo- r Po(t)wdfo, 
i,j=l lno y, Y1 lro lro 

for all wE H 1 (no) and hence 8<I>0(t, v(t)) "=- 2::.i=l ofayj{aij(t)(ov(t)fayi)} 
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w 1 · Vf36(u6) + w 2 · Vu6- !6 (cf. (3.5)), it follows from (4.3) by taking f36(u6) 
as v that 

for a.e. T E [0, T]. Here, integrating ( 4.4) over [0, t] with respect toT and using 
Lemmas 3.2 and 3.3, we obtain for an arbitrary small positive number c: and 
with notation Qo(t) := (0, t) x flo that 

<l>6(t, /36( U6 ( t))) + { /3~ ( U6) lu6,r l2dydr 
}Qo(t) 

::; - { (w1 · 'l/36(u6))
0
° /36(il6)dydr- { (w2 · Y'u6)J3~(u6)u6,rdydr 

}Qo(t) 7 }Qo(t) 

1 _a lt + /6-
0 

/36(u6)dydr + Ko {Kb + <I>6(r,/36(u6(r)))}dr 
Qo(t) 7 0 

+ <1>6(0, /36(ilo6)) 

::; lwdc(Q;)3 f IY'f36(u6Wdydr 
4c: } Qo(t) 

+c:(lwllc(Qo)a + 1) { lao /36(il6)1
2 

dydr 
}Qo(t) 7 

+ lw21C(Q;)3 f IY'u612!3~(u6)dydr 
4c: }Qo(t) 

+c:lw2lc(Qo)3 r J3~(u6)1u6,rl 2dydr 
}Qo(t) 

1 - 2 t I + 
4

c: I/61£2(Qo) + Ko Jo {Ko + <I>6(T,/36(il6(r)))}dr + <I>6(0,/36(ilo6)) 

::; c:(lwllc(Qo)3 + 1) r I aa /36(U6)1
2 

dydr + CE:Iwdc(Qo)3Ml 
}Qo(t) 7 

+c:lw21c(Qo)3 r ~(u6)lu6,r l 2 dydr + CE:Iw21c(Qo)3M2 + CE:If6li2(Qo) 
}Qo(t) 

( 4.5) 
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where CE: is a positive constant depending only on c:, and M1 , M2 are the same 
constants as in Lemmas 302 and 3030 Since I8(,Bo(u0))/8tl :::; Coluo,tl, it follows 
that 

Therefore it follows from (405) with a small c: > 0 and Lemma 302 that 

ipo( t, ,86 ( uo(t))) + r I : ,Bo( Uo) 1
2 

dydT :::; M4 for all t E [0, T], ( 406) 
}Qo(t) UT 

where M4 is a positive constant independent of o E (0, 1]0 From the definition 
of ip0 and ( 406) it follows immediately that 

sup I,Bo(uo(t))l1l(f2o) + r I~ ,Bo(uo)l
2 

dydt:::; Ms, 
tE[O,T) }Qo ut 

( 407) 

for a positive constant Ms independent of o E (0, 1]0 Finally, describe the 
quantities of the left hand side of ( 40 7) in the ( t, x )-coordinate of the non­
cylindrical domain Qmo Then we obtain a uniform estimate of the form (401)0• 

5. Proof of the Theorem 

EXISTENCE: Let { u0 }oE(O,l) be the family of approximate solutions of (SPC)o 0 

By Lemmas 302, 303 and 401 with the standard compactness argument we can 
find a sequence {On} with On -+ 0 as n-+ +oo and functions u, ( such that 

Un := U6n -t u weakly in L2(Qm), 

,Bn(un) := ,Bon(un)-+ ( in L2 (Qm) and weakly in H 1(Qm)o 

The monotonicity argument implies that ( = ,B(u) in L2(Qm)o We now show 
that u is a weak solution of (SPC) o To do so, multiply (301) by any test function 
ry E C 2 (Qm) with ry(T, o) = 0 and integrate it over Qmo Then, just as in the 
derivation of our weak formulation, we see by the Green-Stokes' formula that 
the approximate solution Un satisfies 

-1 Un'f/tdxdt-1 Un'f/VEdf(t)dt+ 1 '\l,Bon(un) o '\lrydxdt 
Qm E Q,. 

+no r ,Bon (un)'f'Jdf(t)dt- r Un(V 0 '\lry)dxdt + r Un'f'J(V 0 v)df(t)dt jE }Q,.. }r, 

= f f~ rul.xrl.t + r 'Tl< 'Tlri.T'(f\rlf -1- r .. ~ . .,{(l\ri"' 
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Here, noting condition (1.2) again and passing to the limit in n we get 

-1 UrJtdxdt + 1 'Vf3(u) · 'Vrydxdt +no h f3(u)rydf(t)dt 
Qm Qm I: 

-1 u(v · 'Vry)dxdt 
Qm 

= { frydxdt + { P"7df(t)dt + { UorJ(O, ·)dx, 
}Qm }:r; lno 

which is the required variational identity. Moreover, on account of the uniform 
estimates obtained in Sections 3 and 4, we see that u,/3(u) E L2 (Qm) and 

1T if3(u(t))i~fl(fl.,_(t))dt::; M1. 

Finally, let us check the continuity property of u in time. To do so, we use the 
weak continuity of the function u(t) := u(t, Y(t, ·)) in L2(f20 ), which is easily 
seen from the fact that {iio,t} is bounded in £ 2(0, T; H- 1(f20 )) (see (3.5)). For 
each function ~ E L2(R3 ), we observe 

{ u(t+At, x)~(x)dx- { u(t, x)~(x)dx 
ln,_(t+At) Jnm(t) 

= { u(t+At,y)~(y)IIJy(t+At,y)iidy- { u(t,y)~(y)IIJy(t,y)iidy 
~ ~ 

= { {u(t+At,y)-u(t,y)}~(y) i! ]y(t+At,y)lidy 
lno 

+ { u(t, y){~(y)ii]y(t +At, y)ll- ~(y)li]y(t, y)li}dy, 
lno 

where IIJy(t,·)ll is the Jacobian determinant of the transformation x = Y(t,y) 
(see the proof of Lemma 3.1). Clearly, as At -+ 0, the right hand side of the 
above equalities goes to 0, so that the integral fnm(t) u(t, x)~(x)dx is continuous 
in t. This completes the existence proof. • 

UNIQUENESS: The idea of our uniqueness proof is due to Chapter 3, Section 3 of 
Ladyzhenskaya, Solonnikov and Ural'tseva (1968) , and this was also extensively 
used in Niezg6dka and Pawlow (1983), Rodrigues and Yi (1990), Rodrigues 
(1994), as well as Fukao, Kenmochi and Pawlow (2002). 

Let u1 and u2 be two weak solutions and take their difference. Then 

-1 (u1- u2)'Titdxdt -1 ({3(ut)- f3(u2))A7Jdxdt 
Q,_ Qm 

+ h(f3(ut) -f3(u2 ) )~: df(t)dt 

+no r (f3(ut)- f3(u2))7Jdf(t)dt- r (u1- u2)(v · '\Jr])dxdt = 0 (5.1) 
}:r; }Qm 



Stefan problems in non-cylindrical domains 

As usual, consider the function 

if u1(t,x) =f u2(t,x), 
if u1(t,x) = u2(t,x), 

which is non-negative and bounded on Qm. Then, by using (5.1), 

-1 (u1- u2){1Jt + b~7J + v · V77}dxdt 
Qm 

+ l ((J(ui)- (J(u2)) { ;: + no7J} df(t)dt 

= 0 for allry E C2 (Qm) with 7J(T, ·) = 0; 
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(5.2) 

it is easy to see that (5.2) holds for any function 7J E W1•2(Qm) with ~7] E 
L2 (Qm) and 77(T, ·) = 0. Now take a smooth and strictly positive approximation 
b.: of b such that 

€ ~ bE: ~ cl a.e. on Qm, 

b.: --+ b a.e. on Qm as € --+ 0, 

where C1 is a positive constant independent of the approximation parameter c E 
(0, 1], and consider the following auxiliary linear parabolic problem formulated 
in the non-cylindrical domain Qm for any given l E C0 (Qm): 

(P).: 

This problem has a unique Holder continuous solution 7Je such that 7Je, 7Je,t, 7Je,x, 
and 7Je,x;xi, i, j = 1, 2, 3, are Holder continuous on Qm. In fact, this is refor­
mulated as the following backward problem (P)e formulated in the cylindrical 
domain Qo: 

in Q0 , 

where W i, i = 1, 2, and no are the same as in section 3, fie(t, y) := 7Je(t, Y(t, y)), 
be(t,y) := be(t, Y(t,y)) and l(t ,y) := l(t, Y(t,y)). We can solve (P)e by 
applying the general theory of quasi-linear parabolic equations in Ladyzhen­
skaya, Solonnikov and Ural'tseva (1968) and see that it has a unique solution 

.,....,. ., I - 't I - lf"'' •-=--• -
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that 7Jo( t, x) := iio(t, X (t, x)) is a solution of (P)"' on Qm, satisfying the required 
regularities. 

Here we are going to show some uniform estimates for 1Jo with respect to c:. 

LEMMA 5.1 There exists a positive constant M6, which depends on f and is 
independent of parameter c: E (0, 1], such that 

IY'7Jo(s)li2(0m(s)) +iT r bE:l~7Jol 2dxdt 
s Jnm(t) 

5:. M6iT IY'7Jo(t) li2(0m(t))dt +no iT r : 1];dr(t)dt 
s s lr(t) t 

+no iT { v · V'(ry; )dr(t)dt + M6 for all s E [0 , T] and c: E (0, 1]. (5.3) 
s lr(t) 

Proof. Multiplying the first equation in (P)"' by ~1]"' and integrating it over 
nm(t) with respect to x, we get for each t 

r 1Jo,t~1JE:dx + r bE: l~7Je:l 2dx + r (v. V'1Jc)~1JE:dx 
Jnm(t) Jnm(t) Jnm(t) 

=- r V'f. V'ryE:dx. (5.4) 
Jnm(t) 

Here we observe that 

r 1Jc,t~1JE:dx 
Jnm(t) 

= - r (V'1JE:,t. V'ryc) dx + r 1Jo,t ~17"' dr(t) 
Jnm(t) Jr(t) uV 

= -~ f ~IV'7J"'l 2dx- no f ~ry;dr(t) 
2 lnm(t) ot 2 lr(t) ot 

= -~ dd r IY'7Jol2dx + ~ r JV'ry. J2vEdr(t) 
2 t Jnm(t) 2 }qt) 

-no r ~ry;dr(t). 
2 lr(t) ot 

Also we have by (1.1) 

- r (v. V'1Jc)~1JE:dx 
Jnm(t) 

1 1 01JE: 
= V'(v · V'ry"') · V'ry"'dx- (v · V'7Jo)~dr(t) 

Om(t) r(t) uV 

(5.5) 

= r f ~ ~~j ~:E: ~~~ + Vj ~~
2

~:. ~:~} dx +no L., (v. V'ry.)ryE:dr(t) 
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~ 3lvlc'(Qm)3 f IV'7Jel
2
dx + ~ f div (IV'7Jel

2
v) dx 

Jnm(t) Jnm(t) 

+no r v . V'(7J;)dr(t), 
2 lr(t) 

(5.6) 

and by (1.2) 

~ f div (IV'7Jel 2v ) dx = ~ f IV'7Jel 2(v · v)dr(t) 
2 Jnm(t) 2 Jr(t) 

= ~ r IV'7Jel 2vEdr(t). 
2 lr(t) 

(5.7) 

Integrating (5.4) in time over [s , T] and using (5.5)- (5.7), we get 

r IV'1Je(sWdx + 1T r bei~1Jel 2dxdt 
Jnm(s) s Jnm(t) 

~ (6lvlc'(Qm)3 + 1) 1T r IV'1Jel 2dxdt + 1T r IY'fl 2dxdt 
s Jnm(t) s Jnm(t) 

+no 1T r ~ 1]:dr(t)dt +no iT r V · V'(1J:)dr(t)dt. 
s lr(t) ut s Jr(t) 

Thus, a uniform estimate of the form ( 5.3) is derived. • 
LEMMA 5.2 There exists a positive constant M1, which depends on £ and is 
independent of parameter c E (0, 1], such that 

{ ~ 7Je(t) 2dr(t) ~ M1dd { 1Je(t) 2dr(t) + M7I7Je(t)ii2(r(t)) (5.8) 
Jr(t) ut t }r(t) 

for all t E [0, T] and c E (0, 1]. 

Proof. Our geometric condition ( *) ensures that there exists a finite open cover­

ing {Uk(t)},;'=1 ofr(t) and a local coordinate system y = (yi,Y2,Y3) = Xk(t,x) 
:= (Xk 1(t,x), Xk2(t,x), Xk3(t,x)) from Uk(t) onto an open subset iJk of the 
y-space for all t E [0, T] such that 

• Xk(t, Uk(t) n nm(t)) = i)k n {y; Y3 < 0} and Xk(t, Uk(t) n r(t)) = i)k n 
{y; y3 = 0} ( c R 2) for all k = 1, 2, ... , N and all t E [0, T], that is, every point 

(t,x) with X E Uk(t) n r(t) is mapped to (t,y) = (t,Xkl(t,x),Xk2(t,x),O) for 
all k = 1, 2, ... , Nand all t E [0, T]; 

• W = ak(t,y')~ on Uk n {YiY3 = 0}, where y' := (y1,Y2,0) and ak(·, ·) 

is positive and of C 2-class on [0, T] x (Uk n {y; Y3 = 0}) for all k = 1, 2, ... , N 
and all t E [0, T]; 

• dr(t) := Sk(t, y')~Y~?n .i)k n {y; Y3 = O~~or k_= 1, 2, · · : , N, where Sk(·, ·) 
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Moreover, take a partition of unity { ¢k(t, ·)} on r(t), namely 

¢k E CQ'(Rt x R;), supp(¢k(t, ·)) c Uk(t), 

N 

L </>k(t, ·) = 1 on r(t), t E [0, T], 0 ~ </>k ~ 1, k = 1, 2, ... ' N, 
k=l 

and put iif:(t, y) := 'TJe(t, Yk(t, y)) and '¢k(t, y) := ¢(t , Yk(t , y)), where Yk(t, ·) := 
- 1 -X j; (t,·): Uk-+ Uk(t) for all k = 1,2, . .. , N and all t E [O,TJ. Since 

it follows that for each t E [0, T] 

r aa 'T/f:(t) 2dr(t) 
lr(t) t 

= t r </>k (t) a,.,f: (t)2 dr(t) 
k=l lr(t)nUk{t) 8t 

= t { '¢k(t) 8ijf:a(t)2 Sk(t)dy' 
k=l jR2 t 

The first term of the last equality in (5.9) is estimated as follows: 

Now, note that 

(5.9) 

where ak(t,x) := ak(t, X (t,x )). Then, the second term of the last equality in 
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t t f ¢k(t) 87ic(t)z aiki(t) Sk(t)dy' 
. }R2 oyi ot 

k=l •=1 

=-£ t r {-~ (¢k(t) axki(t) sk(t)) rr; 
k=l i=l }R2 oyi ot 

+ ~.( t) a~:)' ai;;(t) s,( t)} dy' 

~ r 7J,;(t)2 t {I a a (¢k(t) ax;; (t) Sk(t)) 
}qt) k=l Y1 

+ a~, ( ¢,(t) ai;;(t) s,(t)) I s,J(t) } dr(t) 

+ r 7J,;(t)2 t l2no axk3(t) I df(t); 
lr(t) k=l ak(t) ot 

in the first integral of the last inequality we consider the integrals as functions 
of (t, x) by the inverse transformation of y = Xk(t, x). Therefore (5.8) holds for 
a constant M7 > 0 having the required properties. • 

LEMMA 5.3 There exists a positive constant Ms, which depends on f and is 
independent of parameter c E (0, 1], such that 

{ v(t) · V'(7Jc(t) 2 )df(t) ~ Msi7Jc(t) li2(r(t)) 
lr(t) 

for all t E [0, T] and c E (0, 1]. 

(5.10) 

Proof. We can obtain a uniform estimate of the form (5.10) in the same way as 
(5.9) in the proof of Lemma 5.2. • 

Now, by Lemmas 5.1-5.3 and utilizing that no > 0 we see that there exists 
a positive constant Mg, which depends on f and is independent of parameter 
c E (0, 1], such that 

I7Jc(s) l~h(f!,(s)) + 1T r bci~7Jcl 2 dxdt 
• ln,(t) 

~ M, {iT ~~,(t) lli•tn-(<))dt +I} (5.11) 

for all s E [0, T]. Accordingly, applying the Gronwall's inequality to (5.11), we 
finally have 

Ui .12) 
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where M 10 is a positive constant, which depends only on f (it is independent of 
c: E (0, 1]). Taking TJe: as a test function T) in (5.2), we have 

0 = -1 (u1- u2){TJe:,t + b6.T]e: + v · 'VTJe:}dxdt 
Qm 

= -1 (u1- u2){TJe:,t + be: 6.TJe: + v · 'VTJe:}dxdt 
Qm 

+ 1 (u1- u2)(be:- b)6.rye:dxdt 
Qm 

=-1 (ul-u2)fdxdt+ r (ul-u2)(be:-b)6.T]e;dxdt. 
Qm }Qm 

Thanks to (5.12) and c; ~ 0, we have 

l.km (ul- u2)(be:- b)6.TJe;dxdti :::; {.km Ju1- u2J
2

Jbe:- bJdxdt} ~ (2M10 )~ 
~o. 

Therefore 

1 (u1- u2)fdxdt = 0 for all f E C0 (Qm), 
Qm 

which implies that u1 = u2 a.e. on Qm. • 
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