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Abstract: This paper concerns an obstacle control problem of
an elastic pseudoplate. The state problem is modelled by a semi-
coercive variational inequality, where the control variable enters the
coefficients of linear operator and a linear functional. Moreover, we
consider the state eigenvalue problem for a minimal first eigenvalue
associated with the vibration of pseudoplate. Existence of an op-
timal control is verified. Finally, approximate solutions with some
convergence analysis are provided.
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Introduction

Obstacle control of elastic structures contains also quasistatic state problems
with unilateral boundary conditions, which admit non-trivial virtual rigid body
displacements. The simplest example is constitated by a beam unilaterally sup-
ported on both ends. We observe that the state problem is modelled by a
semicoercive variational inequality. If the structure is fixed on some part of
its boundary, then the energy of deformation is coercive and numerous the-
ories from mathematics can be applied to the problem. On the other hand,
another interesting case from the point of view of applications is when the body
is fixed along some part of its boundary so that the rigid body motions are
possible. Hence, the energy of deformation is no longer coercive. However,
for several semi-coercive problems it is possible to give conditions on the right
hand term (transversal load) in such a way guaranteeing the existence and the
uniqueness of solution for the original problem and the corresponding discrete
approximations. A semi- coercive elliptic problem with boundary conditions of
the Signorini type is solved in this way through a Galerkin schema in (Adly,
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of semi-coercive variational inequalities involving a monotone (but not strongly
monotone) operator, which depends on the control variable. Here we formulate
boundary conditions and external forces, which imply the coerciveness of the
potential energy over the subset of admissible displacements or over a subspace
of the energy space only. Moreover, we restrict ourselves to the cases, when
the subspace of rigid virtual displacements have the dimension one, in order to
obtain uniqueness of the solution of the state problem.

Here we consider an optimal control problem of an elastic pseudoplate (a
plate with small bending rigidity). The bending of the pseudoplate is described
by means of shear model: the plate is deformed only by the shear forces (see
e.g., Armand, 1972). Firstly, we assume that a homogeneous and isotropic
pseudoplate occupying a domain Q x (=&, &) of the space R® is unilaterally
supported on the whole boundary. The pseudoplate is loaded by a transver-
sal distributed force %(x,,z2) perpendicular to the plane OX;X5. The role
of control variables is played by: 1° The thickness of the pseudoplate, 2° The
variable distributed load (externally applied pressure). The positive loading is
considered down in the direction of Z axis. The cost functionals represent: the
resultant of transverse contact forces between the pseudoplate and the rigid in-
ner obstacle or the desired deflection of the pseudoplate. The state problem is
modelled by a semi-coercive variational inequality, where the control variables
influence the coefficients of the linear, bounded and monotone operator and a
linear functional, both defined on a Hilbert space H!(2). Secondly, we consider
the state eigenvalue problem for (the deformation energy being coercive) a min-
imal first eigenvalue causing the vibrating of a pseudoplate in contact with a
boundary obstacle on the space V(2) C H'(f2). We assume that the thickness
of the pseudoplate is uncertain, being prescribed in some a priori given set (the
state eigenvalue problem with some uncertain data) an we employ a method
of reliable solution. Here we consider the fundamental eigenfrequency as the
functional criterion.

On the basis of the general existence theorems for a class of optimization
problems or a reliable solution to the variational inequalities, we prove the
existence of at least one solution to each of the problems mentioned above.
Finally, we shall propose approximate solution and present some convergence
analysis.

1. Setting of the problem

Let the midplane of the pseudoplate occupy a given bounded domain Q C
R? with Lipschitz boundary 0Q. Let [0z,z4,04z,2,] denote the components of
the stress field (shear stresses). We consider an isotropic and homogeneous
elastic material. Assuming that the in- plane displacements vanish, we have the
following stress-strain relations:
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where K is a shear correction factor (a positive constant) and G = const is the
elastic shear modulus. The general forces (shear forces) of the pseudoplate have
then the form:

0
Vaizg = / Ozizsdz = KGO/ [0z;), i=1,2.
-0

Hence we obtain the equation (the equilibrium equation of the pseudoplate
without any internal obstacles)

OVy,zy /021 + OV JOa + F =0 or div(KGOgradv) = —5.

We denote the standard Sobolev function spaces by H*(Q) (= W§(Q)),
k = 1,2. Let the norm in H*(Q) be denoted by ||.|[g+q). In the following,
Ly(Q) and L () denote the space of Lebesgue-square integrable functions on
Q and the space of essentially bounded functions on Q, with standard norms
Il 2,0y and ||.]| L. (), respectively. The inner product in Ly(£2) will be denoted
by (.,-)Ly@)- I D is a subset in R", its boundary is denoted be 8D and its
closure DU 3D by D.

The transversal displacements (deflections) v belong to the space V(§2) :=
H(§2). In the following we use the virtual displacement principle to establish
a variational formulation of the problem. To this end we introduce the set of
admissible deflections in the following way

H(Q):={veV():v>0ae on N, and v > Oa.e. on 91},

where Q, C Q and #v is trace of v on 9, (the trace operator ., : H'(Q) —
L,(99) is linear and continuous, such that v, see Fig. 1, is trace of v on 99
for every v smooth).

For the transversal load .% of the pseudoplate (the control variable), let Q
be decomposed into M disjoint subdomains, i.e.

M
Q=J% U%unQn=0ilk#m.
k=1

Consider for the pseudoplate the control space U(2) and the admissible
control set Upq(f2) as

M
U(Q) = (@) x (J] €()) and Uaa(9) = UG(RQ) x U(R),

k=1
with e = [, %], where the half-thickness & belongs to the set

UG(Q) = {€ € C9(Q) (i.e. Lipschitz - continuous functions):
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with given positive constants such that UZ(1) is non-empty const(jy < const(sy,
1 € [constyy, constsy] and

UZ(Q) = {& € Loo(Q) : Hla, € CO (),
k=12,...,M, || = S|l L.() < constay,
105 /0|, ) < const(my, i = 1,2},

where % is a given function such that S|, € CO (D), [|05/0zil L. () <
consta), ¢ = 1,2 with given positive constants such that UZ(Q) is a nonempty
set.

(éF(zl) IZ)

(oj{zl) 152)

zl Vzila(xl! Eg) Il"::ﬂza{;r:l! 3-"2)

Fig. 1. Pseudoplate loaded by transversal forces

Note that any % € UZ(R) is a piecewise Lipschitz continuous function
which does not differ “too much” from a “central” piecewise Lipschitz continuous
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Due to the virtual displacement principle we associate with & € UZ(f) a
bilinear form

a(0,0,z) = / KG0|gradv.grad z]df for all v,z € V(). (1.1)
Q

For a transversal load & € L (2), we introduce the linear form on V()
by the formula (the virtual work of external load)

<L(y),v)v(g)=Lyde. (1.2)

It is readily seen that L(#) € V*(Q), for & € UZ(Q).
We define on the open Q the family of the pseudoplate linear operators
{#/(0)} generated by the bilinear form a(&,.,.) in the following way

(# (O, 2)y(0) = a(0,v,2), O €UZHR), v,z€ V(). (1.3)

Thus, taking into account (1.1) to (1.3) on the basis of the virtual displace-
ment principle, we introduce the following State Problem:
Find u(e) € J#(Q) such that

(#(O)u(e),v — ule))v(a) 2 (L(S),v — ule)v(a), (1.4)

holds for given e € U,q(f2) and for all v € ' (Q2).

Further, we shall prove that the variational inequality (1.4) has a unique
solution u(e) for any e € U,q(f2). On the other hand, for the state variational
inequality (1.4), we consider several Optimal Control Problems. First we intro-
duce cost functionals. The simplest will be

Zoesiren DEPLECT]ON('! U) = / |"-JI = 2adI2dQ (1.5)
Q

where zgq € L(§2) is given function.

Let theta be any (fixed) function of H}(f2) such that § =1 on 2, a.e. We
define (under the condition of active support with non-zero reaction forces on
oN)

2TOTAL REACTION (e, 1.»') = L(KG‘agrad v. gradg —-— ye)dQ. (16)

This functional represents a resultant of transverse reactive forces on the
inner obstacle. Let us justify the definition of ZroraL reacrion In detail:
For any v € J¢(2) N H?(S) we decompose domain {2 into the set

H(v) = {[z1,22) € Qy : v(z1,22) > 0},

which is open, and its complement, the so-called coincide set: Z°(v) = Q. \H(v).
Obviously, v = 0 holds on Z(v) (in general, the set %(v) is not closed). We
introduce the following set:

[P e A W S
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LEMMA 1 If the solution u(e) of the state problem (1.4) belongs to H%(2), then
one has

-%1"0‘1-,\1. HBACTION(et u(eJ)

= - / (& + div(K GO grad u(e)))ds2, (1.7)
2 (u(e))

i.e., it has the same value for all 8 € O,(Q).
Proof. Let us show that
A (e,ule)) = —div(KGO grad ufe)) — & =0, (1.8)

holds in 2\ Z(u(e)) a.e.

Consider a point [z],23] € H(u(e)). Then there is a ball B,([z],z3]) C
H(u(e)) and a non-negative function ¢ € C§°(B,[z},23])) such that ¢ > 0
on a closed ball B,5([z],z3]) and u(e) > ¢ holds in B,([z],z3]). Hence for
any 9 € C§°(B,/2([z],23])) we may find € > 0 such that u(e) + ed > ¢/2 in
B,2([z1,23]). As a consequence, v = u(e) + € € #(R2). Now, we substitute
this v in the inequality (1.4), we find: v — u(e) = e and

/(KGé’gradu(e).gradiﬁ')dQQ/.S’ﬂdﬂ.
Q Q

On the other hand, the opposite inequality follows for v = u(e) — ed. This
means that we may write

/ (KGOgrad u(e) .grad ¥ — 57)d2 = 0,
Q

for all 9 € C§°(B,/2([z1,25])). Hence, integrating by parts, we get (1.8) in
Q. \ Z(u(e)). i

Next, consider a point [z}, 23] € 2\ Q.. We may find a ball B,([z],z3]) C
2\ Q. and for any ¥ € C§°(B,([2],%3])), we substitute v = u(e) £ ¥ in (1.4) to

find that (1.8) holds in Q\ Q..
Finally, integrating by parts and by virtue of (1.8), we may write

Zrorau neacion(€ u(e)) = f "A/Z(e'l u(ﬁ))ﬂdﬂ = Aé(e, u(e))dﬂ
Q 2 (u(e))
and the assertion of the lemma follows.

We note that some results and the regularity of solutions to obstacle prob-
lems (see Rodriguez, 1987) can justify a conjecture that u(e) € H*(Q) provided
Q is convex and € € H?(f2,). These assumptions seem to be sufficient to the
justification of the functional Zorar rescTion-

Moreover, for # € O,(f2) one has

ZLroraL REACTICIN(6| u(t’-)) = /ﬂﬂd,u(e,u(e))

— [ Advule ufedV >N '{1.9‘
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where p(e,u(e)) is a non-negative Radon measure with supp u(e,u(e))C2 (u(e)).
We may rewrite the variational inequality (1.4) (for v := u(e) + ¢, where ¢ €
0.(9), p > 0) in the following form

(Z(e)ule), o)y () 2 (<9 L)
where
Z(e)v = —div(KGOgrad v), for any v € H(R).

As a consequence (by the Riesz-Schwartz theorem, Schwartz, 1966)
[Z(e)u(e) — &] is a non-negative distribution on the domain Q with support
contained in Z(u(e)). This means that (1.9) holds. This measure represents
the interaction forces between the pseudoplate and the inner obstacle.

LEMMA 2 The set 2 (82) is a closed and convez subset of V(Q).

Proof. Clearly, 0 € J£(Q), thus 2 (f2) is non-empty. The closedness follows
from Lebesgue Theorem and convexity is immediate.
In the following, we define the Optimal Control Problems

€(+),DESIRED DEFLECTION — Arg Min ZDESIRED DEFLECTION (es u(e});
e€lU,q(82)

€(%),TOTAL REACTION — Arg Min Zroras REACTION(e:u(e))!
e€l,4(R)

(1.10)

where state function u(e) denotes the solution of the State Problem (1.4).

2. Existence of a solution to the optimal control problem

Let U(£2) be a Banach space, Uyq(22) C U(f2) a compact subset, V(£2) a Hilbert
space equipped with a scalar product (.,.)y(q) and a norm ||.|ly(q), V*(Q) its
dual space with a norm ||.||y-(q) and let (.,.)v(q) denote the dual pairing.

Assume that |v]y () is a continuous seminorm in the space V({2), satisfying
the following conditions:

If we define a subspace Z(Q2) = v € V(Q) : |v|y(n) = 0}and
Pgqyis the orthogonal projector onto Z(f2) then
dim 2(Q) < co.
There exist constants [M; > 0, My > 0O]such that
M|lvllvgy < [vlvie) + IPe@vllvie) < Mallvllvg)
holds for all v € V(12).

(MO)

Let J¢(€2) be a closed convex subset of V(£2) such that there exists a func-
tional ®: V(2) — Ry, satisfying the following conditions

vy [ W) =08 veX(Q) & DB(v,z) =0 for all z € V(Q),
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and the differential Gateaux D® is monotone, this means that
D®(v+ 2,z) — D®(v,2) > 0 for any v,2 € V(Q).
In the following we assume that
(M2) () n2(Q) # {0},
f € V*(2) and a continuous operator B : Uy,q(Q) — V*(£) is given such that
(M3)  (f + Be,p)y(n) <0 for any p € H(Q)N2(N) \" {0}
for any e € Uaa(f2).
Let {#(e)}ecu,4(n) be a family of linear operators &/(e) : J#'(Q) — V*(),
which satisfy the following conditions for all e € U,4($2)
((1°. (o (e)v — (e)z,v — 2)y () 2 awlv — 2[5 (g,
for any v,z € V(§2)where the constant az > 0 is indepen-
dent of e,
(A1) § 2° |le]lu(q) < constanty, ||v]ly(q) < constanty = || (e)vlly-(q)
< constant,

3°. en € Uaa(R), en — e strongly in U(2) = & (en)v —
| &(e)v strongly in V*(2) for any v € ().

We note that by virtue of the condition (M1), J¢(Q2) is a convex cone with
the vertex zero. Indeed, we may write

<I)(‘u)=/1 D®(tv,v)dt=(1/2)D®(v,v) so that ®(tv)=1>®(v)
(B1) for anyut >0,
vE X (Q) = 0(v) =0= P(tv) =0=>tv € H(Q).
On the other hand one has, ®(v) > 0 for all v € V().

LEMMA 3 Let the assumptions (M0), (M1) and (M2), (M3) be satisfied. Then
there exist constants Q1 > 0 and Q2 > 0, independent of e € Uy,q(2) such that

ad|‘”|ff(m + ®(v) = (f + Be,v)y(q) 2 Qllvllvie) — Q2 (2.1)
holds for all v € V() and e € Uaa(£2).
Proof. Let (2.1) not be true, then there are sequences {Un}nen, {€n}nen,
lvnllv () = oo and e, — eg strongly in U(Q2) such that

a,g|vﬂ|%»(n) + @(vn) = (f + Ben,vn)v(a) < (1/0)|[vallv ) — 7 (2.2)

We note that the sequence {v,}nen cannot be bounded, since then the
left-hand side would be bounded from below. It follows from (2.2) that for
sufficiently big n > Q5 one has
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Due to (B1) and by setting 0, = va/||vn|lv(q), we obtain

“llngo(ad|oﬂE%’(ﬂ}l|vnl|V(Q] + @(05)||vallv (o)
—(f + Ben,0n)v(q) = 01 <0, (2.3)
choosing a subsequence for limsup,,, _,., if necessary.
Moreover, for a further subsequence we may assume that: 0,, — o weakly
in V(2) and |0n,|y@) — 02 . On the other hand, the estimate (2.3) yields

that &2 = 0. Since #(v) = |v|y(q) is a weakly lower semicontinuous functional
(being convex and continuous), we have

lolv(e) < liminf o5, |v) — 0,

so that 0 € Z(Q).
Next, from the weak convergence and due to (M0) it follows that:
l1P2()0n, — Pa)ollve) — 0.

By virtue of (M0), we may write

Mi||on, = Ollv(a) < |on, — Olv () + [|P2@)(On, — O)llvn) — 0.

Observe that for subsequence {0, }ken We may write |0, [lve) = l[ollvia),

llollv @) = 1.
Then, in view of the above we have

Jm (|0, ¥ @ llvnsllvie) + 2(0n)llva,llvie) = (f + Ben,, 0n, v ()
2 —kli_{fo(f‘l‘BenuOm)V(ﬂ) = —(f + Be, 0)y(q)-
Taking into account that: limg_,.c ®(0n,) = ®(0), ®(0) = 0 follows from

(2.3). This means that 0 € (Q)NZ(Q)\' {0} and —(f + Be, 0}y () > 0 holds
by assumption (M3), we arrive at a contradiction with (2.3). ||

THEOREM 1 Let the assumptions (M0) to (M3) and (A1) be satisfied. Then
there ezists a solution u(e) € J () of the variational inequality

(o (e)u(e),v — u(e))via) 2 (f + Be,v —u(e))v(q) (2.4)

for any v € () and for any e € Ugg(92).

Here any two solutions differ by an element p, € Z(Q). If, moreover,
((e)v,p)y) = 0 for all p € R(Q) and v € V(), then one has: (f +
Be,p.)v(q) = 0.

Pmof The llncar operator &/ (e) is monotone ((A1),1°), bounded ((A1),2°),

PR T T v = 11 M Fr. = Yrim\ n n 1 A FOAN
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H()NQo. Then due to Theorem 8.1, from Lions, (1960) there exists a solution
Up € Ho(S2) of the following inequality

(#(e)uo,w — uo)y(ay > (f + Be,w — uo)y(q) for any w € H#o(R). (2.5)
By virtue of ((A1),1°) one has (we set w = 0 € J#,(Q))
awluoly gy < (#(e)uo, us)v(a) < (F + Be,to)v(q)-
Next, in view of Lemma 3 we may write
0> awluoly gy — (f + Be,uo)v(a) > Qlluollvi) — o,
so that
luollviny < Q = (Q2/2Q1)-

Let us choose © > Q and show that uo = u(e). Indeed, let v € () be
arbitrary. There is ¢ > 0 such that w = ug(1 —t) + tv € H,(Q2). So, by (2.5)
we conclude that

(e (e)uo,v — Uo)v () = H{f + Be,v — uo)v(a)-

Consequently, uo is a solution u(e).
Next, let v and u, be two solutions. Taking it into account we may write

{ (# (e)us, u —us)y(q) = (f + Be,u — u)y(q),
(@ (e)u, us — u)y(a) 2 (f + Be,us — u)y ().

(2.6)
Hence, by addition, we obtain

(#(e)us — & (e)u,u — us)y(q) > 0.
Then from ((A1),1°) it follows that

|t — ua|y(q) = 0 and u, — u = p, € Z(Q).

On the other hand, as (/(e)v, p)y(q) = 0 for all p € Z(12) and all v € V(1),
then (f + Be,p.)y(q) = 0, due to relation (2.6).

LEMMA 4 Let the assumptions (M0) to (M3) and (A1) hold. Further, one has
(# (e)v,p)v(a) =0 for any v € V(),p € Z(R), e € Ua(Q), (2.7)
and
dimZ(QY) = 1. (2.8)

Then there exists a unique solution u(e) of the variational inequality (2.4) for
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Proof. Let u and u, = u+p be two solutions of (2.4), assume that p € Z(22)\ {0}.
Due to the assumption (M2) we can choose a basic element p, € Z(Q) such
that p. € Z(Q) N (2) \' {0}. Then one has: (f + Be,p.)y(q) < 0 by virtue
of (M3). Since we have: p = Mp,, (for some real M # 0), (f + Be,p)v(q) =
M(f 4+ Be,p.)v(q) # 0, which contradicts Theorem 1. &

THEOREM 2 Assume that (M0) to (M3) and (A1) hold, moreover, let the family
of operators {2 (e)}ceu, () be potential. Further the assumption (2.7) and the
relation

& (e)(v+p) = & (e, (2.9)
hold for all v € V(R), p € Z(R), e € Uaa(9).

Let there exist a subspace #/(R2) C V() such that Z(Q)N# () = {0} and
if ue () \" #(Q), then there is an element p, € H# () N Z(2) \" {0} such
that u — p, € J(Q) N #(Q). Then there exists a unique solution u(e) of the
variational inequality (2.4) and u(e) € £ (22) N #'(£2).

Proof. In view of Theorem 1, there exists a solution u(e) of the state inequality
(2.4). Then one has

u(e) = ArgMin O(e,v), e € U.q(9),
vEI (§2)

where

1
Ofe0) = [ (af(e)(to) odviaydt = + Berlvea,
0
is the functional of potential energy, (see e.g. Céa, 1971).
Further, as

u(e) € H(Q) \ #(Q),
[u(e) —p.] € K (QNH#(Q), p. € X(Q)NRQ)\ {0},

we may write

1
Oe, [u(e) — ) = /0 (@ (e)(tu(e)), u(e))vaydt — (f + Be,u(e) — p)v(a)
= O(e,u(e)) + (f + Be,ps)v () < Oe, u(e)),

for all e € U,a($2) (due to the relations (2.9), (2.7) and the condition (M3)). As
a consequence, any solution u(e) belong to the set: JZ(2) N #(9).

In view of Theorem 1 one has: [u e) —us(e)] € Z(R), if u(e) and u.(e) are
two solutlons Morcover since (u(e) — u.(e)] € #(Q), as well, [u(e) — u.(e)] €
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OPTIMAL CONTROL PROBLEM

Let a cost functional .# : (U(2) x V(2)) — R, be given, which satisfies the
following condition:

If e, — e strongly in U(Q2) and v,, — v weakly in V(Q), then
liminf 2 (en,vn) > L(e, v). (2.10)

We define the following Optimal Control Problem (£?): Find

e. = Arg Min % (e, u(e)) (2.11)
e€Uqq ()

where u(e) denotes the solution of the state variational inequality (2.4).

THEOREM 3 Let Uoa(2) be a compact subset of U(R?), the assumptions (M0O)
to (M3) (A1), and (2.7), (2.9) and (2.10) hold and let at least one of the three
following conditions be satisfied

( 1°.dim Z(0) =1,

2°.the operators &/ (e) are potential and there is a subspace

#(Q) C V() such that Z(Q) N # () = {0} and tfu €

(A2) 4 J(2) \' #(Q), then there exists a p, € X (Q2) NZ(Q) \' {0},
[u—p.] € Z(QN#(Q),

3°.for any e € U,q(f2) there exists at most one solution of the

variational

inequality (2.4).

\

Then there exists at least one solution of the Optimal Control Problem (2).

Proof. By virtue of Lemma 3 one has

aﬂlu[%(n} —(f + Be,u)v(q) > Q|lullvq) —
for all u € H(Q), e € Uag(Q), (2.12)

where the constants a., Q), Q2 are independent of e and ®(u) = 0. Then,
due to Theorem 1 there exists a solution u(e) of (2.4). On the other hand, the
assumptions ((A2), 1°, 2°, 3°) guarantee its uniqueness (in cases ((A2), 1°) or
((A2), 2°) this is a consequence of Lemma 4 and of Theorem 2, respectively).

For a minimizing sequence {en}nen, €n € Uaa(§2) (is obviously bounded in
U,q(f2)) we have

nler;o Zlen,ulen)) = eEé{lﬁf(m.ff'(e,‘ur.(e)). (2.13)

Let us choose a convergent subsequence {en, }ren
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Take v = 0 in (2.4) with e = e,,,. Then, in view of ((A1), 1°) from (2.4) the
estimate follows

g |u(en, )l%’{n) < (& (en, Julen, ), u(en, ))V(ﬂ) < ({f + Ben,, %(em))vm)-
Moreover, by taking the estimate (2.12), we obtain
A ||u(e,.,,)[|%,(n) - < adl“(em)ﬁ‘(n) = (f + Ben,,u(en,))v(a) £ 0.

This means |[u(en,)llvie) < (Q2/Q1) and we can choose another subse-
quence {u(ekry)}oen C {u(en,)}ren, such that

u(ery,) — us weakly in V(9), (2.15)

where u, € J'(Q2) (since u(ex,) € H'(Q) and K () is weakly closed).
By virtue of ((A1), 2°), we obtain

| A(ereo )ulero)llve(q) < constant. (2.16)
This means that there exists an element 3¢, € V*(2) such that a subsequence
o (eo, )u(eo,) — 3, weakly in V*(£2). (2.17)

Due to the monotonicity of &/(e,, ) we may write

(ﬂ(eo.. )“(eo..) - o (eo, )v,u(eo, ) — U)V(n) >0 (2.18)

for any v € (), n=1,2,....
We take v = u, and e = eo,, in (2.4) then we obtain (due to the convergence
of {eo, }nen and {u(eo,)}nen)

lim sup(#/(eo,, Ju(eo, ), u(eo,) — us)v(a) < 0. (2.19)
n—oo

Moreover, by virtue of (2.19) and (2.17), we may write
limsup(#(eo, Ju(eo, ), u(€o, ))v(n) < (3, Us)v (). (2.20)

Thus by (2.15), (2.17), (2.18) and (2.20), ((A1), 3°), we conclude that
(3t — & (s)v,us — v)y () > 0 for any v € (). (2.21)
Let v = u, + t(w — u,), t € (0,1), w € K (). Then we have

(96e — o (&4 ) (us + t{w — u,)), us — W)y () 20
for any w € ' (Q2), t € (0,1). (2.22)

Making use of the hemicontinuity ((Al), 2°) and setting again w = v we
obtain for ¢ — 0,4
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Next we put v = u, into (2.18). Hence, we get

(@ (o, Juleo,), uleo,) — us)v(a) 2 (#(eo, )ux, uleo,) — uv(a)-

Here the continuity of &/(.)u. and the weak convergence of {u(eo, }nen
imply immediately that

lim (& (eo,, Jus, uleo, ) — us)v () = 0.

N—00

Hence

lim inf(& (e, Ju(eo, ), u(eo,) — t)v(a) 2 0.

n—o00

On the other hand, by comparing this with (2.19), we obtain

Jim (o (eo, Ju(eo, ), u(eo,) — v (@) = 0. (2.24)
Finally, the relation (2.17), (2.23) and (2.24) enable us to write

(& (4 )ty us = V)y () < nli_.n;o(d(eon)u(eun), u(eo,) - v)v(q)y,  (2.25)

for any v € ().
We are coming now to the conclusion that the element u, € J#(Q) is a
solution of the variational inequality

(# (e)tta, e —v)y () < (f + Bes,uy —v)y(q), for any v € H#(Q2),(2.26)

(in view of (2.25), ((2.4), for e = e, ) and (2.15) and the continuity of B).
Hence we have proved that

ws = u(es), uleo,) — ule.) weakly in V(Q). (2:27)
Furthermore, we observe that (2.10) implies
J(es) = Z(esu(es)) < liminf Z(eo,, ,u(eo,)) = liminf J(eo,)

n—oo
= inf J(e).
ec€Uaq(02)

The proof of Theorem 3 is completed. o

Now, we will apply Theorem 3 to the proof of existence of solutions to the
optimal control problems (1.10). The seminorm |.|y(q) is defined by

|”|€’(Q) = / [grad v.grad v]dS2. (2.28)
Q
Now, we define

(f + Be,v)yv(a) = (&, ) L,(0)»

- e
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We have Z(9) = Py(Q) = {v = constant € R'}, dim#Z(Q) = 1. In our case
we have considered the scalar product in V() in the following form

(v,2)v(q) = /Q [gradv.gradz]dQ + po(v)po(2), (2.29)

where po(v) = v(I') (Here I is the line segment in the domain ). In the sequel
we prove the equivalence of norms ((MO0), 2°). Due to (2.28) there are positive
constants My and M, such that

MO”'U”%{I(Q) > |‘U|%/(Q) +pg(v) > M*“'U”%{l(n) for all v € V(Q) (230)

Moreover, we have an orthogonal decomposition V(Q) = O(Q) & Z(). Set
#(Q) = {v € V(Q) : pi(v) = 0}. Then one has O(Q) = #(Q). Indeed, let
v € O(), then we have (v,0)y(q) = 0, for O € Z(). Due to the Schwarz
inequality, we obtain: [,[grad v.grad 2]dQ2 = 0 and consequently, po(v)po(0) =
0 for every © € Z(Q2). Hence, pi(v) = 0 and therefore v € #/(2). Conversely,
let v € #(2), then fQ [grad v.grad o]d2 = 0 yields (v,0)y(qy = 0 for every
0 € Z(Q), and therefore v € O(R). Here we have: O(Q) = H}(Q).

Next we denote by Ily (q) and Ilgq)y the projections in the sense of the
scalar product (.,.)y(q)- Then. from the estimate (2.30) we get

Ty 2 vl1¥ (@) < constanty [Ty ayvl a) = constanty [v — ey vl ()
= constantyylvlzx(g),
IMa@)vlly @) < MollPa@yvlli q)-
This means that we may write
M.|[vliFy < ol ) = (M @vll} @) + IMa@ll} @)
< (constanty [v]}1(qy + Mol Pe(e)vllF(a))s

which yields the left-hand side of ((Mp),2°). Simultaneously, the right-hand
side is obvious.
Let us define

Bl = /a ()P, (2.31)

where ([a] ™) dzfmin(O, a) is the negative part of the member a.
Then one has

D®(v,z) = 2 / ([v™))=dS.

12193
This means that the conditions (M1) are satisfied (we have ([a]~ —[b]7)(a—b) >
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Let the loading be represented by the functional (1.2) (the virtual work of
external loads). Assume that

<L(‘5’)!p>V(Q) <Oforalpe PU(‘Q) \ {O}v p>0.

Then the condition (M3) is satisfied.
Moreover, we have

{ (Z(O)v,p)v(q) =a(0,v,p) =0,
(by (1.1) for all v € V(R), p € (), € € US(Q)), (2.32)
4(0)(v+p) = #(O) + #(0)p = 4(O).

Due to (1.3) and (1.1) we may write (A2, (v) = 0v/0z;, i = 1,2)

2
(.ef(t?)(‘u - Z),'U -— Z)V(n) > KGCOHSt“)a Z/s;[%i:‘. ('U e z)lzdﬂ
i=1
= KGconstyyol|v - zi'f,-(m, (2.33)

for any v,z € V(1) and for any 6 € UZ((), and

(O~ (O, Ay ey = | f KG(0, - 0)grad v grad 2]dq)
Q
< constant |6, — Ollo@a Ivllv oy ll2llvia)-

Moreover, we have

(& (O)v, wv(q) = & (0)z,w)y ()| = | /9 KGO(grad(v - Z)-gradw)dﬂ‘
< KGeonstgyellv = z|lvallwllv -

This means that

{ |4(On)v — & (O)vllv- () < constant(||On — Ollc(s))lvllvin),

| (O)vllv-(a) < constant. (2.34)

The verification of the conditions (MO), (M1) and (M2), (A1) is now com-
pleted. As a consequence of Lemma 4 this yields the existence and uniqueness
of a solution u(e) of the state variational inequality (1.4) for any e € U,a(2).

LEMMA 5 Any of the functionals ((1.5), (1.6)) satisfies the assumption (2.10).

Proof. Let e, € Uaa(2), e, — e strongly in U(Q) and v, — v weakly in V().
By Rellich Theorem, v, — v strongly in Ly(2), so that

|2DEBIRED DBFLBCT[ON('I t’?l) s gDES]RED DEF‘LECT]GN('I ‘U)l
< N lve = 2aa)? = (v = 220)%1dQ < |lvn + v = 220d|| L. ) ||Vn = VL.
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and so

nll.n;lc Zoesired DEFLEG“I‘IUN{': ‘Un} = ZLoesiren DEFLECT]ON(-s U)-

Moreover, we may write (consider a fixed f € O,(12) in (1.6))

-g‘TOTAL REACTION (em ’Un) = gTDTAL REACTION (3, ‘Un) + -/f{m (2-35)

where
] = | / (KG(6, — O)gradv,.gradd) — (. — )42
Q
< KGonstant [0, — Ol ayllollicay + % — Pllzer] = 0, (236)

since the norms ||v || g1 (q) are bounded.
We can conclude that

lim -gTOTJ\L RFACTIO\I(e ’Un) -gTOTAL H.EACTION(el U)- (2-37)

n—00

Thus, due to (2.35) to (2.37), we arrive at

lim #rorar reacTion (em'ﬂn) ZroTAL REACTION (eu U)-

n—oo

Next, on the basis of the Arzeld-Ascoli Theorem, the compactness of the sets
UZ(R) and UZ(Q) follows in the space C(Q) and (I—L_ C(£:)). Then, U,a(9)
is compact in U(£).

Altogether, all assumptions of Theorem 3 are fulfilled by Lemmas 1 to 4.
As a consequence each of the Optimal Control Problems (1.10) has at least one
solution.

3. Approximate optimal control

In the following, we assume that the domain © has a polygonal boundary 9.
Let us consider a regular family of triangularizations {J, } hn — 0% of the
domain €2, which are consistent with the partitions: Q = UM, Q;. We introduce
the finite-dimensional space of piecewise linear functions P1 (i.e. all the finite
elements of all the triangulation are affine-equivalent to a single reference finite
element, there exists fg > 0 such that & > )y and h,, — 04)

Hn, () = {vn, € C(Q) : v, |7 € Pi(T) for all triangles T € , }
and the following sets

Vi () = Hp () N V() (each triangulation Z,, will be associated
with a finite-dimensional space of piecewise linear functions),
Ugan, () =UGQ) N Hn, (), U, (R) = UZ(Q) N Ha, (D).
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Assume that % € H, () for some triangulation &,. Hence, we have to
assume that the triangulations Jj, are consistent also with the boundaries
89, k =1,2,..., M, which play a role in the definition of Uy, ,(2). Then we
define

Uaa,)(R) = UG, () x U1, (Q)

and consider approximate control ey = (04, #4)T € Usan(Q).
Here, with each triangulation J},, we also associate the following subset of
Vi ()

I, () = {vn, € V4, () : v, (A) > 0 for all nodes A € X} U X, NIN
= B3 U(Zh - )},

where ¥} denotes the set of all vertices of triangles T' € i, T C ., and
Y ={A€fA¢00}, T ={A€Q, Aisavertex of T € F,}.

We suppose that we are given a sequence {hn},en converging to zero and
a family {V4, (2)}, of closed subspaces of V(2). We are also given a family
{#h,. () }nen of closed convex non-empty subsets of V() with J&, () C
Vi, () for any h, such that {J%,(Q)}.en satisfies the following conditions
(we introduce a concept of convergence in the sense of Glowinski):

(1°. If {vp, }», is such that vn, € S, (Q) for any h, and

{v, }nen is bounded in V(2), then the weak cluster

points of {vp, }s, belong to J ().

(M1) 2°. There exists A(Q) C V(R2),A(R2) = ¢ (Q)and o,
AQ) — 4, ()

such that .&liilu O, v = v strongly in V()

for any v € A(R).

\

Now, we may define the following Approximate State Problem: Given any

eh, = [0}, ] S Uad hn (Q) ﬁnd Uh, {ehn) € Jﬁ;" (Q}
such that (A(a,,n)u;.,‘(eh ), Uk, — un,(en,))v(a) (3.2)
> (L(Fn)s Vho = un,(€r,))v(0) .

holds for all ml eJé’:.( )-

Finally, let us define the functionals
= »gnssmen nsPLECTloN(Ek..u 'Uh,.): (3'3)

{ 'gDESIR.ED DEPLECTION,UR)(ehn 3 'Uh“)

TOTAL REACTION,(h) (ehn!vhn) = ZrOTAL REAGTION (eh.u”h..)-

Co prnres -~
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APPROXIMATE OPTIMAL CONTROL PROBLEMS: Given a fixed triangulation
I, find

€pESIRED DEFLECTION,(h) = Arg Minch €Uaa,n(52)
-‘ZDESIRED DEFLECTION (eh., :Uh(eh))u

€roraL REACTION,(h) = Arg Min’ehEUad.h(Q}
ZroraL REACTION,(R) (eh; uh(eh))!

(3.4)

where uy, (ep, ) is the solution of the Approximate State Problem (3.2).

THEOREM 4 The Approzimate State Problem (3.2) has a unique solution uy(ep)
for any ey, € Uya n(Q) and any h sufficiently small. The Approzimate Optimal
Control Problem (3.4) has at least one solution for any cost functional (3.3) and
for any h sufficiently small.

Proof. Let us verify the assumptions of Theorem 3, where we set: Uyq(Q) =
Uad,n(R), e = en, V(Q) := Vu(R), K (Q) := H# () (for any h > 0) and define
A(Oh) : Vi(Q) = V), L(F) (= BS) : UZ (Q) — Vi (Q) by the relations

{ (2 (On)vn, z)v () = &(Oh,y Vh, 21),
and (3.5)

(L) vy (@) = Joy FhURAD.

The set J£,(2) (0 € J4(52)) is a closed and convex subset of J¢(£2).

By virtue of Lemma 3 and Theorem 1 the existence up(en) € J¢,(52) follows.
On the other hand the uniqueness can be proved in the same way as in Lemma 4
and Theorem 2.

Next we note that the cost functional Lesiren perLecrion,(n) for fixed (h)
satisfies the condition (2.10) (the proof is the same as for Lemma 5). Moreover,
we may write

LroraL amc’r[ou.(h}(eh,{n)s ’Uh,{n}) = Zrora REACTION,(&}(eﬁ) Uh,(n))
+ ‘%oh,(n): (36)

where

ijﬁ,’(ﬂ)! = |/ KG(ﬁhl(“) P é’h)gradﬂhiw.grad ghdﬂ
Q

_ / (P = yh)ﬂ;,dﬂ[
Q

< const (|| Oh,(ny = OnllLe @ llvn,m)llvie) + |0, n) = Fall L)
— 0. (3.7)

Next, we obtain the following estimate

I-YTOTAL REACTION,{h) [ehs vh,(n)) - "i‘oT'CITAL REACTION,(h) {eh ) ”-’l)]
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Then, due to (3.6), (3.7) and (3.8), we arrive at

im Zrorar RBACT]ON,(h)(eh,(ﬂ)lvh,(ﬂ}) = ZLroraL REACTION, (h) (eh: Uh).

n—oo

CONVERGENCE RESULTS

In the following, we will study the convergence of finite elements approxi-
mations when the mesh size tends to zero. To this end we establish the crucial

LEMMA 6 Let ey, € Ugan(2), en, — e strongly in U(R), as hn — 04. Then
one has

uh, (en,) — u(e) strongly in V(R2), as h, — 04. (3.9)

Proof. Since J¢,, () C S/ () and () is weakly closed, the condition ((M1)4,
1°) is trivially satisfied. We shall use the following density result (Glowinski,
1980): C=°(Q) N () = A (Q). Then it is natural to take A(R2) = C=(Q) N
H (). We define 0y, : H(Q) N C%N) — V4, (R), by the relation (the linear

interpolation operator)

on,v € Vi, (Q) for any v € HY(Q)n CQ),
On,v(A;) = v(4;) for any A; € Xp.

As the angles of the triangles of .7}, are uniformly bounded below by 6y as
hn — 0, then one has (Ciarlet, 1978; Glowinski, 1980)

lon,v — vllv(ay < const.hy||v|| 2(q) for any v € C(Q)

with constant independent of h, and v.
This implies that

Jim {|on,v = v|lv(q) = 0 for any v € A(Q). (3.10)
On the other hand, it is obvious that
O, v € Hh, () for any v € ' (Q) N C°(Q),
so that
Oh, ¥ € Jh, () for any v € A(Q).

In conclusion, with the above A(§2) and o4, , the condition ((M1)s,2°) is
satisfied.

Substituting vy, = 0 € J,, () in the state inequality (3.2), we obtain the
estimate

K Gconstyyy, olun, (en, )y < (A(Oh, )un, (€n, ), tn, (en,))v(a)
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Then, in view of Lemma 3 we may write
0> KGconst(l,,am.“(e;.,l)ﬁ,(m = (L(Fh,.); un, (r,)) V(@)
> Qillun, (er,)llvin) — L2
so that
l|un, (en,.)llv (@) < constant (= (Q1/Q2)), (3.11)

holds for all A, sufficiently small.
As a consequence of (3.11), there exist u¢ € V(§2) and a subsequence of
{un, (en,)}ren such that

up, (en, ) — uo weakly in V(). (3.12)

So, (3.12) means that ugy € J ().
We have the following relation (due to (M1)a, (3.10), (3.5) and the weak
convergence (3.12))

(L(Fhi), Onv = un, (en))via) = (L(SF), v = us)v (o)
=| [ 125 0n0 = thy(en)) - 10 - uo)la)

< Uﬂ(m,‘ — )08, v - un, (eh,))d9|

+| [ Fl(ono—uny(en) ~ (w0 ~ 0]
< constant [|Fh, = || Lo () llOn v — un, (ers)ll o)
+1Z @ llony = vl +| [ Fuo —u(en)d] w0 (313)

Let us substitute vy, = 2up, (es,) in the state inequality (3.2) and pass to
liminfy_,o with hgx — 0. The functional v — (&(0)v,v)y (q) is weakly lower
semicontinuous, being convex and differentiable. Thus we see that

lim inf(/(O)un, (en. ), un, (ens v (@) 2 (& (O)uo, uo)v (a)- (3.14)
Making use of (3.11) and (2.34), we derive that

[{A(Oh,, Jun, (eny ), un, (en))v(a) — (& (O)un, (en, ), un, (en, v (o)l

< ||A(Oh, Jun, (en,) — & (O)un, (en)llv- @) llun, (en,)llva)

< const [|A(Oh,) = #(O)l|vi@).v-(@yllun. (en) [}y — O- (3.15)
Therefore

lim inf(a/ (O, Jun, (en, ), un (en))v ()

= lim inf((«/(O)un, (en, ), un, (ens v (o)

+((& (O, Jun, (eny ), un, (en, ) v(ay — (#(O)un, (en,), uhk(ehk Nvey))

o Ve 2B AT RN, Fa N . fo w e e
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follows from (3.14) and (3.15).
Further, by virtue of (3.15), (2.34) and (3.11), (3.12) we may write (for fixed
0 e V(Q))

([ (O Jun, (eny) — & (O)ug], 0)v eyl < ([ (On, )un, (en,)
=& (O)un, (en,)), O)v o)l
+ ([ (O)un, (en.) — #(O)us], 0)v (el

< "A(én‘tﬁ )uhk(ehk) = d{ﬁ)uhk (ehi)“V‘(Q)"O"V(Q)
+ [([@ (O)un.(en) — Z(O)uo)], 0)v ()| — 0.

From this, we conclude that

when (3.17)

A(Oh, )un, (en,) = & (0)uy weakly in V*(Q),
Up, (en, ) — uo weakly in V().

Thus, one obtains (coming back to the variational inequality (3.2), inserting
Vh, = Op, v and passing to limes inferior or limes superior with hy — 0)

—((O)uo,us)y(a) > liin sup(& (O, Jun, (eny ), —un, (en,))v(a)
2> hin suP((_d(a‘*k }uhk {ehk )1 Op, U}V(ﬂ]

+(L(Fhs )s On v — un, (e, ))v(e)) (3.18)

for all v € £ ().
Here, by virtue of (3.11) and ((M1)g,2°) we have

(2 (Oh Yun, (ere ), Orv — V) v (el
< const [|un, (en,)llv@)llonv = vllv) — 0 (3.19)

for hy — 0.
Further, due to (3.19) and (3.17), we deduce that

(2 (O, Jun, (€ry)s On V) v () — (#(O)ug, v)v (el
< (O, )un,(€ns) Onv = v)v (el
+ (& (On, )un, (en, ), v)v(q) — (& (O)ug, v)v ()| = 0. (3.20)

Finally, making use of (3.18), (3.20) and (3.13), we arrive at
—(#(O)uo,uo)v(a) 2 = (F(O)uo,v)v(a) + (L(F)v = uo)v(a)

Thus, ue is a solution of the inequality (1.4). From the uniqueness of u(e)
we conclude that ug = u(e) and the whole sequence {us, (en,)}nen tends to
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It remains to prove the strong convergence. Since JZ,(f2) is a convex cone
with a vertex at the origin, we may insert vy, := 0 and vp, := 2up,(es,) in
(3.2) to obtain

(A (On,, )un, (en, ) un,(en,))viq) = (L(Fh, ), un, (en,))v(a)- (3.21)
Next, according to (3.21) and (3.12), (3.13), we have

Jim (o (O, Jun, (en, ) un, (en,))v (@) = (L(F), u(e))v ()

= ((O)ule), u(e))v (@)
On the other hand, taking into account (3.15), we get

nli_'“éo(d(a)uhn(eh“);uh“(eh“DV(m = (& (O)u(e), u(e))v(a)- (3.22)
Further, using (3.22) and (1.3), we arrive at

Jim a(0,un, (en, ), unn(er,)) = lim (&(O)un,(en, ) un,(enn))v ()

= ((O)u(e), ule))v(a) = a(0, ule), u(e)). (3.23)
On the other hand, we have

Jim_a(0, [un, (en,) — ule)], [un, (er,) — u(e)])

= nli.mm a(O, un, (en, ), U, (er,)) — 2a(O, un, (en, ) u(e))

+a(0,u(e),u(e))] = 0,

(due to (3.23) and (3.12)). Hence, from (2.33) we conclude that |us,(en,) —
u(e)|v(q) = 0, for h,, — 04, which in turn (taking into account (3.12)) implies
that up, (en,) — u(e) strongly in V(2).

LEMMA 7 Let en, € Uuan(S2),en, — € strongly in U(QY) as h, — 0. Then,
we have

lim Zesiren DEFLECT:UN,(}:}(EHMuhn(en‘ln))

n—oo

= ZDESIRED DEFLBCTION(B! u(e))

and

'}Lnéo-g'rcrml. H.EACTION.{h)(eh“:‘uh,.{eh,.)) = LroraL reacrion (€, u(e€)).

Proof. 1t is clear that

|'?DESIRED DEFLECTION, {h) (eh“ y Uh,, (e-‘in })

— Lbesirep pEFLECTION (es 'u(e))'

=| [ (natenn) = 200 = (ule) = ze0))i2

T} ’ \
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For the second cost functional, we have

| Zroras Rmcrxou.(h}(eh..:uh.. (en,)) = Zrorar neacrion(e, ule))]
< !3'1'0'“[. ﬁBACT]ON,(h)(ehn!uhn(ehn)) — ZroraL reacrion(€h,,, u(e))]
+|-i'p'ro*rar. REACTION,(h) (ehnau(e)) . -E'oTDTAL REACTION (e! u(e))i = Q1+Q2!

where

Q) < |KG(Oh grad (uy, (e.t.n) —u(e)), grad Q)L,mﬂ
< constant||up, (en,) — u(e)||y(q) — 0.

Next, we also have

Qz S }KG((O}," — é’)grad u(e),grad g)L:(ﬂ)l + |(,_9’ — Yhn,ﬂ)L,{ﬂJ}
< constant (|| — Oh, || L) llu(e)llveylfllv)
+ I = Z e @lfllviay) = 0,

so that

nll.“éa Zrotai REACTION, (h) (Ehn y Uk, (eﬁ,‘ ))

= ZroTAL REACTION (e, u(e))' .

LEMMA 8 For anye € [0, )7 € Uaa(R) and any sequence {hn}nen, hn — 04
there exists a sequence {en, }nen Such that ey, = [Oh,, S, |T € Uaan(Q) and
en, — e strongly in U(Q) = C() x ([TX, C(%)).

Proof. Let I1;, . € denote the Lagrange linear interpolate of & over the triangula-

tion . Since @ € WL (Q), the interpolation theory (Ciarlet, 1978; Glowinski,
1980) yields

|6 —1In, Ol () < const. hn||O]lwe (q)-

Obviously, const(jyg < IIn, O < const(y) ¢ everywhere. For any straight-line
segment PQ € T parallel to the X;-axis and any triangle T' C J,, we have
Q
0114, 6 /0zi| = (1/L)|6(Q) — O(P)| < (I/L]/ |00/ 0z;|dz;
P

< COIlSt(Zi)Ig,
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On the other hand, analogous arguments as in Lemma 13 hold for II; <.
Thus, setting e, = [IIx, 0,11, 7], we fulfil the conditions of the lemma.

THEOREM 5 Let {e(u) h, }nen, n — 00 (or hy — 04) be a sequence of solu-
tions to the Approzimate Optimal Control Problem (3.4). Then, a subsequence
{e(s),hn, Yken C {e(s),ha Inen exists, such that

€(s)hn, = €(sy Strongly in U(Q)(= C() x ([TiZ, C())), (3:24)
U, (€(x),hn, ) = Ule(s)) strongly in V(R),

where e,y 15 a solution of the Optimal Control Problem (1.10). The limit of
each subsequence of {e(u) n, }nen, converging in U(R) is a solution of the latter
problem and an analogue of ((3.24), 2°) holds.

Proof. Since Ugd,n(2) C Uaq(f2) is compact in U(S2), there exists a subsequence
{e(*}.h“k }ren, k — o0, such that ((3.24), 1°) holds. Let us consider an e €
U,q(f2). In view of Lemma 8, there exists a sequence of {eno}oen, €ho €
Uad,ho (€2), such that e, — e strongly in U(Q2), as ho — 0. By definition, we
have

Zho (€(x),ho» Uho (€() ko)) S Lho(€ho: Uno (Eho))-

Let us pass to the limit with ho — 04 and apply Lemma 7 to both sides of
this inequality. We arrive at

Z ey uleqs))) < Z(e, ule)),

so that e(,) is a solution of the original Optimal Control Problem. Next, by
virtue of Lemma 6, we obtain ((3.24), 2°). The previous line of thought may be
repeated for any uniformly convergent subsequence of {B(*),h,,}ne N- |

4. Reliable solution of a vibrating pseudoplate

We consider the state problem connected with an unilateral eigenvalue problem.
Our problem is to find among all admissible thicknesses of the pseudoplate an
extreme one. This can be done by considering a functional/criterion defined on
the set of all admissible thicknesses of the pseudoplate and reducing the problem
to the minimization of this functional criterion. The volume of the pseudoplate
is constant and the thickness of the pseudoplate is bounded.

Let © C R? be a bounded domain with a Lipschitz boundary 89, where the
boundary 92 be decomposed as follows:

ag —_ mIZIISPI.ACBM:I-)N'I‘ u mCON'I‘ACT)

where 9QpispLacement and IQconracr are open, non-empty and non-over-
lapping parts. On 0QpispLacement @& homogene kinematic condition is pre-
scribed, whereas on 0fQconracr the pseudoplate is subject to a contact with



284 J. LOVISEK

Let us assume free vibrations of a thin homogeneous isotropic pseudoplate
of the shear model. The displacement function w = w([z1,z3],t) is a solution
of the hyperbolic equation

pO(z1,32)0%w/0t* - div (KGO (z1,z2)grad w) = 0,

teR, [z1,z2] €9, (4.1)
where p is the density, 2€(z;,z,) is the variable thickness of the pseudoplate.
It is reasonable to suspect that it may be possible to express the displacement
w = w([z1,22),t) as the product of two functions, one involving only the space

coordinates [z, 2] an the other involving the variable time. This equality may
be written

w([z1,22),t) = u(z1, )T (t). (4.2)
Then, substituting (4.2) into (4.1), one can readily show that

(T(t)/p)O(z1,z2) [—div {KG&’(:H ,o2)grad u(z, Ez])]

= u(zy, T2)0°T(t) /0% (4.3)
Next dividing each side of equation (4.3) by the product u(z,z2)7T(t), we

obtain
(1/p)O(z1, z2)[—div (K GO(z1, 22)grad u(z1, 22))] /u(z1, T2)
= —(02T(t)/0t%) /0t*)T(t) /T (). (4.4)

Thus, from the left-hand side of equation (4.4), we obtain, after some rear-
ranging

—div(KGO(z1,z2)grad u(z), T9)) — w?pO(x1, T2)u(z1,T2) = 0. (4.5)

This is a homogeneous partial differential equation involving the mode shape
expression u(z1,z2), the pseudoplate properties, and the circular frequency of
oscillation w.

Moreover, by setting A = w?, we obtain the following eigenvalue problem for
the pseudoplate

—div(KGO(z1,z2)grad u(zy, z2))=ApO(z1, T2)u(z1, T2), [21, 22] €,
AMv=0on 8QDISPLACEMENT1
AMov > 0 on conrace-

We introduce a variational formulation of the eigenvalue problem. To this
end we introduce the set (the mode shape)

V(Q):={ve Hl(g) : Moy =0 a.e. on Ipspracement)

and
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The set of admissible states contains the functions from the space V()
non-negative on dQconracr

‘Z/(Q) = {'U (3 V{Q) . u#(]ﬂ Z 0 a.e. on 8QCON’1‘ACT} (46)

The operators (&) : V() — V*(Q), B(F) : V() — V*(Q) are defined
by the relations

{ (#(O),2)y(q) := [, KGOgradv.grad 2dQ,

(B(O), 2)v(q) = | pOv2dQ, for any v,z € V(Q). (47)

Moreover, the operator %(.) is compact on the Hilbert space V(). In-
deed, we may prolong the bilinear form ((4.7), 2°) on the space J2(Q) (=
Ly(R) x Ly()). Thus we get the prolonged operator 8,5 : H#(Q) — H#*(Q).
Hence, one has & = iT.% ,;.i, where i is the injection V(Q) — H(€) and
iT : #*(0) — V*(Q) and these injections are compact.

The vibration of the pseudoplate is described by the eigenvalue variational
inequality

Find a couple

[w(0), M (D)) € {H(2) \ {0}} x R,u(0) #£0

(the eigensolutions) such that (4.8)
(A (O)u(0),v — u(O))v(a) 2 A(O)B(O)u(0),v — u(0))x (a),

for all v € X (Q).

where A\, (&) is the smallest or first eigenvalue in (4.8).

We will consider the state (eigenvalue) problem (4.8) with some uncertain
input data. It may happen that the thickness &(z1,z2) is uncertain, i.e. this is
not given uniquely, but the only available information is that it belong to some
given set %,q(2).

Let 2 be decomposed into N disjoint subdomains, i.e.

N
O=JZ 2n2i=0 k£l
k=1

and let

Vad(R) = {0 € Loo(R) : 0 < Opiy < O < Ouiax, Ol2, € CON(Fy),

k= 1!21"'|N|

|6 = OollL () < constygy, [00/0z:]| L, () < constygy, i =1,2},
where 0 is a given function such that Oo|s, € COY(Fy), |060/0zil| L (0) <

consty(gy, ¢ = 1,2 and [Ouin, Ouax,consty gy, consty(g)] are given constants.
Note that any & € U,q(Q) is a piecewise Lipschitz function, which does not
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Moreover, we introduce the set
N
%) = (][ ¢(Z+)).
k-1

We shall employ a method of reliable solution, which consists of the following
main steps

1°. choose a functional criterion [€,u] — ¥(&,u),

2°. solve the minimization problem : (4.9)
O, = Arg Min V(0 u),
O€uqaa(R)

where u(&) denotes the (unique) solution of the eigenvalue variational inequality
(4.8) for the input data & (the thickness of the pseudoplate). The choice of the
criterion ¥ depends on the technical demands. For instance, in our case ¥
represents the fundamental eigenfrequency of the pseudoplate. Thus, we can
define

U(0,u(0)) = \(0), O € Ua(9). (4.10)

EXISTENCE OF A RELIABLE SOLUTION OF THE PROBLEM WITH UNCERTAIN
DATA NOTATIONS AND PREPARATORY RESULTS

Let V() or #(Q) be the real Hilbert spaces with norms ||.||ly(q) (or
Il se(y) and dual V*(€) (or #*(2), also denoted by L...[lv-(a) (or -[e).
and (.,.)y(q) (or {.,.),e(q)) denoting the pairing between V*(Q2) and V() (or
*(Q) and H#(Q)).

The space V(£2) is densely and compactly embedded in 5(Q2) and ||v]| ()
< M"U”v(g) for all v € V(Q).

Let a set Zq(Q) C % (Q) of admissible data be given, where % () is a Ba-
nach space.  Moreover, %()) is a compact subset of % (). Let
{#(0)}ocu.atn) and {#(0)}oeu, (o) be the families of linear continuous op-
erators &(0) € L(V(Q),V*(Q)) and H(0) € L(# (), 5*(Y)) satisfying the
following properties

I 1°. {#(0)}oew.a) C Avia)(ew, Mu),
2°. 0,, — o strongly in Z () = & (0,)v — &(0)v
(He) strongly in V*(2) as n — o0,
3% (ﬁ’(O)U, Z)V(Q) = (.ﬂ’(O)z, ‘L’) v(Q) forall o € %ad(ﬂ],
| v,2z€V(Q),
and
1°. {B(0)}oev.4(@) C Mor(a)(as, Mas),
2°. 0, — 0 strongly in U(Q) = #(0n)v — HB(0)v
(H%) strongly in J#*(Q2) as n — oo,

1 3°. (B(0)v, z) () = (B(0)z,v) () for all © € %a(R),
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where for a Banach space #(2) and two positive constants [M 4, Mp] such that
0 < M4 < Mp, we denote by Ay (q)(a, M) the set of all operators A : #(Q2) —
#*(Q1) for which the inequalities

{ Mar||v - w“gw(g) < (Av — Aw,v — w)y(q),

4.11
|Av — Aw||y - (q) < Mpllv - wlly @) e

are valid.
Let S (02) C V() be a closed convex cone with a vertex zero, () # {0}.
We shall deal with the minimization problem

Aw(0) = Min ((&(0)v,v)v(a)/(B(0)v,v)s5e()
{ ()= o V(@) #@) -

= ((#(0)u(0), u(0))v(a)/(B(0)u(0), u(0))se@)-

Further, we have (due to the existence theorem, see Miersemann, 1981;
Myslinski, Sokolowski, 1985)

( 1°. For every 0 € %,a(f2) there exists a solution [A.(0),u(0)]
(the state) of the problem (4.12).

2°. The set of elements {u(0n)}nen minimizing the functional (4.12)
belongs to {J¢'(€2)/{0}}.

3°. A(sy(0) is the least positive number with a nontrivial solution u(&)
of the variational inequality.

[Asy(0), u(0)] € R x {£'(2)/{0}}, u(o) # 0,

(#(0)u(0),v - m(0))1/{:‘:) (4.13)
S > A (0)(-@(0)“(0), 29— ‘LIL(O))_*;(Q) ¥
for all v € {0 (22)/{0}.

4°. The variational inequality {4.13) is equivalent to the following inequal-
ity:

(2 (0)u(0), v)v () 2 A+ (0)(2(0)u(0),v) s (q) for all
v € {(Q)/{0}

and the following equality for v = u(0) (414)
(& (0)u(0),u(0))v(q) = Ay (0)(B(0)u(0), u(0)) se()-
Define a goal criterion-functional as
U(0) = Ay (0). (4.15)
The MINIMIZATION PROBLEM consists in finding a function o,, such that
04 € Ua(R2), Y(o,) = oe‘g}:E(n) U(o). (4.16)

The problem (4.16) means minimization on %,4(2) of the first eigenvalue



288 J. LOVISEK

THEOREM 6 The minimization problem (4.16) has a solution.

Proof. Let {0,} be a sequence such that

On € Uaa(R),
lim ¥(0,)= Inf ¥(0)or ¥(0,) — ¥(o,). (4.17)
n—0o0 OE‘?!“(Q) n—+00

On the other hand, we may find a subsequence {0n, }xen such that
On, — O, strongly in Z () (4.18)

The set of elements (and eigenfunctions) {u(0n,)}ren minimizing the func-
tional (4.12) has the form {J¢'()/{0}} and A(,y(0yn,) is the smallest positive
number with a nontrivial solution of a state variational inequality (4.13) or,
equivalently, (4.14).

Let us denote

0(0) = (u(0)/(B(0)u(0), u(E) L2g). (4.19)
Then, by virtue of (4.14), we may write
A (0n) = (2 (0n)0(0n), 6(0n))v(a)- (4.20)

On the other hand, taking the assumptions ((H#/),1°) and ((H%),1°) and
relation (4.12) we get the upper estimate

Aw(0) < ((F(0)v,v)y()/(B(0)v, v)v(0))
< (Marllolfy o/l
for all © € %q(R2), v € {H(22)/{0}}.

Then taking into account the uniform coercivity of {&7(0)}, we have bound-
edness of the sequence {#(0n)}nen in the space V(§2). This means that there
exists a subsequence {\(.)(On,)}ren and the elements 6 € {2 (Q)/{0}} and
X € R such that

Ay (Ony) = A in R,

8(0n,) — 0 weakly in V(Q)
or

0(0n, ) — 0 strongly in (0).

(4.21)

Notice that the function § # 0 as a consequence of the relation
(B(04)0,0) () = Jim (B(0n, )8(0n, ), 8(0n,))se() = 1. (4.22)
The equality (4.22) follows from the facts

|B(0n)vn = B(O)|l 56+ (0) < Mallvn — v s¢(q)
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for n — oo and for v, — v strongly in S#(9).
Further, due to the assumptions ((H&),2°,3°) and by (4.21), one has

klln;o(.zz{(onk)f)(onk),w)vm)
= klingo(.d(onk)w, 0(on v = (d(o)wa'é>V(ﬂ)
= ((0)b, w)v (a), B

as 0, — o strongly in Z (), w € V(Q).
Thus, in view of (4.18) and (4.23), we may write

H(0,,)0(0n,) — (0,)0 weakly in V*(Q). (4.24)
Moreover, by virtue of ((H&),1°), we obtain
<‘Q{(Onk )H(Oﬂk) - ‘Q{(Oﬂk)é)a(onk) - é)V(Q) > 0.

Hence, passing to the limit, the following relation holds (taking into account
(He),2°) and (4.21), (4.24))

2 lim (‘Q{(Oﬂk)a(onk)aé>V(Q) < li&gf(d(onk)g(onk)ag(onk»V(Q)

k—o0

+ lim (/(0n,)8,0)v ().
Consequently
lim inf(s5 (00, )0(0n, ), 80, M) 2 ((00)0, B}y, (4.25)

Here, from (4.25), (4.19) and the assumptions ((H%/),2°), ((H%),2°) we
conclude

((0.)8,8)v (@) < liminf(ef(0n,)0(0n,), 8(One)v(0)

= lim inf((&/ (0n, )u(On, ), w(Oni))v () /(B(Oni Ju(Ons ), W Ons ) e(50))

< lim ({&(0n, )v, 0)v () /(B(On, )V, 9) s2(@)

= (& (0.)v,v)v()/(B(0:)v, v)se(0), (4.26)

for all v € {o£/(Q2) \ {0}}.
Moreover, due to the variational equality ((4.14),2°) the relation (4.22),
(4.12) and the estimate (4.26), we have

~

A= ((0.)0,0)v o) (4.27)

where J is the smallest eigenvalue of (4.14) for 0, € %a(R), i.e. A = A(0,) and
6 = 6(0.) is the corresponding eigenvector. We show that A(o,) is the smallest
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This means that there exists 3 € {J¢'(Q)/{0}} satisfying (#(0.) 5, 5)39(9) =1
such that

(#(04)8,0)v () < (#(04)0,0)v(a) = A(04). (4.28)
By virtue of ((H&),2°, (H%),2°), we may write

lim (B(0n) 6, 0) (0 = (B(04) 6,6 20y = 1,
ﬂ-._.w oo ) (4.29)
lim (#/(0n) 8, 8)v (0 = (#(0.) 6, 8)v(a)-

—0C

Then taking into account the relation (4.12), we obtain the estimate
Ay(on) = (ﬂ(on)ﬁ{on)ﬁ{on))vm)
o 0 o 9
< ((#(00) 8, 0)v i)/ (B(0n) 6, 0)v () (4.30)

Hence (passing to the limit in (4.30), due to (4.21), (4.27) and (4.29)), we
get that

A(0) = ((0.)0,6)v (@ < (#(0.) 6, 8)v (0.

This implies the contradiction with respect to the estimate (4.28). We con-
clude: A(,y(04) = A(0.) and 8(0,) = 6(0,).
In view of ((H&7),1°) and (4.18) we may write

au||6(0n) = 0(0.)l} ()

< ((04)(0(0n) - 9(0.)), 8(0n) - H(0.))v (@)- (431)
Moreover, due to (4.20), (4.21), (4.24) and ((H#),2°), (4.31), we get

Tim_ aul6(0n) — 601 oy

< Jim (&(0n)(6(0n) — 6(04)),0(0a) — 6(04))v ()

= lim {(#/(02)0(0n),0(0n))v(a) — 2(#(0n)8(0n),0(0:))v(a)

+{#(0n)8(0.),0(0:))v(e)} = [Ms) (02) = 2X(4)(04) + Ay (04)] = 0.

Hence, we conclude

0(0n) — 0(0.) strongly in V(Q). (4.32)
Further, we have the relation (in view of ((4.21),1°))
/\(,}(On) — )\(,)(O.). (4.33)

Thus, taking into consideration (4.17), (4.18), (4.20) and (4.27), (4.32),
(4.33), we arrive at

¥(0,) = Arg Min ¥(0),
OE‘&:&(R)
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Let us apply Theorem 6 to prove the existence of a solution of the eigenvalue
problem (4.9) with respect to uncertain data.

LEMMA 9 The set () defined in (4.6) is a non-empty, closed and convex
subset of V().

Proof. Since 0 € J(Q) (actually, H}(Q) C JH#(R)), the set () is non-
empty. The convexity of J£ () is obvious. Moreover, if {v,}neny C JH(92) and
v, — v strongly in H!(2), then one has .#yv, — A, since A, : V(Q) —
Lo(8conract) is continuous. On the other hand, v, € J(f2), which means
that #Gv, > 0 a.e. on O0conracr. Therefore, .#v > 0 a.e. on dcoNTACT.
Hence, v € J(§2), which shows that J£'(2) is closed.

LEMMA 10 The family of operators {&(On)}nen and {B(On)}nen, satisfies
O, € %.4(N) the assumptions (He/') and (HAB).

Proof. It is readily seen that (by (4.7))
(@ (0,9, 9)v(e) > KGCOus f |grad v]?dQ
Q

> KGOuxconstp|[v]|} (), (4.34)

holds for all v € V(), since we can employ the Fiedrichs-Poincaré inequality.
Then, by virtue of (4.34), we may write

(& (O)v,v)y(q) > COHSt-”“”%f(Q):
for all & € %a(Q), v € V().

Next, we have
(L (O)v, w)v (@) = (¥ (0)z, w)v(a)l
= |/Q(KGﬁgrad (v — z).grad w)dQ
< KGOuaxllv = zllvoyllwllv o) (4.35)

As a consequence, the assumptions ((H&/),1°,3°) are satisfied. To verify
((He),2°), we write

(& (On)v — & (O)v, why ()] < | /Q KG(0, - 0)grad v.grad wdQ

< KG||On = Ol @llVllveyllwllv- (4.36)
Hence, one has

| (On)v — & (O)vllv-(a) < KG||On - Ol @)llVllvie) — 0,
as 0, — O strongly in Lo ().
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LEMMA 11 Let 0, € %.q(R), O, — O strongly in % (). Then, we have
(O, u(Or)) — V(O,u(f)) as n — oo. (4.37)
Proof. In view of Lemma 10 and Theorem 6, we may write

A (On) = Ay (0) in R,
u(0p) — u(O) strongly in V().

As a consequence, (4.37) follows. o

THEOREM 7 The minimization problem (4.9) has at least one solution.

Proof. The functional criterion J(&) = V(&,u(0)) is continuous on the set
U.q() by virtue of Lemma 11. Since the set %q(f?) is compact in % (),
there exists a minimizer &, in %,4(52).

5. Finite elements approximation of an eigenvalue prob-
lem

The reliable solution (alias worst scenario method) of the eigenvalue problem
have to be solved approximately. To this end, we propose to employ the sim-
plest kind of finite elements, namely piecewise linear functions over triangula-
tions. We restrict ourselves to particular domains, namely we suppose that 2
is polygonal. By Z, we denote a triangulation of Q which consists of a finite
number of closed triangles T

Here we use again the finite element space Vi(R2) = V(22) N H(Q) and
Uad, () () = aa, () N Hp(Q), respectively. Hence, we have to assume that
the triangulations ), are consistent with the boundaries 2%, k£ =1,2,...,N,
which play role in definition of %,4(Q2). As with the partition of the boundary
M = Wiy U Meswon 10 the number of points
O ispracement N Ocoxracr 18 finite and every point of this kind coincides
with a node of %},.

Thus, we may write

N(h)
3QGONTAGT = U Aj—lAj

i=1
Then, the set J¢;(0) is defined by

Hi () = {v,, € Va(Q) : vn(4;) > 0 for all nodes A such that

N(h)

Meonracr = U A_f—lA.f
Jj=1
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Moreover, instead of the criterion ¥ we introduce
Ui (Oh,vn) := Ae(ny(Oh)-
We solve the following APPROXIMATE MINIMIZATION PROBLEM. Find

0,(,,) = ArgMin ‘I’m)(ﬂh,u(ﬁh)) (51)
On€Uaa, (1) ()

where [un(Oh), Au(ny(On)] € {4 (22)\ {0}} x R denotes the eigensolution of THE
APPROXIMATE STATE EIGENVALUE PROBLEM

( (Oh)un(On), va — un(Oh))v(a)
> Au(h)(On)(B(On)un(Oh), vn — un(Oh))se (), (5.2)

for all v, € {J(Q) \ {0}}.
Thus, a couple of the eigensolutions solving the finite dimensional minimiza-
tion problem is

Asiny(On) = w‘E{x¥(i3}\{0}}((ﬂ(ﬁh)vh'Uh)V(Q)/(‘@(ﬁth"Uﬁ)-”’(m)
= ((&(On)un(Oh), un(On))v(a)/(B(On)un(Oh), un(Oh)) se(e)).  (5.3)

On the other hand, the approximate minimization problem (5.1), taking into
account (5.3), is characterized by the relation

Mny(Oeqny) = meg}fjﬂlﬂ(m As(hy (Oh)
= n Min (O )vn,v
0&6@(.,:.11.)(9}"hE{J’h(Q)\{U}}(( () h)v(ﬂ)

[(B(Oh)on, vr) e ())- (5.4)

LEMMA 12 The eigenvalue problem (5.2) has a wunique solution
[urn(Oh), Auiny(On)) for any h sufficiently small. The approzimate minimization
problem (5.1) has at least one solution for any h sufficiently small.

Proof. The existence of the approximate minimizer &,y in %q(ry(£2) and the
corresponding couples [un(@uny), Auhy (Cu(ny)] € {H(S2) \ {0}} X R is assured
due to Theorem 7. [ ]

LEMMA 13 For any O € %4() and any sequence {hn}tnen, hn — 04 there
ezists a sequence such that {On, }nen € Yua,n)(R) and On, — O strongly in

w(Q) (= (ITi=; C(Zr))).

Proof. Let us consider the restriction & = |2, of any & € %,q(2) and define:
On, = I, O, , where Il is the linear Lagrange interpolant over J}, and

-
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We have
|00, /0Zil|L o (2:) < €nll0O0/0i| L () + (1 = €n)100k /0| L (2)
< consty(gy, ©=1,2,, (5.5)

by definition of %,4(f) and &y. Since
10cllLoe2e) < €nllO0llLoi) + (1 = €n)llOkll Lo o)
< wmax {]|00|| Lo ()s | Okl Lo () } = comstay,
holds, we obtain for all ¢,
[|Oe, |z, (2) < const(zy + 2consty(g) = consta).
Then, taking into account the estimate
1Q = r, Qllzo(2:) < MhallQllHy (24),

we may write
1Oh, = ObllLoa(2i) < nOe, = Oe,||Lo(@) + 1Oc, — Ol ()

< Mconstgyhn + (1 = €0)[| Ok — Obl| Lo ()
< Mconst(gyhn + (1 — £,) consty(gy < consty(g), (5.6)

MCOﬂSt{4} hn < consty(g)En. (5.7)

Further, let PQ C T C Zk be a straight-line segment of the length L,
parallel to the z;-axis. Then one has
Q Q
|61, O, [Oz;i| = |L"1[ (00, |0z;)dzi| < L'I/ |00, |0z;|dz;
P P
< consty(g),
following from (5.5), so that
106, [0%il| Lo, (21) < comstyey. (5.8)
Thus, we have

1Ok, = OollLo(2i) S WMk, O, = Oc, |l (@) + 1O = OkllLo. )

< MCOHSt(4}h,1 -4 E,-,_"ﬁg - ﬁk"LM(R)

< Mconst gy hy, + enconsty(gy — 0, (5.9)
as hp, = 04, e, — 04

Hence, in view of (5.6) to (5.9), we can find a sequence {Oh, }nen; hn — 04
such that O € a1y (S2) and O, — O strongly in (IIY_, C(Zk)), concluding
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In the following, we introduce the sphere
Q) = {v e H(9) : (B(OW,v)op) = 1)

and denote by o,(0) € J4,(2)NF () and o(F) € K (Q)NL () the normalized
functions fulfilling

{ As(hy(Oh) = (& (On)0On(Oh), 0n(On))v (0, (5.10)

A(0) = (-;'(0’)0(5’)'0(0)»(9}-

CONVERGENCE RESULTS

Let us study the convergence of finite-element approximations when the
mesh size tends to zero. First of all, we have to establish the following,

LEMMA 14 Let On, € Za,(n)(R), On, — O strongly in % (), as hy — 0.
Then one has

/\t(h“}{ah,‘) = )‘*(6) in R’ (5 11)

O, (On,) — o(0) strongly in V(Q) as h, — 0;. '
Proof. Let a couple (eigenfunction and eigenvalue) [0(&), A.(0)] € H () N
Z(92)) x R be a solution of the following eigenvalue problem

A(0) = ve{xl\'(liif)i\{ﬂ”((d(a)ﬂ-U)V(n)/(B(a)U) v)3((q))
=(#(0)0(0),0(0))v(a)- (5.12)

By virtue of (3.10) (we have J&,(R2) C ¢ (Q)), if element v € {2 () \ {0}}
there exists a sequence {vn, }nen with vn, € {J%,, () \ {0}} such that

vh,, — v strongly in V() as hp, — 0. (5.13)

Due to Lemma 13, relation (5.13) and ((H&),2°), ((H#),2°) (by passing
to the limit) we obtain

(F(Oh, )0hs Vo )v () [ (B(Oh, )Vho Vho) ()
= ((#(O)v, v)v(a)/(B(O)v,v)s¢(q)) (5.14)

* =
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Here, we deduce that the sequence {Ay(n,)(Oh,)}nen is bounded (in view
of (5.3) and ((H#),1°)), ((H%),1°)) and contains the convergent subsequence
such that

Ae(iny) (Ohn, ) = A for b, — 04, (5.15)

Hence the sequence {o4,, (Oh,, )}xen is bounded. Then, by virtue of the
above assertion for the subsequences {A-(h..,}(ﬁhno)}oeN and

{Ohup (Ohny ) }oen we get
Ohng, (Ohny, ) — © weakly in V(Q). (5.16)

Next, taking into consideration (5.13) for the sequence {as,, }oen With as,,, €
Hh,, (1) NF(Q), we may write

@, , — 0(0) strongly in V(). (5.17)

"o

The functional v — (&(¥)v, v)y () is weakly lower semicontinuous on V/(2)
for any 4 € %.a(9).
Consequently, since & € %,a(f?), we may write

lim inf (d(ﬁ)ohw ((?hno),o;.“o(ﬁh"o ))V{Q] > (.{g(ﬁ)b,a)v(g) (518)

no —04
Moreover, we have (in view of (5.16))

(& (Ohiy )Ohngy (Ohngy )s Oty (Ohny Nv(2)
~(#(0)Oh,, (Ohpgy )s Ohny (Ohn v i)
< constant |G,y = OllL o @)|Ohng (Fhng i@y — O- (5.19)

Further due to (5.10), (5.15) and (5.16), (5.18), (5.19) we arrive at the
relations

Xy B 1im0+ Aaibng)(Ohnyy)

np
li§0+<ﬂ*’ (Ohngy )Ohngy (Ohrgy )s Ohngy (O v
no
> liminf (d(ﬁh“o )Ohne (0’},,‘0 ¥ Ohpg (0&,‘0 Nve)

hno—04

= liminf ((ﬂ(ﬁ)o;,"o (0},"0 ), Oh"o (ﬁh"o ))V(g)

hng—04

+{(# (Ohogy )Ohng (Ohngy )s Ohngy (Ohpy V()
~(H(0)Oh i, (Ohngy )s Ohngy (Ohn Nvi)])
> liminf (&(0)0n,, (Oh.p ) Ohngy (Ohoy N v(e)

hﬂo —04

2 (#(0)0,0)v(a) 2 A(0), (5.20)
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On the other hand we deduce
Ay'= p m (L (Oh )Ohng (Ohng ) Ohng (Ohng v ()

ke _'0+

<, lim D+((~“’ (Ohng )0hngy s b 'V ( @)/ (B(Ohny )ah s Oty ) (92))

ko
=(#(0)0(0),0(0))v(a) = A (0), (5.21)
(in view of ((H&),2°)), ((H#),2°)) and (5.10), (5.15), (5.17)).
Thus, from the estimate (5.20) and (5.21) we conclude that
A(0) < A < A(0). (5.22)
Hence, due to (5.10) and (5.22) we have

{ Ae = M (0)
and

0 = o(0).
Further, introduce the variational inequality

(#(0)o(0),v ~ 0(0))v )
> M (O)(B(0)0(0), v — 0(0)) s (qy for all v € H(R), (5.23)

and

(& (Oh,.)0n, (On,); Vi = Ono(Oha))vi()

2 Ae(hn) (O )(B( O, ) Ok, (O, )y Vb, = Oho (O, )) 52 (9)s (5.24)
for all v, € S, ().

In the following, we substitute v := 04, (&, ) in (5.23) and vy, = a, in

(5.24). Hence after adding the inequalities, we may write

((#(On,) — F(0)|0n, (On,); ah, — On (Oh,))v(e)

+H(0)on, (On,), an, — 0(O))v(a)

+((0)[0(0) - 01, (O, )); Ok, (Oh,) = 0(O))v ()

2 M(0)(2(0)0(0), 04, (Oh,,) — 0(0))se(0)

+ A (hn) (On, ) (B(On,.)Oh, (Ony,): 0k, = On, (Oh,)) ()

Then, taking into account the coercivity of the operator (&), we get the
estimate

aer||On, (On,) — 0O} (0

< A[#(Oh,) — H(0)|on,(Oh,), ah, = On,(Oh,))v(a)
+(#(0)0n,(Oh,.); an, — 0(O))v ()

+ A (O)(B(0)0(0),0(0) — On,(Oh,)) ()
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Passing to the lim sup on both sides and using ((5.11),1°), (5.16), (5.17)
and (4.36), (H#/), (HB) (and strong convergence of {op, (O, ) }nen in H#())
we deduce the strong convergence of {0y, (G4, ) }nen in V(§2), which concludes
the proof. C

THEOREM 8 Let {Oy(n,)}nen, hn — 04 be a sequence of solutions of ap-
prorimate minimization problems (5.1). Then a subsequence {0"(1..,,‘)}::0\? =
{Ouh,) Inen exists such that

Ou(hn,) — O strongly in Z(Q)

and

Aitin)(Ohn,) = As(O.) in R,

Ohp, (Oh,,) — 0(0,) strongly in V(Q),

(5.25)

where O, € Ua(Q) is a solution of the MINIMIZATION PROBLEM (4.9) and
the couple [0(O%), . (0.)] € X (2) N .F(£) x R solves the corresponding state
eigenvalue problem.

Moreover, the limit of each subsequence of {0, (4,,) }nen, converging in % (92),
is a solution of the latter problem and an analogue of ((5.25), 2°,3°) holds.

Proof. Since %,q4(2) is compact in %(Q), there exists a subsequence
{Ouiho) }oen, ho — 04, such that ((5.25),1°) holds. Let us consider a & €
Ua(S?). By Lemma 13, there exists a sequence { O, Joen of Ony € Zaa(ho) (D),
such that &, — & strongly in % (), as ho — 04. In view of the definition
(4.9), we have

q"hO}(a'(hﬂ)’oho(d‘(ho))) < Lp(ho)(ahos ﬁho(dho))-

Let us pass to the limit with ho — 04 and apply Lemma 14 to both sides
of this inequality. We arrive at

¥(0.,0(0.)) < ¥(0,0(0)),

so that &, is a solution of the original MINIMIZATION PROBLEM. Making use of
Lemma 14, we obtain ((5.25), 3°). The previous line of thought may be repeated
to any uniformly convergent subsequence of {ﬁ,(h“)}ﬂe N-
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