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1. Introduction 

In the present paper we consider nonlinear programming problems, where the 
nonsrnooth objective function and nonsrnooth constraints are involved. The nec
essary and sufficient first order optimality conditions use the Dini and Clarke 
derivatives. However, the obtained Kuhn-Tucker conditions are in the classical 
form, because neither subdifferentials nor cones appears here, similarly as in 
Zangwill (1969). The sufficient conditions alone are obtained thanks to some 
properties of generalized convexity and generalized linearity of functions. The 
role of these properties seems to be increasingly promising and appreciated, be
cause now and again they are used in the applications of optimization theory 
and nonsrnooth analysis- see e.g. Giorgi and Kornl6si (1995) (and preceding 
parts). The necessary and sufficient optimality conditions are given in the La
grange form. This work is some extension of the results given by Glover (1984) 
to problems with mixed constraints. The results of present paper are not sur
prising, but the purpose of the present paper was, in particular, exactly like 
this: to formulate the optimality conditions without cones and subdifferentials. 
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Mititelu (1987) as the Karush-Kuhn-Tucker conditions, but there, only differen
tiable programming problems are considered. If the generalized derivat ives are 
sublinear, then the Lagrange multiplier can be 'hidden' behind a subdifferential 
condition as it is in Gianessi (1989), Koml6si (1993) and Mititelu (1994). 

2. Definitions and remarks 

Let X be a nonned vector space, Xo C X an open convex set and f: Xo--; R. 

DEFINITION 1 A function f is said to be locally Lipschitz on Xo ·if, for· each 
point in Xo, theTe exist a neighborhood U of th·is point and a positive Teal numbe'f' 
L such that 

llf(x)- f(y)ll :S Lllx- Yll, for· all x, y E U. 

DEFINITION 2 A function f is said to be convex on Xo ·if, for all x, y E Xo and 
tE[0,1], 

· j(y +t(x- y)) :S f(y) + t(f(x)- f(y)). 

DEFINITION 3 The upper· Dini deTivative of a function f at a point x E Xo in 
the diTection d E X is given by 

D+j(x, d) :=lim sup f(x + td)- f(x). 
. . t!O t 

The loweT Dini derivative of a function f at a po·int x E X 0 in the dir·ection 
d E X is given by 

D f( 
.d. ). 

1
. . f f(x + td)- f (x) 

+ x, := nnm . 
t!O t 

REMARK. Natumlly, if, for · any point x E Xo and joT any d·ir-ect·ion d E X the 
equality n+ f(x, d)= D+f(:c , d) holds, then the'f'e ex·ists the diTect·ional der·ivative 
off atx, and 

f'(x,d) = D+ f(x,d) = D+f(x,d), 

see Koml6si {1994) . 

DEFINITION 4 The Clar·ke deTivative ( genemlized diTect·ional der"ivative) of a 
funct·ion f at a po·int x E Xo ·in the d·i'f'ect ·ion dE X ·is given by 

. f(z + td)- f (z) 
f 0 (r: rl.) := lnn snn . 
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REMARK. (i) Clear·ly, D+f(x, d) :::; D+ f(x, d) :::; r(x, d) faT each X E Xo and 
any dE X . 
(ii) Mor-wueT, for- each X E Xo, r(x, v) is a finite , posit'ively homogeneous, 
subadd'itive and convex funct'ion of v and an 'UppeT semicontinuous function of 
(x , v) when f is locally Lipschitz (see Clar-ke 1975, 1976 ). 

DEFINITION 5 A function f is said to be radially continuous if, for- all x, h E Xo, 
the funct'ion p(t) = f(x + th) is continuous as a function p: R--. R. 

3. Generalized convexity and generalized linearity 

First, we establish several properties of generalized convexity of functions . The 
concept of the pseudoconvexity for nondifferentiable functions has been intro
duced in Diewert (1981), who extended Mangasarian 's definition from Man
gasarian (1969). The below-mentioned concepts can be found also in Glover 
(1984) and in Ellaia, Hassouni (1991): 

DEFINITION 6 For- a locally Lipschitz function f : Xo --. R, we shall say: 

(i) f is Clar-ke-pseudoconvex (PCX-ClaTke) if, joT all x, y E Xo 

r(y,x- y) ~ 0 => f(x) ~ f(y), 

(ii) f is Dini-pseudoconvex (PCX-Dini) if, for· all x, y E Xo 

D+ J(y,x- y) ~ 0 => J(x) ~ J(y) , 

(iii) f 'tS Cla.r-ke-quas'iconvex (QCX-Cla.rke) if, joT all x, y E Xo 

r(y, X - y) > 0 => j(x) > f(y) , 

(iv) f 'tS Dini-quas'iconvex (QCX-D,ini) if, for all x, y E Xo 

D+j(y,x -y) >O => f(x)>f(y) , 

(v) f is str-ict quasiconvex (SQCX) if, for all x , y E Xo 

f(x) < f(y) => V f(y + t(x- y)) < f(y), 
tE(O,l) 

(vi) f is quasiconvex (QCX) if, for- all x, y E Xo 

f(x):::; f(y) => V f(y + t(x - y)):::; f(y) . 
tE(O,l) 

We can consider all the above properties at a given point x by fixing x in 
the above definitions or locally by fixing x and considering a neighborhood G 
of x instead of the whole set X 0 (see Kornlosi, 1993). 

REMARK. By Definition 6 it easily follows that ever-y PCX-Clar-ke function is 
PCX-Din'i. Sim-ilar-ly, ever·y QCX-Clarke function 'is QCX-Dini. 

In the following lemma we give some relationships between the above intro-
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LEMMA 1 Let f : X 0 -+ R be md·ially contin·uo·us. Then: 
(i) f is QCX-D·in·i ·if and only ·iff ·is QCX; 
('i·i) Iff ·is PCX-Dini, it ·is also QCX-Dini, SQCX and QCX. 

Pruof. See Diewert (1981). • 
REMARK. {i) By Lemma 1 and remaTk ajteT Definition 6, it ·immediately follows 
that ever·y md·ially continuo·us function, which ·is PCX-ClaTke, is also QCX and 
SQCX. 

{ii) OtheT r-elationships between the generalized conve:r"ity pmperties can be 
pmved s·imilaTly to these, wh·ich aTe pTesented by K oml6si in { 1993). 

We now quote another characterization of quasiconvexity of a function (by 
means of convexity of the lower level sets): 

LEMMA 2 A function f: Xo-+ R is QCX ·if and only ·if the set 

H' := {x E Xo: f(x):::; I} 

is convex joT any Teal numbeT 1 E R. 

PToof. The proof is an immediate consequence of (vi) in Definition 6. We leave 
it to the reader. • 

Now, we establish several properties of generalized linearity of functions 
(defined e.g. by Kornl6si in 1993): 

DEFINITION 7 FoT a locally Lipschitz function f : X 0 -+ R, we shall say: 
{i) f is Clarke-quasilinear (QL-Clarke) 'iff is simultaneo-usly ClaTke q·uasi

convex and Clar-ke-quas·iconcave (i.e. f and - f aTe ClaTke-quas·iconvex), 
(i·i) f is Dini-quasilinear (QL-Dini) iff is s·iumltaneously Dini-quas·iconvex 

and Dini-quasiconcave {i.e. f and- f aTe Dini-q·uas·iconvex), 
{iii) f is Clarke-pseudolinear (PL-Clarke) if f is simultaneously ClaTke

pseudoconvex and ClaTke-pse·udoconcave (i.e. f and - f aTe Clarke-pseudo con
vex), 

(iv) f is Dini-pseudolinear (PL-Dini) if f ·is s·irnultaneo·usly Dini-pseudo
convex and Dini-pse·udoconcave (i.e. f and - f aTe D·in·i-pseudoconvex). 

REMARK. By r·errwrk afteT Definit·ion 6 and paTt (i·i) of Lemma 1 d easily follows 
that eveTy PL-Clar-kefunction ·is PL-Dirri, every QL-Clarkefunction ·is QL-Dini 
and eveTy PL-D·in·i funct·ion is QL-Din·i. 

The following lemma is natural extension of the fact , which was proved 
by Kortanek and Evans (1967) and Chew and Choo (1984) for differentiable 
functions: 

LEMMA 3 If a diTectionally d·ifferentiable funct·ion f : Xo -+ R is Din·i-quasi
lineaT at a point y E X o, then 
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Pmof. Assume that f is QL-Dini at the point y E Xo. Then f and - f are 
QCX-Dini functions at this point. This means that the following conditions are 
satisfied (by Definition 6): 

n+ f(y, X- y) > 0 => f(x) > f(y), for all X E X o, 

D+(-J)(y,x-y)>O => -f(x)>-f(y) , forallxE Xo, 

or, equivalently: 

f(x) ~ f(y) => n+ f(y, X- y) ~ 0, for all X E Xo, 

- f(x) ~- f(y) => -D+f(y,x- y) ~ 0, for all x E Xo. 

Now, from the above implications and remarks after Definitions 3 and 4 we 
obtain the necessity. The sufficiency is obvious. • 

4. Problems with inequality constraints 

Now, we consider applications of the above concepts in nonsmooth program
ming. We establish first order optimality conditions for some constrained prob
lems of nonlinear programming with nondifferentiable non-convex objective 
function and constraints. 

Consider the following problem: 

{ 

f(x) ___. min, 
xEXo 

9i ( x) ~ 0, 't E I = { 1, ... , n} , 
(ICP) 

where Rn :J X o is a nonempty open convex set, f : Xo ___. R, 9i : Xo ___. R, for 
each i E J, are locally Lipschitz. 

Now, we define some sets which will be needed in further considerations: 

DEFINITION 8 The set 

F := {x E X o: 9i(x) ~ 0, 't E I} 

is said to be the all feasible points set (feasible set). The set 

Kx := { d E Rn : 3 V x + td E F} 
<:> 0 O~t~ <: 

is said to be the all feasible directions set for a point x. 

Geometrically: a direction d is feasible for some point x if sufficiently small 
moves from the point x along the direction d do not lead outside the feasible 
set. 

The following lemma describes the behavior of the objective function's val
ues along feasible directions from the set K:r, where x is an optimal point of 
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LEMMA 4 Let x be a local minimum point of problem {ICP}. Then: 
(i) D+f(x, d) 2': 0 for all dE Kx; 
(ii) J 0 (x, d) 2': 0 for all dE Kx {where Kx denotes the clos·ure of Kx)· 

Proof. (i) The proof is an immediate consequence of the Definitions 3 and 8. 
(ii) Using part (i) of remark after Definition 4 and part (i) of this lemma, 

we find that r(x, d) 2': 0 for all d E Kx. An arbitrary direction do E K;,, 
can be represented as the limit of a sequence of directions from Kx, namely 
do= lim dk. Obviously r(x, dk) 2': 0 for all k, because dk E Kx. After taking 

k-+oo 

the limit ask-+ oo, we obtain that r(x, do) 2': 0 by the continuity of the Clarke 
derivative with respect to the direction (see remark (ii) after Definition 4) for 
an arbitrary direction do E Kx . • 

REMARK. By part {i) of Lemma 4 and remark ajteT Definition 4 it immediately 
follows that D+ f(x, d) 2': 0 for all dE Kx, too. 

To prove the existence of the multipliers in a further theorem, we use Gen
eralized Basic Alternative Theorem (proved by Craven and Wang, preprint): 

LEMMA 5 Let X and Y be normed spaces, r C X - a convex set, S C X - a 
convex cone with nonempty interior·, f : r -+ Y - a S-convex mapping {i.e., for 
all x, y E f and t E (0, 1), j(y + t(x- y))- f(y)- t(J(x)- f(y)) E -S) and 
E C Y such that E + I nt S is convex. If 

(J(f) +E) n ( -Int S ) = 0, ( i) 

then theTe exists a nonzero>. E S* = -S0 (wher·e S 0 = {z E Y: V zs ~ 0}} 
sES 

such that, joT all X E r and e E E' 

>.(J(x) +e) 2': 0. ( i·i) 

ljO E E and wE j(f), then >.j(f) C R+ and >.E C ->.w + R+· 

Proof. (after Craven and Wang): 
Since j isS-convex, the set j(f) + Int Sis open convex (see McCormick, 1967), 
hence the set K := J(f)+E+Int S = [j(f)+Int S] +[E+Int S] is open convex. 
From (i), 0 ¢ K, hence there exists a nonzero>. E S* such that (ii) holds. The 
remaining statements follow by setting e = 0, or by setting f(x) = w. • 

The theorem below gives first order optimality conditions for (ICP). First, we 
note that the Kuhn-Tucker conditions alone can serve only for the statement of 
the non-optimality of feasible points, because they are only necessary conditions. 
They turn out to be sufficient only when we make additional assumptions. 

Considering the properties of the objective function, we establish two ver
sions of optimality conditions. For x E F, we denote 

I X : = { i E I : Yi (X) = 0}, 
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THEOREM 1 Let x be a local minimum point of problem (ICP), where all func
tions are locally Lipschitz. Assume that the set K:r satisfies the following regu
larity conditions: 

K:r :={dE Rn: D+gi(x,d) ~ 0, for all i E lx} C K;;, (1) 

and for some d E K:r 

D+ gi(x, d) -::/= 0, for all i E lx, (2) 

and suppose that f and Yi, i E fx, have convex upper· D·ini deTivatives at x. 
Then there exist multiplieTs A 1, . . . , An, such that: 
(a) Ai ~ 0 fori E I; 
(b) Aigi(x) = 0 joT ·i E I; 
(c) D+ f(x, d)+ L:iei AiD+ 9i(x, d) ~ 0, for all dE K;;. 
Conversely, if we assume that the following situation holds: 
(d) f is Dini-pseudoconvex at x, and 9i, i E I, are D·ini-quasicorwex, and 
conditions (a) , (b), (c) ar.e satisfied, then the Kuhn-Tucker cond·ition.s (a), (b), 
(c) are sufficient for:.. global rni'nimality of x in pmblern (ICP) . 

Proof. Examine exactly the set Kx for an arbitrary feasible point x . We can 
divide constraints into active, i.e. gi(x) = 0, and passive, i.e. g.;(x) < 0. We 
will try to express the set K;, by means of constraints. It is easy to show that 
only active constraints are needed. Indeed, if gi(x) < 0, we can move from the 
point x along an arbitrary feasible direction without violation of this constraint 
(since 9i are radially continuous as locally Lipschitz) . Hence, there is no effect 
of passive constraints on the form of the set Kx. We will prove the inclusion 
Kx C Kx, which means that if d is a feasible direction for the point x (i.e. 
dE Kx) then D+gi(x,d) ~ 0 for active constraints, i.e. for ·i E Ix. Let dE Kx, 
and take any ·i such that 9i(x) = 0. Hence, it follows that gi(x + td) ~ 0 for 
sufficiently small t ~ 0 (otherwise, x + td f/_ F) . Therefore 

g·(x + td)- g·(x) 
' t ' ~ 0 for sufficiently small t ~ 0. 

By taking the upper limit as t ! 0 we obtain 

0 > l. g.;(x + td) - gi(x) D+ ( d) _ 1msup = 9i x, , 
t!O t 

for all ·i E Ix, 

so that dE Kx. Hence, it follows that Kx C Kx . 

(Necessity). Let x be a local minimum point of problem (ICP) . By condition 
(1) and the inclusion K:r C X::;;, we have that: 

K:r ={dE Rn: D+gi(x,d) ~ 0, for all ·i E fx}. (3) 

This equality and part (i) of Lemma 4 imply 
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Since g;(x) = 0 for all i E lx , it follows that 

D+ f(x, d) 2: 0, for each d such that g;(x) + D+ g;(x, d) ~ 0, 

for all ·i E fx. 

If we denote: 

where {i1, ... ,·ik} = fx (so G : Rn ___, Rk+l) and 

e = (0, Yi 1 (x), ... , g;k (x)) = (0, ... , 0) E Rk+l, 

then, by ( 4), it follows that 

(G(Kx) + {e}) n (-Int R~+ 1 ) = 0, for all dE Kx. 

(4) 

Since f and g;, i E lx, have convex upper Dini derivatives at x, then G( ·) is 
a R~+ 1 -convex mapping, so, by using Lemma 5, we can state that there exists 
A' E R~+l such that , for all d E K;;, the inequality 

A'(G(d) +e) 2: 0 (5) 

holds. Let A' = (>.~, A~ 1 , ••• , >.~. ), then, by (5), it follows that 

>.~D+ f(x, d)+ L >.~(g; (x ) + D+ g; (i , d)) 2: o, for all dE K;;. 
iEI:;, 

In this way we obtain the existence of the multipliers, >< E R+, ·i E lx U {0} , 
not all zero, such that 

.X~D+ f(i , d)+ L .X~D+ g;(x, d) 2: - L .X~g;(x) = o, for all dE K;; . (6) 
i EI:;, iE lx 

Now, suppose that .X~ = 0. Then 

L .X~D+ g.;(x, d) 2: 0, for all dE K x. 
iEI:;, 

Then, using (1), since .X~ 2: 0, i E /x, we have that 

L .X~D+ g;(x , d) = 0, for all dE K;; , 
iEI:;, 

which contradicts assumption (2) , hence ),~ > 0. Dividing (6) by .X~ , we get 

D+ f(i , d) + L .X;D+ g;(x , d) 2: o, for all d E K;;, 
·iEI• 
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Now, if 't rf. !;, then g;(x) < 0 and thus without loss of generality we can 
set Ai = 0, and, for 't E Ix, we have that g;(x) = 0 and Ai E R+, so that the 
Kuhn-Tucker conditions are satisfied. 

(S'ufficiency) Note that the all feasible points set can be represented in the form 
of the following intersection of sets: 

F = {x: g;(x) :S 0, 't E I}= n{x : g;(x) :S 0} = n H?. 
iE I iE I 

Since the functions Yi are QCX-Dini, then by Lemma l(i) they are QCX as well, 
so that the sets Hf are convex by Lemma 2. Hence, the set F is convex as the 
intersection of a finite number of convex sets. Let y E F be an arbitrary feasible 
point. Since x E F , then by convexity ofF, it follows that 

i+t(y - i)EF, foralltE[O,l]. 

This means, by definition of the set Kx, that J = y- i E Kx (so the direction 
J is feasible). Hence, using (3), we obtain 

D+ g;(x, J) :S 0 fori E lx. (7) 

By condition (b), it follows that Ai = 0 for 't rf. fx. Using this fact together with 
conditions (a), (c) and (7), we obtain that n+ f(x,d) ~ 0, which means that 
n+ f(x, y- i) ~ 0. Since the function f is PCX-Dini at the point i, we can 
state that f(y) ~ f(x). And since y is an arbitrary feasible point, this means 
that x is a global minimum point of problem (ICP). • 

It appears that the assumption of convexity of upper Dini derivatives is 
rather strong. However, there are similar assumptions made openly (see e.g. 
Kornlosi, 1993) or hidden behind the constraint qualification (see e.g. Mititelu, 
1994) in the known versions of the Kuhn-Tucker optimality conditions. 

REMARK. ('i) It is well known that theTe exist vaTiO'US types of Teg'Ularity condi
tions. Condition (1) with gmdients instead of 'Upper D'tn'i der'ivat'ives is known 
as the Zangwill constmint q'Ualification (see Bazama, Shemli and Shetty, 1993). 
Giorgi and G'Uermggio (1994) give otheT constraint q'ual'ifications, wh,ich are 
stmnger·: 
- the Cottle constraint q'ualificat'ion 

x E Xo, Kx ~ f<1 :={dE R" : D+g.i(x , d) < 0, for all 't E !;,} ; 

- the ArTow-HuTwicz- Uzawa I constra'int q'Ual'ificat'ion 

x E Xo, Kx ~ f<P := {dE R" : D+ Yi(x, d) :S 0, joT all 't E J; 

D+ Y·i(i, d) < 0, for all 't E fx \ J}, 
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FoT pmblem (ICP), Bazama and Shetty (1976} pTesent the following impl·ica
tions joT the above-ment·ioned constr-aint qual·ificat·ions: 

Cottle C.Q. ==> ArTow-Hur·wicz-Uzawa I C.Q. ==> Zangwill C.Q. 

(ii} Condition {2} is similaT to the fiTst condition of geneml-ized SlateT's con
stmint qualification ·in Gioryi and Mititelu ( 1983). 

If in Theorem 1 we make changes in some assumptions, then we obtain: 

THEOREM 2 If, in Theorem 1, we assume that the follo·w·ing Teg·ular"ity condi
tions hold: 

K.'i; :={dE Rn: gf(i,d) ~ 0, for all ·i E fx} C K;;, 

and for some dE K;; 

gf(i,d) =J. 0, joT all ·i E lx, 

(8) 

(9) 

and suppose that gi, i E lx , are ClaTke-quasiconvex, then conddion (c) has the 
form: 

(c') r(x, d)+ LiE/ )..igi(i, d) 2: 0, for· all dE K;;. 
And, conversely, if we assume that the following situat·ion holds: 
( d ') f is ClaTke-pseudocorwex at x, and conditions (a), (b) , ( c ') are satisfied, 
then the Kuhn-Tucker- conditions (a), (b), (c') are sufficient joT global m·in·imal
ity of x in problem (ICP). 

Pmof. In the same way as in Theorem 1 we can express the set K;; by means 
of constraints. Let dE Kx, and take any i E Ix. This means that Yi(x) = 0. 
Hence, it follows that Yi(x + td) ~ 0 for sufficiently small t 2: 0 (otherwise, 
x + td ¢ F). Every direction from the set K x can be expressed as y - :c for some 
y E F. Then x + t(y- x) E F by convexity of F. Hence, it follows that 

Yi ( x + t(y - x)) ~ 9i ( x) for sufficiently small t 2: 0. 

By assumption (d'), Yi are QCX-Clarke, so that 

gf ( x, x + t(y - x) - x) ~ 0 for sufficiently small t 2: 0. 

Hence, gf(x, td) ~ 0 and since gf is a positively homogeneous function (by part 
(ii) of remark after Definition 4), then tgf(x, d) ~ 0 for sufficient ly small t 2: 0. 
This means that gf(x, d) ~ 0 for d E Kx. Hence Kx = K.~, if the regularity 
condition (8) holds. The rest of the proof is analogous to the proof of Theorem 1. 

• 
REMARK. (i) Instead the Tegular·ity condition (8} in the theoTern above we can 
assume the Tegularity condition (1}, D·ini (oT ClaTke}-q·uas·icorwexdy of Yi, ·i E 

I\ I;; and convexity of the upper· Dini deTivutives off and gi, ·i E I;;. Then 
all conditions follow bv Theorem 1, Tern ark after Definition 4 and remark afteT 
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{ii) We can wr"ite var·ious types of Tegular·dy cond-itions mentioned ·in r·erna'fk 
afteT Theor·errt 1, i.e. Zangwill constmint qualification, Cottle constmint qualifi
cation, Armw-Hur·w·icz-Uzawa I constm·int qualification, with the Clar·ke deriva
tives instead of the upper· D·in·i der·ivatives, like for· Theor·ern 1. 
{iii) Let the objective funct-ion f have the same propeTties as constmints, i.e. f 
is QCX-Dini and we have D+ f(x, d) =/= 0 joT all dE K:;; in the case {c) OT f ·is 
QCX-Clarke and we have r(x, d)=/= 0 for· all dE K:;; in the case {c'). Then xis 
a strict global minimum point joT pmblem {ICP ). This follows by the defin-itions 
of the respective type of quasiconvexity {pads {iii) and {iv) of Definit·ion 6}. 

Theorems 1 and 2 are not a special cases of some more general results early 
mentioned. Most of the theorems established optimality conditions for a local 
solution. Mititelu (1994) presented the Kuhn-Tucker sufficient condition using 
some additional inequality with the Clarke derivatives of constraint functions. 
Koml6si (1993) established only the necessary conditions. Moreover, his op
timality conditions cannot be applied for general problems using the Clarke 
derivative and require some regularity and usual quasiconvexity (but not gen
eralized). Next, Gianessi (1989) proved sufficient condition but only for convex 
functions. 

5. Problems with mixed constraints 

In this part we extend further the above results. Namely, we establish the 
optimal conditions for the nonlinear programming problems with equality and 
inequality constraints. 

Consider the following problem: 

{ 

f(x)-+ min, 
xEXo 

Yi(~~ ~0, ·i,.El =_{1 , ... ,m}, 
h1 (x)-O, yEJ-{1, ... ,k}, 

(MCP) 

where Rn :J X 0 is a nonernpty open convex set, f : Xo -+ R, g; : Xo -+ R, for 
each ·i E I, hj : X o -+ R, for each j E J; are locally Lipschitz. 

For problem (MCP), we define the feasible points set as follows: 

F := {x E Xo : 9i(x) :S 0, ·i E /; hj(x) = O,j E J}. 

Assume that the functions h1, j E J are directionally differentiable. For x E F, 
we denote 

I*(d) := {i E Ix: D+gi(x,d) =/= 0} ford E Kx 

and 
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The theorem below gives the optimality conditions for (MCP). Note that, just 
as ever, the Kuhn-Tucker conditions alone may serve only to state nonoptimality 
of feasible points, because they are only necessary conditions. Clearly, they turn 
out to be sufficient, too, when we make additional assumptions with respect to 
the objective function and all constraints. 

THEOREM 3 Let x be a local min·irn·um po·int joT pmblern (MCP). Ass·ume that 
the set K;, satisfies the following r·egulardy conddion: 

K;, :={dE Rn : n+ gi(x, d) :S 0, ·i E /x; hj(x, d)= 0, j E J} c K;,, (10) 

and for some dE K;, 

I*(d) = lx, (11) 

and suppose that the functions j, gi, ·i E fx , have convex ·upper· Dini derivat·ives 
at x, and the functions hj, j E J have direct·ional der"ivatives at x. 

Then there exist multipliers >.1 , ... , Am and J.Ll, .. . , J.Lk, such that: 
(a) Ai ~ 0 for"t E J; 
(b) Aigi(x) = 0 joT i E J; 
(c) D+ f(x, d)+ .Z:::::iEI AiD+gi(x, d)+ .Z:::::jEJ J.Ljhj(x , d)~ 0 for· all dE K;,. 
ConveTsely, 'if pmblem (MCP) satisfies the following conddions: 
(d) J*(d) u J*(d) -::10; 
(e) gi, i E I*(d), ar-e D·in·i-q·uasiconvex at x and hj, j E J*(d) ar-e D·in·i
quasilinear at x; 
and we assume that one of the following sit·uations holds: 
(h) j is Dini-pseudoconvex at x; 
(h) j is Dini-quasiconvex at x and D+ f(x, d) -::j; 0 for· all dE K;, , 
then the Kuhn- TuckeT conditions ar·e also sufficient joT x to be an optimal sol·u
tion of problem (MCP }: global in the case (h) O'f' str"tctly global in the case (h). 

Proof. (Necessity) Let x be an optimal point of problem (MCP). In a very simple 
way we can prove the necessary conditions using Theorem 1. First, we note that 
problem (MCP) with mixed constraints is a particular case of problem (ICP) 
with inequality constraints only in the following form: 

{ 

f(x) ~ min , 
xEXo 

Yi(x)::;o, ·i.El={1, ... ,m}, 
hj(x):SO, JEJ={l, ... ,k}, 
-hj(x)::; 0, j E J = {1, ... ,k}. 

(MCP') 

Then, the regularity conditions (1) and (2) for problem (MCP') are satisfied. 
T,?us, we obtain the existence of multipliers >.~ ~ 0, ·i E J, >.j ~ 0, j E J, 

\ ~ 0, j E J such that 

>.'g ·(x) = 0 ·i E I 'l 'l , ' 

>.jhj(X) = 0, j E J, 
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and 

iEI jEJ 

+ L,>..;D+(-h1)(i:,d) ~ 0. 
jEJ 

By the last condition, it follows that 

0 5, D+ f(i:, d)+ L )..~D+ 9i(i:, d)+ L >..jD+ hj(i:, d) - L >..; D+hj(i:, d) 
iEI jEJ 

= D+f(i:,d) + L,>..iD+gi(i:,d) + L/ljhj(i:,d), 
iEI jEJ 

where A; = )..~, i E J, /lj = .Xj - >..; E R, j E J. So, we obtain conditions 
(a)-( c). 

(Sufficiency) Assume that conditions (a)-( e) hold. Let d =x-i:. Since dE Kx 
and the functions g; , ·i E J•(d), are QCX-Dini at i: (by condition (e)), then 
inequality 

g; (X) 5, g; ( i:), for all X E F, ·i E J* (d) 

implies that 

D+g;(i:,x- i:) 5, 0, for all x E F, ·i E J*(d). 

Next, since Ai ~ 0 by condition (a), then 

A.;D+g.;(i:,x- i:) 5, 0, for all x E F, i E J*(d). 

By the definition of the set !*(d), we have that 

D+ 9i(i:, d)= 0 for ·i E fx \ U J*(d), 
dEK;, 

so that the above condition holds for all i E lx. Moreover, by the condition (b) 
it follows that Ai = 0 for ·i E I \ Ix i.e., 

AiD+gi(i:,x- i:) 5, 0, for all x E F, i E J. (12) 

Since the functions hj, j E r(d), are QL-Dini at x (by condition (e)), then, by 
Lemma 3, the equality hj(x) = hj(i) implies that 

hj(i:,x- i:) = 0, for all x E F, j E r(d). 

By the definition of the set r(d), we have that 

hj(x,d) = 0 for j E J \ U r(d), 
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so that the above condition holds for all j E J. Hence obviously, 

J.Lihj(x, x- .X) = 0, for all x E F, j E J. (13) 

Now, including (12) and (13) in condition (c), we obtain that 

fl+ f(x, X- x) 2': 0, for all X E F. 

We consider now the case (ft) . Since f is PCX-Dini at .X, then we obtain the 
inequality f(x) 2': f(x), for all x E F, which means that xis a global minimum 
point of problem (MCP). In the case (h), since n+ f(x, d) f. 0, for all dE K;;, 
we haven+ f(.X, X- .X) > 0, for all X E F. Next, since f is QCX-Dini at x, the 
above inequality implies that f(x) > f(X), for all x E F, which means that this 
timex is a strict global minimum point of problem (MCP). • 

REMARK. If condition ( 10) is written in the fonn: 

lC;; :={dE Rn: gf(.X, d)~ 0, i E !;;; hj(x, d)= 0, j E J} C K;;, 

the assumption of convexity of the upper Dini derivat·ives is omitted, generalized 
properties in the conditions (e), (ft) and (h) aTe in the ClaTke sense, and 
condition (c) has the form: 

r(x, d)+ L Aigf(x, d)+ L J.Ljhj(x , d) 2': 0, for- all dE K;;, 
iEI jEJ 

then we obtain the second version of the optimality conditions for problem 
(MCP' ), just as in Theorem 2. 

6. Summary 

The results obtained in this work are not surprising, but the purpose was ful
filled. The first order optimality conditions were formulated for the Lipschitz 
programming problems without the cones. The optimality conditions use only 
the upper Dini derivative or the Clarke derivative for problems with inequality 
constraints and additionally the usual directional derivative for problems with 
mixed conditions. In fact, the Dini and Clarke derivatives are not the only 
useful generalized derivatives in these cases. The sensible optimality conditions 
can be obtained for many different classes of derivatives. Here, we mention e.g. 
the upper Dini-Hadamard derivative (or upper Hadamard derivative or upper 
hypo-derivative), the Rockafellar derivative (or the Clarke-Rockafellar derivative 
or the circa-derivative), the weak Rockafellar derivative (or incident derivative 
or inner epiderivative). The properties and relationships between t hese and 
other derivatives are given by Koml6si (1995), Penot (1998) and Elster, Thier-
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