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Abstract: The article presents a minimization method of elec
tric energy losses in rotor and stator windings and in the magnetic 
core of the motor during the frequency speed control of induction 
motors which limits the amplitude of the stator current. To solve 
this problem, the hybrid algorithm of parametric optimization, the 
mathematical model of the induction motor and the Pontryagin max
imum principle are used. In the mathematical model of the motor 
both electromagnetic transients and the motor magnetic material 
saturation are taken into consideration. The electric energy losses 
in the magnetic core and in the windings of the motor are also cal
culated. An application example of the method developed for the 
idle starting of an induction motor is given. 

K eywords: optimal control, induction motors, genetic algo
rithms. 

1. Introduction 

The electric energy losses during the frequency speed control of induction motors 
can be divided into the losses in the stator and rotor windings (called electric 
losses or losses in the copper) and losses in the magnetic core of the motor 
caused by the eddy currents and the hysteresis of the magnetic material of the 
motor (called magnetic losses or losses in the iron) . Electric losses depend on 
the amplitudes of the stator and rotor currents, while magnetic losses depend 
on the frequencies of these currents. 

It is assumed in many papers (for example Schreiner, Gildebrand, 1973, 
Kawecki, Niewierowicz, 1996, 1999) that magnetic losses can be neglected since 
they are small in comparison to the losses in the copper. This is true, for 
example, for the ordinary starting of the induction motor. However, when 
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variation of the supply current (or of the supply voltage) in order to limit the 
amplitude of the stator current and/or to optimize the control from the point of 
view of an optimization index as , for example, the minimization of the control 
time, the minimization of the losses in the copper, the minimization of the 
losses in the iron etc., the contribution of magnetic losses in the total losses (in 
copper and in iron) cannot always be neglected. In these cases the magnetic 
losses can reach high values, far higher even than the electric losses (Kawecki, 
1998). Therefore it is important to take into consideration both electric and 
magnetic losses, when minimizing electric energy losses during the speed control 
of induction motors. 

The limitation of the amplitude of the stator current, must not only be con
sidered important from the point of view of the cont out for the frequency con
verter that supplies the motor, but the fact that it avoids the possible saturation 
of the magnetic material of the induction motor has also to be contemplated. 
This second factor is important only when a mathematical model of the motor, 
which does not consider this saturation, is used in the synthesis of the optimal 
control. In this case, to avoid saturation, we must conform with the fact that 
the limitation of the stator current amplitude will be of relatively small value, 
which in turn will increase the control t ime, and the electric and magnetic losses 
will consequently increase too (Kawecki, Niewierowicz, 1999). For this reason, 
in this article a mathematical motor model is used, which takes the saturation 
of the magnetic material into consideration. 

2. Mathematical model of the motor 

The mathematical model of t he induction motor is based on the following as
sumptions: 

1) The supply source is a sinusoidal symmetric current frequency converter. 
2) The induction motor is symmetric with the smooth rotor (of squirrel cage) 

and with the stator and rotor windings connected in star form, without 
the neuter driver. 

3) The resistances and the inductances are constant (the influence of the 
current displacement effect and the thermal changes of the resistances can 
be neglected) . 

Under these assumptions, the mathematical model of the double-phase equiv
alent induction motor on the d- q axes, rotating synchronously with the rotor, 
may be described by the following equations (Kovac, Rae, 1963, Krause, 1997, 
Sandler, Sarbatov, 1973):1 

d.,P~d R~Xo . t R~Wn .J,J R~wn J(·'· ) 
dt - X a + X2 t 1 cos.,- Xa + X2 'P2d- X a + X 2 'Pod 

(1) 
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de 
w(t) = Wr(t) + dt = Wr(t) + {J'(t) = Wr(t) + {J(t)wn (18) 

{J'(t) = de = cosed(sine) - sined(cose) 
dt dt dt 

(19) 

{J(t) = {J'(t). 
Wn 

(20) 

3. Elect ric energy losses 

The electric losses in the three-phase motor during a control time tn are ex
pressed by the following relationship (Kawecki, Niewierowicz, 2002): 

Qe = ~ tr R1iidt 
2 Jo 

+ R~ tr { [wn ( 7/!~d + !( 7/Jod)) - X oil cos eF+ } dt (21) 
(Xo + X~)2 } 0 +[wn(7/!~q + !(7/!oq)- Xoil sine)F 

The magnetic losses in the core of the motor Qm during the control time tn can 
be described by the following relationship (Turowski, 1993, Fiorillo, Novikov, 
1990, Berotti et al., 1991, Amaro, Kaczmarek, 1995): 

tr 
Qm = B;, Jo [A zMmw2 + (BzMm- 2MrAzwr)w 

+ Mr(AzWr- Bz)]wrdt. (22) 

4. Optimization index 

This paper's objective is to find the speed ontrol of the induction motor, which 
minimizes the total electric energy losses (electric and magnetic losses) limiting 
the amplitude of the stator current to the desired value. 

The optimization index Q must be a functional that takes into consideration 
both types of losses, and, as having two components, it then can be considered 
as a vector optimization index: 

Q = [ ~: ] (23) 

In this paper, the transformation method of the vector optimization index to the 
scalar optimization index, is accepted. This consists in presenting the vector cri
terion (23) in the form of the linear combination of its components (Salukvadze, 
1975): 

Q = A1Qe + A2Qm 
A, > 0, A'}> 0 1 

(24) 
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Taking into consideration (21) and (22), the optimization index (24) will result 
in the following relationship: 

5. Optimal control 

The optimization problem consists in finding a mathematical description of the 
induction motor speed control in the open loop system that minimizes the elec
tric and magnetic losses, limiting the amplitude of the stator current. Supposing 
that the frequency converter, which supplies the motor, is a current source and 
that it is also a proportional system, the solution of the optimization problem 
consists in the search of the control: 

il = il(t) 

~ = ~(t) 
(27) 

(28) 

that minimizes the optimization index (26) and limits the stator current ampli
tude: 

(29) 

To solve this problem the Pontryagin maximum principle is used (Pontryagin, 
Boltianski, 1962, Athans, Falb, 1966). 

Taking the mathematical model of the motor (1)- (3) and the optimization 
index (26) into consideration, the hamiltonian will take the following form: 
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The optimal control, if it exists, should maximize the hamiltonian (30) and 
therefore satisfy the following equations: 

8H = 0 (34) 
8i1 
8H 
if{= 0. (35) 

Solving the equation (34) for the hamiltonian (30) yields: 

i1opts = Xo~~Wn {[7jl~d + f(7j!od)] COS~+ [7j!~q + f(7jloq)] sinO 

R~Xo(Xo +X~) [V c TT • CJ 
+ 

3
.X

1
A 1cos.,+ v2sm._ 

p2 Xo(Xo +X~) [ 1 • 1 ] 
+ 21 .X1

A V3 7jl2d sm ~ - 7jl2q cos~ . (36) 

Taking into consideration the limitation (29), the amplitude of the stator current 
is described by the following equation (Kawecki, Niewierowicz, 1999) : 

. _ { i1opts 
Zlopt - ·o 

zl 

for i1opt ::; iJ. 
for i1opt > iJ.. (37) 
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Considering the equation (38) as the scalar product of two vectors, one can 
write: 

. c g 
sm.,=-:-

J 

h 
cos~= -:

J 

(39) 

The relationships (36), (37) and (39) describe the optimal control in the implicit 
shape (depending on the state variables and of the conjugated variables). To 
find the description of the optimal control in the explicit shape (27), (28), it 
is necessary to solve the system of the canonical equations compounded by 
the state equations (1), (2), (3) and the conjugated equations (31), (32), (33), 
which implies the knowledge of the motor load type and of the initial conditions 
of the state variables 'ljl~d(O), 'lji~q(O), wr(O) and of the conjugated variables 
V1(0), V2(0), V3(0). Only the initial conditions of the state variables are known. 
The final value of the state variable Wr ( tr) is known too. By means of the 
transversability conditions (Athans, Falb, 1966, Pontryagin, Boltianski, 1962, 
Boltianski, 1971), it is possible to prove that the final values of the conjugated 
variables vl ( tr)' v2 ( tr) are null. 

To solve the canonical equations, it is necessary to solve the two-point bound
ary value problem, which consists in finding the initial values of the conjugated 
variables knowing the initial values of the state variables 'I/I~AO), 'l/l~q(O), wr(O), 
the final values of the conjugated variables V1 ( tr), V2 ( tr), and the final value of 
the state variable wr(tr)· To solve the two-point boundary value problem, the 
use of a computer and an algorithm of parametric optimization are necessary. 

6. Two-point boundary value problem 

The two-point boundary value problem belongs to a type of problems called 
the parametric optimization problems, in which the optimal values of some 
parameters are looked for, so that they guarantee the global extremum of an 
optimization index. 

Taking as the parametric optimization index Qp in the problem of the search 
for the initial values of the conjugated variables, one can choose a measure of 
distance between two points in space. One of these points is constant and 
determined by the final values Vl(tr) = 0, V2(tr) = 0, Wr(tr) = Wrtr and the 
other is determined by the final values of the variables VI, v2, Wr obtained 
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example, one can accept as the criterion of parametric optimization, the measure 
of distance between two points mentioned before, in the following form: 

( 40) 

However, in the case of optimization of a control system, the initial conditions 
of the conjugated variables must have the values, with which by applying the 
optimal control, the extreme value of the accepted optimization index is ob
tained. Then, taking as criterion of the parametric optimization, one can also 
use the control system optimization index (26). 

To solve the two-point boundary value problem, different algorithms of para
metric optimization can be used. The classic algorithms work correctly, when 
the parametric optimization index has one single or several equal global ex
tremes. Unfortunately, in most of the practical cases it is not previously known 
if the parametric optimization index fulfills the supposition mentioned. Using 
a classic algorithm for these cases, it is necessary to apply this algorithm many 
times, beginning the calculations from a different initial point, every time. 

The genetic algorithms allow for finding with a certain precision, usually not 
very high, the global extreme of the optimization index, even when this index 
has the local extremes. 

From what was previously exposed, the idea could be derived that both 
mentioned types of the parametric optimization algorithms should be applied, 
to find the global extreme of an optimization index, with possibly high preci
sion. First, the genetic algorithm should be applied, to come near to the global 
extreme and afterwards a classic algorithm may be applied, taking the values of 
the parameters found by the genetic algorithm, as the start point. Carrying out 
this idea, the algorithm called the hybrid algorithm of parametric optimization, 
has been elaborated (Kawecki, 2000), consisting of two particular algorithms: 
the genetic algorithm with three chromosome selection methods (for the range, 
for the tournament and for the roulette) and the classic algorithm based on the 
method of Gauss-Seidel, also called the algorithm of the cyclical changes of the 
parameters. 

In Figs. 1 and 2 the flow diagram of the hybrid algorithm is presented (all 
notations used in figures are given in the Appendix, at the end of the paper) . 

The two algorithms which compose the hybrid algorithm can be applied 
separately or jointly. In the case of the joint option, it is always necessary to 
apply the genetic algorithm first and then the algorithm of the cyclical changes 
of the parameters. 
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Indicate the initial values of the 
variables and of the constants of the 
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~l 

(:) 

Fig. 2. Hybrid algorithm of parametric optimization (part 2) 

7. Numerical example 

L. KAWECKI 

In order to illustrate the developed design method of the optimal induction 
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example for the idle starting (Mo = 0) of a 500 h.p. three-phase induction motor 
is given, whose parameters are: 

Um = 1877.94[V], p = 2, Wn = 377[rdj s] 

R1 = 0.262[0], R~ = 0.187[0), X1 =X~ = 1.206[0] 

Xo = 54.02[0], Mm = 2649.7[kgj, Mr = 657.34[kgj 

iomax = 34[A] . 

The magnetic cores of the stator and the rotor are built alike of the same 
anisotropic cold-rolled sheet, containing 4% of silicon. The parameters of this 
sheet are: 

Bm = 1.5[T], Pm = 7.65 x 103 [kg/m3J, l = 0.001[mj 

'Yc = 2.096 X 106 [8/m], t: = 1.5[m4/Hkg], d = 0.0003[m] 

The calculations are carried out for the coefficients >.1 and >.2 with the same 
values: >.1 = >.2 = 0.5 and for the limit values of the stator current amplitude: 
iJ. = 30[A] and iJ. = 150[A] . 

For iJ. = 30A the saturation of the magnetic material of the motor does not 
occur (io < iomax) during the control, even though the mathematical model 
of the motor, used in the design of the optimal control, does not take into 
consideration the saturation of the magnetic material of the motor (Kawecki, 
Niewierowicz, 1999). For iJ. = 150[A] the optimal control designed on the basis 
of the motor model that does not consider saturation, would surely cause the 
saturation of the magnetic material of the motor, at least in some time intervals. 

In order to solve the two-point boundary value problem, the hybrid algo
rithm of parametric optimization has been applied, using both as the parametric 
optimization index, the expression ( 41) and the functional (26). 

When using the genetic algorithm, the following values were accepted: 
-the crossing probability = 0.95 
- the mutation probability = 0.03 
- the number of chromosomes = 200 
-the number of generations= 50. 

The integration step used in the genetic algorithm as well as in the cyclical 
parameters changes algorithm was equal to O.OOls (dt = O.OOls). 

By applying the hybrid algorithm for the parametric optimization index 
( 40), many similar global minima for different ranges of the initial values of 
the conjugated variables were obtained. However, only a part of these ranges 
minimizes the total losses. This indicates that there exist many controls that 
minimize the parametric optimization index ( 40), but only some of these con
trols minimize the index (26). This is caused by the fact, that the Pontryagin 
maximum principle, for the non-linear systems, provides the necessary condi
tions but not the sufficient ones. When the parametric optimization index for 
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(26), several different ranges of the initial values of the conjugated variables 
V1(0), V2(0) , V3(0) that give the same minimum value of the index (26) are 
also obtained, though the solution of the canonical equations for each of these 
ranges gives the same control. Therefore, to solve the two-point boundary value 
problem, it is more convenient to accept as the parametric optimization index, 
the index (26) . 

The obtained results are the following ones: 
- For iJ. = 30A, the following initial values of the conjugated variables were 
obtained: 

V1(0) = -4175.233 V2(0) = 1857.633 V3 (0) = 726.539. 

- For iJ. = 150A, the following initial values of the conjugated variables were 
obtained: 

V1(0) = 6842.948 V2(0) = 4252.685 V3(0) = 610.875. 

Using the initial conditions of the conjugated variables found, the behavior of 
the optimal control system has been simulated. 

The results of the simulation fori~ = 150 A are shown in Figs. 3- 11. 
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The results of the calculations obtained during the simulations are shown in 
Table 1. 

Table 1. 

iY[A] tr[s] Q.[J] Qm[J] 0.5Qe + 0.5Qm iom[A] 
30 11.62 5530.0 37506.8 43036.8 21.31 
150 2.0 29260.7 7394.7 36655.4 32.70 

8. Conclusions 

From the results obtained in this paper one can conclude that it is possible 
to obtain the general mathematical description of the optimal induction motor 
speed control that minimizes the total losses, but only in the implicit form (the 
relationships (36), (37) and (39)). 

To determine the explicit optimal control (27), (28) it is necessary to solve 
the two-point boundary value problem, using a computer and a parametric 
optimization algorithm. This implies that the obtained explicit control is not 
good for general use but only for the given induction motor. 

Based on the calculation results obtained for the investigated motor one can 
conclude that: 

- To solve the two-point boundary value problem it is more convenient to 
use as parametric optimization index, the same optimization index (26) 
that expresses the total losses, since this allows for saving of the calculation 
time and even when the classic optimization algorithm alone is used, there 
will be a quite high probability that the minimum found is the global 
minimum. 

- The optimal control found, guarantees not only the minimization of the 
electric and magnetic losses, limiting the stator current amplitude, but also 
the limitation of the magnetization current amplitude to the value that 
does not allow the magnetic material of the motor to be saturated, irre
spective of the limit value of the stator current amplitude (see Fig. 8 and 
Table 1). This result was obtained because the motor's magnetic material 
saturation in the mathematical motor model was taken into consideration. 

- The electric losses during the optimal starting increase almost linearly with 
time (see Fig. 9). This is due to the fact that the stator current amplitude 
is constant during the starting (Fig. 3) and the rotor current amplitude is 
almost constant, oscillating around the constant value (Fig. 7). 
The magnetic losses during the optimal starting increase almost paraboli
cally with time (Fig. 10), since the frequency of the stator current and the 
angular speed of the rotor increase in an almost linear manner, oscillating 
;unnnrl t.hP rlirPr+ lin ~> fPi rr Ll ) 
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Appendix: List of symbols 

A= Rt(Xo + X~) 2 + R~Xt 
Az = "fcd(d + 1.628l) 

24pm 
Bm - maximum magnetic induction measured in tesla [T] 

Bz = 20~11" 
d - thickness of the sheet measured in meters [m] 
F = (Xt + Xa)(X~ + X a)- X~= XtXo + X1X~ + X~Xo 
H - Hamiltonian 
it - amplitude of the stator current 
i 1d , i 1q -components of the vector of the stator current 
i~ - amplitude of the rotor current related to the stator circuit 
i~d, i~q - components of the vector of the rotor current related to the stator 

circuit 
io - amplitude of the magnetization current 
iom -maximum value of the magnetization current amplitude, obtained during 

the motor starting 
io max - maximum value of the magnetization current amplitude when the mag

netic material of the motor does not enter in saturation yet, according 
to its approximate curve of magnetization 

itopts - optimal value of the stator current amplitude without the limitation 
of the stator current 

i~ - maximum admissible value of the stator current amplitude 
J - inertial torque of the rotor 
l - distance between the walls of the magnetic domains that form parallel bands 

of the thickness 
Mm = Ms + Mr - total mass of the magnetic core of the motor measured in 

kilograms [kg] 
Mr - mass of the rotor measured in kilograms [kg] 
Ms - mass of the stator measured in kilograms [kg] 
Mo - load torque 
p - number of pairs of poles 
Q - optimization index 
Q e - electric losses 
Qm- magnetic losses 
Qp- parametric optimization index 
R 1, R~ - resistances of the stator winding and of the rotor winding related to 
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X1, X~ -dissipation reactances of one phase of the stator winding and of one 
phase of the rotor winding related to the stator circuit, in two-phase 
equivalent motor, calculated for the nominal frequency of the stator 
current, respectively 

Xo - magnetizing reactance of a two-phase motor for nominal frequency of the 
stator current 

t- time 
u - amplitude of supply voltage 
Utd, Utq - components of the vector of the supply voltage on the d-q axes 
Urn - nominal supply voltage amplitude 
Vt, V2, V3 - conjugate variables 
f3'(t)- absolute slip 
/3( t) - relative slip 
e - coefficient whose value depends on the sheet type (for example, for the 

transformer's sheet which has 4% of silicon, e takes the value between 
1.2 and 2 [m4 /Hkg]) 

'Yc - specific conductivity of the sheet measured in siemens per meter [S/m] 
.>.1, .>.2 - constant coefficients in the optimization index 
w - angular frequency of the stator current 
Wn - nominal angular frequency of the stator current 
Wr - angular speed of the motor with one pair of poles 
Wrtr - desired value of the motor speed 
Pm - specific density of the sheet measured in kilograms per cubic meter 

[kg/m3] 
€ - angle between the stator current vector and "d" axis 
1/Jtd, 1/J1q - components of the vectors of the magnetic flux linkage with the 

windings of the stator 
1/J~d, 1/J~q - components of the vector of the magnetic flux linkage with the 

windings of the rotor related to the stator circuit 
1/Jod, 1/Joq - components of t he magnetization flux vector 
1/Jo - amplitude of the magnetization flux 

Following symbols are used in Figs. 1 and 2: 
bt, et, mt - small numbers determining the calculation exactitude in the algo

rithm of the cyclical changes of parameters 
dl - parametric optimization index value in the present iterative step of the 

algorithm of the cyclical changes of parameters 
d - parametric optimization index value in the preceding iterative step of the 

algorithm of the cyclical changes of parameters 
dl - parameter increment value in the present iterative step of the algorithm 

of the cyclical changes of parameters 
dlo - parameter increment value starting a cycle of the parameter changes in 
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die -parameter increment value beginning the execution of the algorithm of 
the cyclical changes of parameters 

N - currently changed parameter number in the algorithm of the cyclical 
changes of parameters 

N2 - the number of the first parameter destinated to change at the start of the 
calculation in the algorithm of the cyclical changes of parameters 

ql - integer number greater than 2zp, divisor used in the algorithm of the 
cyclical changes of parameters for the decrease of parameter increment, 
finishing a cycle of the parameter changes 

q(N) - initial value of the N - number parameter in the mathematical model 
used in the algorithm of the cyclical changes of parameters 

qp(N) - initial value of the N - number parameter starting the iterative cycle 
of the parameters changes in the algorithm of the cyclical changes of 
parameters 

qpo(N) - optimal value of the N- number parameter in the algorithm of the 
cyclical changes of parameters 

S, x - flags of the algorithm of the cyclical changes of parameters 
zn - number of the chromosomes 
zp - number of the parameters for optimization 
zg - number of the generations. 




