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1. Introduction 

This paper is devoted to the study of stability properties of a special type of 
minimizers for the following optimization problem: 

P(J, S): minimize f(x) subject to xES, 

where f : !Rn -+ lR and S is a nonempty subset of !Rn. We begin by quoting 
a general definition of these minimizers in two versions: global and local; see 
Studniarski and Ward (1999) . 

DEFINITION 1 Let II · II be the Euclidean nann on !Rn . Suppose that f ·is finite 
and constant on the set W C !Rn, and let x 0 E W n S and m ~ 1. For x E !Rn , 
let 

dw(x) := inf{IIY- xllm I yE W }. 

(a) We say that xo is a weak sharp minimizer of order m for P(J, S) if there 
exists {3 > 0 such that 
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(b) For- c > 0, let B(x,c) := {y E !Rn lilY- xll ~ c}. We say that xo is 
a weak sharp local minimizer of order m for- P(J, S) if theTe exist (3 > 0 and 
c > 0 s·uch that 

f(x)- f(xo) 2: f3d'W(x), joT all xES n B(xo, c). 

In pa'f"tic'UlaT, if condition (a) (respectively, (b)) holds'for- W = {xo }, we say 
that xo is a strict (r-espectively, strict local) minimizer of order m for- P(f, S). 

The notion of a weak sharp minimum of order one was studied by Burke 
and Ferris (1993). Weak sharp mi~ima of order m occur in many optimiza
tion problems and have important consequences for the study of optimization 
algorithms and for stability and sensitivity analysis in nonlinear programming; 
see, for example, .Klatte (1994) and Ward (1998). Various characterizations of 
weak sharp minimizers of order rn (local or global) in nonconvex optimization 
were obtained by Bonnans and Ioffe (1995), Studniarski (1999), Studniarski and 
Ward (1999). 

In the optimization literature, stability results are usually formulated for 
mathematical programming problems depending on some parameters. In this 
paper however, stability is understood in a somewhat different sense, which does 
not require the introduction of parameter vectors. We now briefly explain this 
idea. 

Hyers (1978, 1985) considered the following notion of stability of minimum 
points: a relative minimum point xo of a function f is called stable if functions 
J (of a suitable class) which are sufficiently close to f have relative minimum 
points within a prescribed distance from x 0 . For functions f defined on a Banach 
space, he proved a sufficie~t condition for the stability of a minimum point in 
this sense. The function f can be regarded as a function obtained from f by 
adding an arbitrary (but sufficiently small) perturbation. Studniarski (1989) 
obtained analogous results for constrained nonsmooth optimization problems in 
finite-dimensional spaces. He proved some theorems on stability in Hyers' sense 
with respect to arbitrary perturbations of both the objective function and the 
set of feasible points. A sufficient condition, which ensures the stability property 
mentioned is that xo is a strict local minimizer of order m for the given problem. 

The aim of this paper is to generalize the results of Studniarski (1989) by re
placing the assumption of strict local rninirnality of order m at x 0 with a weaker 
condition, which is intermediate between conditions (a) and (b) of Definition 1. 
In this way, we avoid the requirement that the solution of problem P(f, S) must 
be locally unique. 

2. The case of a general constraint 

In this section, we deal with the problem P(f, S) without considering any special 
structure of the constraint setS. First, we show that d'W is Lipschitzian on some 
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LEMMA 1 Let W be a bounded set and let rn ~ 1 (we do not Tequ'ire of rn to be 
an integer) . Then, joT any c > 0, we have 

!d\V(:r:)- d\~(y)!:::; mcm- 11!x- Yl! 

for all x , y EWe:: = UzEW B(z,c). 

(1) 

Pmof. Observe that dw can be represented as the composition of two functions: 
dw = ·t/J o dw, where ·tjJ(t) := tm fort~ 0. If dw(x) = dw(y), then inequality 
(1) holds trivially. Otherwise, we have 

t1 := min{dw(x),dw(y)} < tz := rnax{dw(x),dw(y)}:::; c 

and, by using the mean value theorem for 1/J, 

!d\V(x) - dw(Y)! = !·t/J(dw(x))- ·t/J(dw(y))! 

:::; sup 1'1/J'(t)!!dw(x)- dw(Y)!. 
tE(t 1 ,t2) 

(2) 

(3) 

Since dw is globally Lipschitzian of rank 1 by Clarke (1983, Proposition 2.4.1) 
and the function ·t/J'(t) = rntm- 1 is nondecreasing, we deduce from (3) and the 
last inequality in (2) that (1) holds in this case also. • 

THEOREM 1 Suppose that f is constant on the set W C S. Let xo E W, and let 
W be compact. Suppose that there exist real numbers c > 0, n > 0 and m ~ 1 
such that 

j(x) ~ j(xo) + nd\V(x) for all X E C := S n Wo:. (4) 

S·uppose also that f 'is Lipschitzian of mnk Ko on Wo:. Let K := Ko + nmcm- 1, 

and let f3 be an ar·bdmry (but fixed) number 'in the open inter·val (0, cxcm). Denote 
r := (ncm - {3)/(Ko + K). S·uppose that there are given a function 1: !Rn _, IR 
and a set S C !Rn such that 

(a) 1 'is L·ipschitz'ian of mnk less thanK on Wo:; 
(b) s n int Wr ¥ 0, where Wr := uyEW B(y, r) and the set c := s n Wo: is 

closed; 
(c) joT each x E Wo-, we have the 'inequalit·ies 

!1( x) - f(x)! < /3/4, 

dc(x):::; dc(x) + f3/(2K). 

Then problem P(1, S) has a local solut·ion wh·ich belongs to int We: . 

(5) 

(6) 

Pmof. Let <I> = f- h, where h(x) := cxd\V(x). We show first that <I> is Lips
chitzian of rank K on Wo:. By Lemma 1, we get 

!h(x)- h(y)! = n!d\V(x)- d\V(y)!:::; mnc111
-

11!x- yl!, 
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Hence, his Lipschitzian of rank cnncm- 1on W.,. Then 

I<P(x)- <P(y)l = lf(x)- h(x)- (f(y)- h(y))l 

~ lf(x) - f(y)l + lh(x)- h(y)l 

~ Kollx- Yll + amcm-l llx- Yll 

=KIIx-yll. 

This shows that <P is Lipschitz ian of rank K on W., . Condition ( 4) means that 
<P attains its minimum over C at xo. Applying Clarke (1983, Proposition 2.4.3), 
we infer that <P + K de attains its minimum over We at x0 ; then 

f(x) + Kdc(x)- f(xo ) ~ a~(x), for all X Ewe. (7) 

By assumption (b), there exists a point z E S n int Wr. We have 

Qcm- {3 acm c 
T = < <- ~ c 1 Ko + K - 2Ko + amcm-l rn 

which implies that z E C. 
Since z E C, we have de(z) = 0. Moreover, it follows from the relation 

z E int Wr that there exists w E W for which liz- wll < T. Therefore, we obtain 
from (5) 

[(z) + Kde(z) = 1(z) < f(z) + !3/4 ~ f(z) + Kdc(z) + !3/4 
= f(w) + ((! + Kdc)(z)- (f + Kdc)(w)) + {3/4 

~ f(w) + (Ko + K)llz- wll + {3/4 

< f(w) + acm- 3{3/4 

= f(xo) + acm- 3{3/4. (8) 

Take any boundary point 'U of We; then dw('U) =c. Using successively (8), 
(7), (5), (6), we get 

[(z) + K de(z) < f('U) + K dc('u)- 3{3/4 < leu)+ K de("u). (9) 

Since the function f + K de is continuous, it attains the minimum over the 
compact set we at some point zo. It follows from inequalities (9) that zo belongs 
to int We. To end the proof, we only need to verify that z0 E C; this will 
obviously imply that zo is a local minimum point for problem P(1, S). (Indeed , 
it suffices to observe that 1 + K de reduces to 1 on C = S n We, and We is a 

neighborhood of zo.) Since C is compact, there exists a point y E C such that 

IIY- zoll = de(zo). Let 1 be Lipschitzian of rank K1 on W"; by assumption (a) , 
we can choose K1 < K. It follows from the definitions of y and zo, respectively, 
that 

- . 
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which leads to 

K IIY- zo ll ~ 1(y) -l(zo) ~ K1 IIY- zo ii 

Thus, IIY- zo ll = 0, and so zo = y E C. 

355 

• 
REMARK 1 (a) Suppose that ther·e exists a point ·u E S n bdW<: s·uch that ll ·u 
Yll = c: = dw(u) for· some y E W. Then T ·is always smaller- than c:/(m + 2). 
Indeed, in this case we get by (4) 

Koc: = Ko ll ·u - Yll2: f(u)- f(y) = f(u)- f(xo) 2: adw{u) = ac:m, 

and so Ko 2: ac:m- 1. Hence 

(ac:m- /3) (ac:m- /3) (ac:m- /3) c: 
T= = < < . 

(Ko + K) (2Ko + amc:m- 1) - (m + 2)ac:m-l (m + 2) 

(b) The numbeT /3 appearing in Theor·em 1 may be chosen ar·bitmTily. When 
/3 increases, assumption (b) becomes stmnger, while ass·umption (c) becomes 
weaker. 

EXAMPLE 1 The follow·ing example shows that Theor-em 1 is not valid without 
the assumption of compactness of the set W. Let n = m = 1, S = R, W ={xI 
x ~ 0}, and let f be defined by 

f(x) := { O, 
x, 

·if X< 0, 
if X 2: 0. 

Then, inequality (4) is fulfilled with c: = a = 1 and f is Lipschdzian of mnk 
Ko = 1 on W<:. We compute K = 2 and choose /3 = 1/2 E (0, 1) = (0, ac:m); 

then r = 1/6. Define the new funct·ion 1 by 

- { ex /16, if X < 0, 
f(x) := X+ 1/16, if X 2: 0. 

It is easy to show that conditions (a) - ( c) are satisfied if S = S. However-, ther·e 

is no local solution to pmblem P(1, S) since 1 does not attain its infimum on 
the real line. 

3. Sets defined by inequalities and equalities 

We shall now deal with the case in which the set S appearing in problem P(f, S) 
has the form 

S = {x ERn I Yi(x) ~ 0, i E I; Yi(x) = 0, j E J}, (10) 

where I, J are given finite sets and gi, ·i E I U J, are real-valued functions on 
Rn. In this section, the symbol S will denote the set defined via formula (10) 
where the functions Yi are replaced by other functions 'iii· Our aim here is to 
show that inequality (6) in Theorem 1 can be replaced by a certain assumption 
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LEMMA 2 Given any subsets of A, B of !Rn, we have 

dA(x):::; dB(x) + supdA(b) joT all x E !Rn. (11) 
bEB ' 

PTOoj. See Studniarski (1989, p. 30). • 
LEMMA 3 Let the funct·ions 9i, ·i E I , be lower· sem·icont·inuous, and let the 
functions Yi, j E J, be continuous. Let W C S and let W be a compact set. 
Take any fixed c: > 0 and denote C := S n We, We: := U

11
Ew B(y ,c:) . Then 

for· any TJ > 0, theTe exists 8 > 0, such that, for· any r·eal-valued functions gi , 
i E I U J , satisfying the inequalities 

lfii(x)- 9i(x)i < 8 joT all x EWe:, ·i E I U J, 

we have 

dc(x):::; dc(x) +.,,joT all x E We: 

{wheTe C: = s n We). 

(12) 

(13) 

PTOof Suppose that the desired conclusion is false . Then there exists TJ > 0 
such that, for any positive integer k, there exist functions, gi,k. ·i E I U J , which 
satisfy the inequalities 

l'iii,k(x)- Yi(x)l < 1/k, for all x EWe, ·i E I U J, (14) 

whereas the set (\ := Sk n We: (where Sk is defined by gi,k via (10)) satisfies 
the inequality 

(15) 

Combining (15) with (11) , (where we should take A= C, B = C\, x = Xk) , we 
obtain 

sup dc(z) > TJ for every k. 
zECk 

Thus, for every k, there exist a point Zk E ck such that 

(16) 

Since Ck c We: for all k and We: is compact, we may assume (by taking a 
subsequence) that Zk --+ z E We: . Then, (16) and the continuity of de imply 

dc(z) = lim dc(zk) 2': TJ. 
k-.oo 

(17) 

For every k, we have Zk E ck c Sk, and so 
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It follows from the lower semicontinuity of g;, ·i E I U J, and from (14), (18) 
that 

~ liminfg;,k(zk ) + lim 1/k ~ 0 for all ·i E I U J. 
k-+oo k-+oo 

The same argument applied to the function -gj, j E J, gives gj( z) 2: 0. We 
have shown that z E C, which contradicts (17). • 

THEOREM 2 ConsideT pmblem P(f, S) wheTe the setS ·is given by (10). S·up
pose that f is constant on the set W C S. Let xo E W , and let W be compact. 
Suppose that theTe exist r·eal numbeTs c > 0, a > 0 and a posdive integer rn 

such that 

j(x) 2: j(xo) + ad~(x), joT all X E C = S n We. 

Suppose also that j is Lipschitz·ian of rank Ko on We, the funct ·ions g; , ·i E I , 
aTe loweT semicont·inuous, wh-ile the functions gj, j E J, ar-e contin·uo·us. Let ·us 
denote K := Ko + arncm- 1, r := acm /(Ko + K). Then there ex·ists 8 > 0 for· 
wh·ich the following ·implication is ir"ue: 

If 1 and g;, i E I U J , are real-valued functions on !Rn s·uch that 
(a) 1 is Lipschdzian of mnk less than K on We, the funct ·ions g;, ·i E I , ar-e 

lower semicontinuous, while the functions Yi, j E J, ar-e contin·uo·us, 

(b) s n int Wr =J 0, where Wr := uyEW B(y, T), 

(c) I J( X) - f (X) I < 8 joT all X E we' and inequalit·ies (12) are satisfied, 

then pmblem P(1, S) has a local solution which belongs to int we' 
Pmof. Assumption (b) assures the existence of a number r 1 E (0, r-) such that 
S n int Wr 1 =J 0, where Wr 1 := UyewB(y, r1) . Let (3 E (0, m:m) be the number 
defined by the equality T1 = (acm- (3)/(Ko + K). It follows from assumption 
(a) that the set C := S n We is closed. Moreover, the assumptions of Lemma 3 
are satisfied. Let us take 'fJ := (3 / (2K) and choose a number 8 > 0 according to 
Lemma 3. We may assume that 8 ~ (3/4. In this way, assumption (c) implies 
conditions (5) and (6). To complete the proof, it suffices to apply Theorem 1. • 

REMARK 2 It can be sho·wn, s·im'ilarly as in the pmof of Theor-em 1, that ·undeT 
the assumptions of TheoTem 2, we have T ~ c. Let us note that ass·umption (b) 
of TheoTem 2 may be difficult to verify in pmctice. TheTejoTe we shall show that, 
for some particular· case, th·is assumption can be Teplaced by another· condition, 
which can be verified moTe easily . 

THEOREM 3 ConsideT vroblem P(f , S) wheTe the set S ·is given by (10) and 
J = 0 (i .e., theTe are no eq·uality constraints). Let ·us denote 
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and suppose that the functions 9i fori E I\f(xo) an; continuo·us at xo. Then, 
Theorem 2 remains tr-ue when condition (b) is Teplaced by the follow·ing one: 

(b') there exists v E JR.n such that, if we denote g := max{gi I ·i E I(xo)} , 
then 

g~(xo; v) = limsupC1(g(xo +tv)- g(xo)) < 0. (19) 
t--+O+ 

Proof. Suppose that (\/) holds. Then it follows from (19) and from the equality 
g(xo) = 0 that there exist numbers CT > 0, t0 > 0 such that 

g(xo +tv) :S -CTt, for all t E (0, to). (20) 

Define T := max{g;(xo) I i E I\ I(xo)} < 0. Let us choose t1 E (0, t0 ) so small 
that Xo + t1 v E int Wr and 

Yi(xo + t1v) :S T/2, for all ·i E I\ I(xo). (21) 

Suppose further that inequalities (12) (with J = 0) are satisfied for some 8 E (0, 
min{CTt1, -T/2}] . Since r :S t:, we have xo + t1v E We:. Hence, from (12) and 
(20), we get 

q;(xo + t1v) < g;(xo + t1v) + 8 :S g(xo + t1v) + 8 

:S -CTtl + 8 :S 0, for all i E I(xo). 

Observe also that (12) and (21) imply 

(22) 

Inequalities (22) and (23) mean that xo+hv E S, and consequently, Snint Wr ::j; 
0. We have thus verified that conditions (b') and (12) (for sufficiently small 8) 
imply condition (b) of Theorem 2. • 

REMARK 3 Cons·ideT the case when the functions gi (·i E I) ·in Them·ern 3 are 
locally L-ipschitzian. Given a locally L·ipschdz·ian funct·ion g : JR.n ----+ JR., we 
denote by og(xo) the genemlized gradient of g at xo; see Clarke (1983). By 
Tepeating the argument of Remar-k 3.6 in Studn·iaTski (1989), we can show that 
the following condit·ion 

0 ~ co{ogi(xo) I ·i E I(xo)} , (24) 



Stability properties of weak sharp minima 359 

References 

BoNNANS, J.F., IOFFE, A. (1995) Second-order sufficiency and quadratic 
growth for nonisolated minima. Math. OpeT. Res., 20, 801-817. 

BURKE, J .V . and FERRIS, M.C. (1993) Weak sharp minima in mathematical 
programming. SIAM J. Contr·ol Optim., 31, 1340- 1359. 

CLARKE, F.H. (1983) Optimization and Nonsmooth Analys·is. New York, Wiley
lnterscience. 

HYERS, D.H. (1978) On the stability of minimum points. J. Math . Anal. Appl., 
62, 530-537. 

HYERS, D.H. (1985) Stability of minimum points for problems with constraints. 
In: DijJeTential GeornetTy, Calc'Ul'Us of VaTiations , and the·iT Appl-ications, 
Dedic. Mern. L. BuleT 200th Anniv. Death, Lect. Notes Pure Appl. Math., 
100, 283-289. 

KLATTE, D. (1994) On quantitative stability for non-isolated minima. ContTol 
CybeTnet., 23, 183- 200. 

STUDNIARSKI, M. (1989) Sufficient conditions for stability of local minimum 
points in nonsmooth optimization. Optirn·ization, 20, 27-35. 

STUDNIARSKI, M. (1999) Characterizations of weak sharp minima of order one 
in nonlinear programming. In: System Modell-ing and Opt·irnization (De
troit, MI, 1997}, Chapman & Hall/CRC Res. Notes Math., 396, 207-215. 

STUDNIARSKI, M. and WARD, D.E. (1999) Weak sharp minima: characteriza
tions and sufficient conditions. SIAM J. Contwl Optim. 38, 219-236. 

WARD, D. (1998) Sufficient conditions for weak sharp minima of order two 
and directional derivatives of the value function. In: A. V. Fiacco, ed. 
Mathematical Pmgmmrning with Data PeTt·uTbations. Lect. Notes Pure 
Appl. Math., 195, Dekker, New York, 419-436. 




