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with nonsmooth functions. The necessary and sufficient first order
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1. Introduction

In the present paper we consider nonlinear programming problems, where the
nonsmooth objective function and nonsmooth constraints are involved. The nec-
essary and sufficient first order optimality conditions use the Dini and Clarke
derivatives. However, the obtained Kuhn-Tucker conditions are in the classical
form, because neither subdifferentials nor cones appears here, similarly as in
Zangwill (1969). The sufficient conditions alone are obtained thanks to some
properties of generalized convexity and generalized linearity of functions. The
role of these properties seems to be increasingly promising and appreciated, be-
cause now and again they are used in the applications of optimization theory
and nonsmooth analysis — see e.g. Giorgi and Komlési (1995) (and preceding
parts). The necessary and sufficient optimality conditions are given in the La-
grange form. This work is some extension of the results given by Glover (1984)
to problems with mixed constraints. The results of present paper are not sur-
prising, but the purpose of the present paper was, in particular, exactly like
this: to formulate the optimality conditions without cones and subdifferentials.
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Mititelu (1987) as the Karush-Kuhn-Tucker conditions, but there, only differen-
tiable programming problems are considered. If the generalized derivatives are
sublinear, then the Lagrange multiplier can be 'hidden’ behind a subdifferential
condition as it is in Gianessi (1989), Komldsi (1993) and Mititelu (1994).

2. Definitions and remarks

Let X be a normed vector space, Xo C X an open convex set and f: Xg — R.

DEFINITION 1 A function [ is said to be locally Lipschitz on Xo if, for each
point in Xy, there exist a neighborhood U of this point and a positive real number
L such that

1f(z) = f(WIl < Lllz = yll, for all 2,y € U.

DEFINITION 2 A function f is said to be convex on Xo of, for all z,y € Xy and
t € [0,1],

Jy+ 1tz —y)) < fy) +i(f(2) - F())-

DEFINITION 3 The upper Dini dertvative of a function f at a point x € X in
the direction d € X 1s given by

D flmdj s limap LE T A = I 6.

: t10 i
The lower Dini derivative of a function f at a point x € Xg in the direction
d € X 1is quven by

o (@ +td) — f(z)

D, f(z,d) := 111{1“1)111' - ;
REMARK. Naturally, if, for any point € Xo and for any direction d € X the
equality D* f(z,d) = Dy f(z,d) holds, then there exists the directional derivative
of f at z, and

f'(z,d) = D* f(z,d) = D4 f(z,d),
see Komlos: (1994).

DEFINITION 4 The Clarke derivative (generalized directional derivative) of a
Junction f at a point © € Xg in the divection d € X s given by

f(z +td) - f(2)

fofn d) = limsin
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REMARK. (i) Clearly, Dy f(z,d) < D* f(z,d) < f°(z,d) for each z € X¢ and
any d € X.

(1) Moreover, for each x € Xo, f°(x,v) is a finile, positively homogeneous,
subadditive and convez function of v and an upper semicontinuous function of
(z,v) when f s locally Lipschitz (see Clarke 1975, 1976).

DEFINITION 5 A function f is said to be radially continuous if, for all z,h € Xy,
the function p(t) = f(z + th) is continuous as a function p: R — R.

3. Generalized convexity and generalized linearity

First, we establish several properties of generalized convexity of functions. The
concept of the pseudoconvexity for nondifferentiable functions has been intro-
duced in Diewert (1981), who extended Mangasarian’s definition from Man-
gasarian (1969). The below-mentioned concepts can be found also in Glover
(1984) and in Ellaia, Hassouni (1991):

DEFINITION 6 For a locally Lipschitz function f : Xg — R, we shall say:

(1) [ is Clarke-psendoconver (PCX-Clarke) if, for all x,y € Xy
flypz—y) 20 = f(z) 2 f(y),

(iz) f is Dini-pseudoconvex (PCX-Dini) if, for all z,y € Xo
D*f(y,z~y) 20 = f(z) > f(y),

(iii) f is Clarke-quasiconvex (QCX-Clarke) if, for all x,y € Xo
fPlyz—y)>0 = f(z)> fy),

() f is Dini-quasiconver (QCX-Dini) of, for all x,y € Xo
D*f(y,z—y) >0 = f(z)> f(y),

(v) f is strict quasiconvez (SQCX) if, for all z,y € Xo
fle)<fly) = vV fly+i(z-y)) < fy),

te(0,1)

(vi) f 1is quasiconvez (QCX) if, for all z,y € Xq
f@)<fly) = v fly+iz—y) < fy)
te(0,1)
We can consider all the above properties at a given point z by fixing = in

the above definitions or locally by fixing = and considering a neighborhood G
of = instead of the whole set Xy (see Komldsi, 1993).

REMARK. By Definition 6 it easily follows that every PCX-Clarke function is
PCX-Dini. Similarly, every QCX-Clarke function is QCX-Dini.

In the following lemma we give some relationships between the above intro-
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LEMMA 1 Let f: Xg — R be radially continuous. Then:
(i) [ is QCX-Dini if and only if f is QCX;
(i) If f is PCX-Dini, it is also QCX-Dini, SQCX and QCX.

Proof. See Diewert (1981). [

REMARK. (i) By Lemma 1 and remark after Definition 6, it immediately follows
that every radially continuous function, which is PCX-Clarke, is also QCX and
SQCX.

(i) Other relationships between the generalized convexity properties can be
proved similarly to these, which are presented by Komldsi in (1993).

We now quote another characterization of quasiconvexity of a function (by
means of convexity of the lower level sets):

LEMMA 2 A function f : Xo — R s QCX if and only if the set
Ti={z€Xo: f(z) <}
18 convez for any real number v € R.

Proof. The proof is an immediate consequence of (vi) in Definition 6. We leave
it to the reader. O

Now, we establish several properties of generalized linearity of functions
(defined e.g. by Komlési in 1993):

DEFINITION 7 For a locally Lipschitz function f: Xo — R, we shall say:

(1) f is Clarke-quasilinear (QL-Clarke) if f is simultaneously Clarke quasi-
convex and Clarke-quasiconcave (i.e. [ and —f are Clarke-quasiconvez),

(i) f is Dini-quasilinear (QL-Dini) if f s simultaneously Dini-quasiconvez
and Dini-quasiconcave (i.e. [ and —f are Dini-quasiconvez),

(111) f is Clarke-pseudolinear (PL-Clarke) if f us simultaneously Clurke-
pseudoconver and Clarke-pseudoconcave (i.e. [ and —f are Clarke-pseudocon-
vex),

(iv) f ts Dini-pseudolinear (PL-Dini) if f is simultaneously Dini-pseudo-
convezr and Dini-pseudoconcave (i.e. f and —f are Dini-pseudoconvez).

REMARK. By remark after Definition 6 and part (it) of Lemma 1 it easily follows
that every PL-Clarke function is PL-Dini, every QL-Clarke function is QL-Dini
and every PL-Dini function is QL-Dina.

The following lemma is natural extension of the fact, which was proved
by Kortanek and Evans (1967) and Chew and Choo (1984) for differentiable
functions:

LEMMA 3 If a directionally differentiable function f : Xo — R is Dini-quasi-
linear at a point y € Xo, then
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Proof. Assume that f is QL-Dini at the point y € Xo. Then f and —f are
QCZX-Dini functions at this point. This means that the following conditions are
satisfied (by Definition 6):

DY f(y,a—y) >0 = f(z)> f(y), for all z € X,

D+(_.f}(y1:£ = y) >0 = —f(.'.l'.') > _f(y)! forallz € X(],

or, equivalently:

f(z) < f(y) = D* f(y,z ~y) <0, for all = € X,
—f(z) £ =f(y) = —Dif(y,z—y) <0, for all z € X,.

Now, from the above implications and remarks after Definitions 3 and 4 we
obtain the necessity. The sufficiency is obvious. |

4. Problems with inequality constraints

Now, we consider applications of the above concepts in nonsmooth program-
ming. We establish first order optimality conditions for some constrained prob-
lems of nonlinear programming with nondifferentiable non-convex objective
function and constraints.

Consider the following problem:

{ f(z) = min,

gi(z)<0,i€e I={1,...,n}, (ICP)

where R™ D X is a nonempty open convex set, f: Xg — R, g; : Xo — R, for
each ¢ € I, are locally Lipschitz.
Now, we define some sets which will be needed in further considerations:

DEFINITION 8 The set
F:={zeXy:gi(z) <0, : €I}
15 said to be the all feasible points set (feasible set). The set

K,={deR": 3 V z+tdeF}
€50 0<t<e

1s said to be the all feasible directions set for a point x.

Geometrically: a direction d is feasible for some point z if sufficiently small
moves from the point z along the direction d do not lead outside the feasible
set.

The following lemma describes the behavior of the objective function’s val-
ues along feasible directions from the set Kz, where Z is an optimal point of

EBE ] I T
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LEMMA 4 Let & be a local minimum point of problem (ICP). Then:
(i) Dy f(&,d) > 0 for all d € Kz; .
(i) fO(%,d) > 0 for all d € K; (where Kz denotes the closure of Kz).

Proof. (i) The proof is an immediate consequence of the Definitions 3 and 8.
(i) Using part (i) of remark after Definition 4 and part (i) of this lemma,
we find that f°(z,d) > 0 for all d € K;. An arbitrary direction dp € K;
can be represented as the limit of a sequence of directions from Kz, namely
do = kl:rr;g di. Obviously f°(z,dx) > 0 for all k, because di € K;z. After taking
the limit as k — oo, we obtain that f°(Z,dp) > 0 by the continuity of the Clarke
derivative with respect to the direction (see remark (ii) after Definition 4) for
an arbitrary direction dg € K;. ]

REMARK. By part (i) of Lemma 4 and remark after Definition 4 it immediately
follows that D* f(z,d) > 0 for all d € K3, too.

To prove the existence of the multipliers in a further theorem, we use Gen-
eralized Basic Alternative Theorem (proved by Craven and Wang, preprint):

LEMMA 5 Let X and Y be normed spaces, I' C X - a convez set, S C X - a
convez cone with nonemply interior, f : I' = Y - a S-conver mapping (i.e., for

al 2,y €T and t € (0,1), f(y +tz —y)) - (y) - t{f(z) - f(v)) € —5) and
E CY such that E + Int S is convez. If

(fM)+E)n(=IntS) =9, (z)
then there exists a nonzero A € S* = —S°® (where S® = {z € Y : VS 28 < 0})
s€
such that, for allz €T ande € E,

A(f(z) +e) 2 0. (1)
IfO€E andw € f(T), then A\f(T) C Ry and AE C —\w + Ry.

Proof. (after Craven and Wang):

Since f is S-convex, the set f(I')+ Int S is open convex (see McCormick, 1967),
hence the set K := f(I')+E+IntS = [f(I')+Int S]+[E+Int S] is open convex.
From (i), 0 € K, hence there exists a nonzero A € S* such that (ii) holds. The
remaining statements follow by setting e = 0, or by setting f(z) = w. |

The theorem below gives first order optimality conditions for (ICP). First, we
note that the Kuhn-Tucker conditions alone can serve only for the statement of
the non-optimality of feasible points, because they are only necessary conditions.
They turn out to be sufficient only when we make additional assumptions.

Considering the properties of the objective function, we establish two ver-
sions of optimality conditions. For z € F', we denote

I, :={i€I:gz) =0},
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THEOREM 1 Let & be a local minimum point of problem (ICP), where all func-
tions are locally Lipschitz. Assume that the set K; satisfies the following regu-
larity conditions:

K;:={d€ R": D*gi(3,d) <0, forallie€ I3} C K;, (1)
and for some d € K;

D*gi(z,d) #0, forallie€I;, (2)
and suppose that f and g;, 1 € Iz, have conver upper Dinr derwatives at .
Then there exist multipliers Aq,. .., An, such that:

(a) X; >0 fori€ I;

(b) Aigi(2) =0 forie I;

(c) D*f(&,d) + Y ;er MiD*gi(Z,d) 2 0, for all d € K;.

Conversely, if we assume that the following situation holds:

(d) f is Dini-pseudoconver at &, and g;, i € I, are Dini-quasiconvez, and
conditions (a), (b), (c) are satisfied, then the Kuhn-Tucker conditions (a), (b),
(¢) are sufficient for, global minimality of & in problem (ICP).

Proof. Examine exactly the set K, for an arbitrary feasible point 2. We can
divide constraints into active, i.e. g;(z) = 0, and passive, i.e. gi(z) < 0. We
will try to express the set K, by means of constraints. It is easy to show that
only active constraints are needed. Indeed, if g;(z) < 0, we can move from the
point z along an arbitrary feasible direction without violation of this constraint
(since g; are radially continuous as locally Lipschitz). Hence, there is no effect
of passive constraints on the form of the set K,. We will prove the inclusion
K. C K., which means that if d is a feasible direction for the point z (i.e.
d € K.) then D*g;(z,d) < 0 for active constraints, i.e. for i € I,. Let d € K,
and take any ¢ such that g;(z) = 0. Hence, it follows that g;(z + td) < 0 for
sufficiently small ¢ > 0 (otherwise, z + td € F). Therefore

gi(z + td) — gi(x)
t

< 0 for sufficiently small t > 0.

By taking the upper limit as ¢ | 0 we obtain

0 > limsup g:(z + td) — g:(z)
¢10 i

so that d € ;.. Hence, it follows that K, C K,.

= D"'g.-(:c, d), for alli € I,

(Necessity). Let & be a local minimum point of problem (ICP). By condition
(1) and the inclusion Kz C Kz, we have that:

K; = {d € R :D+gi(i! d] <0, forallie I;[} (3)
This equality and part (i) of Lemma 4 imply
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Since g;(z) = 0 for all 7 € I, it follows that
D* f(i,d) > 0, for each d such that g;(Z) + D g:(&,d) <0,
for all i € Is. 4)
If we denote:
G(d) = (D* f(z,d), D* g;,(%,d), ..., D gi,(,d)),
where {i1,...,ix} = Iz (so G : R® — R**1) and
e=(0,9i, (&), ..., 9u (%) = (0,...,0) € R,
then, by (4), it follows that
(G(Kz) + {e}) N (=Int RE*) =0, for all d € K.

Since f and g;, i € Iz, have convex upper Dini derivatives at #, then G(-) is
a Rf_“-co:wex mapping, so, by using Lemma 5, we can state that there exists
"e Ri“ such that, for all d € Kz, the inequality

N(G(d)+e) 20 (5)
holds. Let A’ = (Ag, X ,..., A, ), then, by (5), it follows that

1"

X,D* f(3,d) +Z’\ 9i(Z) + D*gi(&,d)) > 0, for all d € K;.
i€lz

In this way we obtain the existence of the multipliers, A € Ry, i € Iz U {0},
not all zero, such that

NoD* f(E,d)+ Y ND*gi(&,d) 2 — Y Xigi(&) =0, for all d € Kz. (6)
iel; i€ls
Now, suppose that Ay = 0. Then
Y NiD*gi(&,d) > 0, for all d € K.
i€l
Then, using (1), since X; > 0, i € Iz, we have that
> AiD*gi(#,d) =0, for all d € K,
ielz

which contradicts assumption (2), hence Ay > 0. Dividing (6) by Ay, we get

D*f(%,d)+ ) \D*gi(&,d) >0, for all d € K,
i€lz
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Now, if ¢ ¢ Iz, then g;(z) < 0 and thus without loss of generality we can
set A; = 0, and, for ¢ € Iz, we have that g;(z) = 0 and A; € Ry, so that the
Kuhn-Tucker conditions are satisfied.

(Sufficiency) Note that the all feasible points set can be represented in the form
of the following intersection of sets:

F={z:9i(x) 20, iEI}=n{:;::g,-(:r)$0}=nH?.

i€l iel

Since the functions g; are QCX-Dini, then by Lemma 1(i) they are QCX as well,
so that the sets H? are convex by Lemma 2. Hence, the set F is convex as the
intersection of a finite number of convex sets. Let y € F' be an arbitrary feasible
point. Since Z € F, then by convexity of F, it follows that

Z+t(y—a) € F, forallte(0,1].

This means, by definition of the set Kz, that d= y— & € K; (so the direction
d is feasible). Hence, using (3), we obtain

D*gi(&,d) <0 for i € I;. (7)

By condition (b), it follows that A; = 0 for i & I;. Using this fact together with
conditions (a), (c) and (7), we obtain that D* f(Z,d) > 0, which means that
D*f(z,y — ) > 0. Since the function f is PCX-Dini at the point Z, we can
state that f(y) > f(Z). And since y is an arbitrary feasible point, this means
that  is a global minimum point of problem (ICP). E

It appears that the assumption of convexity of upper Dini derivatives is
rather strong. However, there are similar assumptions made openly (see e.g.
Komlési, 1993) or hidden behind the constraint qualification (see e.g. Mititelu,
1994) in the known versions of the Kuhn-Tucker optimality conditions.

REMARK. () It is well known that there exist various types of reqularity condi-
tions. Condition (1) with gradients instead of upper Dini derivatives is known
as the Zangwill constraint qualification (see Bazaraa, Sherali and Shetty, 1993).
Giorgi and Guerraggio (1994) give other constraint qualifications, which are
stronger:

- the Cottle construint qualification

7€ Xo, Ki CK, :={d€ R": D"gi(%,d) <0, forallieI;};
- the Arrow-Hurwicz-Uzawa I constraint qualification

T € Xo, Kz C Rp :={d € R": D*g;(%,d) <0, foralli€ J;
DYgi(z,d) <0, forallie Iz \ J},
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For problem (ICP), Bazaraa and Shetly (1976) present the following implica-
tions for the above-mentioned constraint qualifications:

Cottle C.Q. = Arrow-Hurwicz-Uzawa [ C.Q. = Zangwill C.Q.

(i) Condition (2) is simalar to the first condition of generalized Slater’s con-
straint qualification in Giorgi and Mititelu (1983).
If in Theorem 1 we make changes in some assumptions, then we obtain:

THEOREM 2 If, in Theorem 1, we assume that the following regularity condi-
tions hold:

K= {d € R": g3(3,d) <0, for alli € Is} C Kz, (8)
and for some d € K;
@A) #0, foralli€ Lz, W

and suppose that g;, i € Iz, are Clarke-quasiconvez, then condition (c) has the
form:

() fo(&,d) + Fiep Migf(2,d) 20, for all d € K;.

And, conversely, if we assume that the following situation holds:

(d’) f is Clarke-pseudoconvez at &, and conditions (a), (b), (¢’) are satisfied,
then the Kuhn-Tucker conditions (a), (b), (c’) are sufficient for global minimal-
ity of & in problem (ICP).

Proof. In the same way as in Theorem 1 we can express the set Kz by means
of constraints. Let d € K., and take any ¢ € I,. This means that g;(x) = 0.
Hence, it follows that g:(z + td) < 0 for sufficiently small ¢ > 0 (otherwise,
z+td ¢ F). Every direction from the set K, can be expressed as y — x for some
y € F. Then z + t(y — z) € F by convexity of F. Hence, it follows that

gi(z + t(y — z)) < gi(z) for sufficiently small ¢ > 0.
By assumption (d"), g; are QCX-Clarke, so that
9 (z,z + t(y — z) — z) <0 for sufficiently small ¢ > 0.

Hence, ¢?(z,td) < 0 and since g{ is a positively homogeneous function (by part
(ii) of remark after Definition 4), then tg{(z,d) < 0 for sufficiently small ¢ > 0.
This means that ¢?(z,d) < 0 for d € K,. Hence K, = K2, if the regularity
condition (8) holds. The rest of the proof is analogous to the proof of Theorem 1.

|

REMARK. (i) Instead the regularity condition (8) in the theorem above we can
assume the regularity condition (1), Dini (or Clarke)-quasiconvezity of g;, i €
I\ I; and convezity of the upper Dini derivatives of f and gi, i € Iz. Then
all conditions follow by Theorem 1, remark after Definition 4 and remark after
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(1) We can write various types of regularity conditions mentioned in remark
after Theorem 1, 1.e. Zangwill constraint qualification, Cottle constraint qualifi-
cation, Arrow-Hurwicz-Uzawa I constreint quelification, with the Clarke deriva-
twes instead of the upper Dini derivatives, like for Theorem 1.

(111) Let the objective function f have the same properties as constraints, i.e. f
is QCX-Dini and we have DY f(z,d) # 0 for all d € K; in the case (c) or f is
QCX-Clarke and we have f°(Z,d) # 0 for all d € K; in the case (¢’). Then i is
a strict global minimum point for problem (ICP). This follows by the definitions
of the respective type of quasiconverity (parts (iti) and (i) of Definition 6).

Theorems 1 and 2 are not a special cases of some more general results early
mentioned. Most of the theorems established optimality conditions for a local
solution. Mititelu (1994) presented the Kuhn-Tucker sufficient condition using
some additional inequality with the Clarke derivatives of constraint functions.
Komlési (1993) established only the necessary conditions. Moreover, his op-
timality conditions cannot be applied for general problems using the Clarke
derivative and require some regularity and usual quasiconvexity (but not gen-
eralized). Next, Gianessi (1989) proved sufficient condition but only for convex
functions.

5. Problems with mixed constraints

In this part we extend further the above results. Namely, we establish the
optimal conditions for the nonlinear programming problems with equality and
inequality constraints.

Consider the following problem:

f(z) — min,
gi(z) <0, iel={1,...,m}, (MCP)
hifz) =0, ed={L...;k};

where R" O Xy is a nonempty open convex set, f : Xo — R, ¢i : Xo — R, for
eachi € I, h; : Xog — R, for each j € J, are locally Lipschitz.
For problem (MCP), we define the feasible points set as follows:

F:={ze€Xo:9:z) <0, i€I; hj(z) =0,j € J}.

Assume that the functions h;, j € J are directionally differentiable. For z € F,
we denote

I*(d) := {i € I, : D*g;(z,d) # 0} for d € K,

and
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The theorem below gives the optimality conditions for (MCP). Note that, just
as ever, the Kuhn-Tucker conditions alone may serve only to state nonoptimality
of feasible points, because they are only necessary conditions. Clearly, they turn
out to be sufficient, too, when we make additional assumptions with respect to
the objective function and all constraints.

THEOREM 3 Let & be a local minimum point for problem (MCP). Assumne that
the set K; satisfies the following regularity condition:

K;::={d€ R": D*g;(,d) <0, i € Iz; hy(&,d) =0,j € J} C Kz, (10)
and for some d € K;
I'(d) = Iz, (11)

and suppose that the functions f,gi, © € I3, have convez upper Dini derivatives
at z, and the functions h;, j € J heve directional derivatives at I.
Then there exist multipliers Ay, ..., Ay and py, ..., uy, such that:
(a) \i >0 fori€e I
(b) Aigi(z) =0 forie€ I;
(¢c) D* f(&,d) + ¥ ;c; AiD*gi(&,d) + 2ies mih(&,d) 2 0 for all d € K.
Conversely, if problem (MCP) satisfies the following conditions:
(d) I*(d) L J*(d) # 0;
(e) gi, 1 € I*(d), are Dini-quasiconves at & and hj, j € J*(d) are Dini-
quastlinear at I;
and we assume that one of the following situations holds:
(f1) f 1s Dini-pseudoconvez al &;
(f2) f is Dini-quasiconver at & and D* f(Z,d) # 0 for alld € K;,
then the Kuhn-Tucker conditions are also sufficient for & to be an optimal solu-
tion of problem (MCP): global in the case (fy) or strictly global in the case (f1).

Proof. (Necessity) Let & be an optimal point of problem (MCP). In a very simple
way we can prove the necessary conditions using Theorem 1. First, we note that
problem (MCP) with mixed constraints is a particular case of problem (ICP)
with inequality constraints only in the following form:

f(z) = g,

gi(2) <0, i€ I ={1,...,m}, (MCP)
hj(z) £0, j€J={1,....k},

—hi(z) <0, jeJ={1,...,k}.

Then, the regularity conditions (1) and (2) for problem (MCP’) are satisfied.
Thus, we obtain the existence of multipliers A, > 0, i € I, )\; >0, 7 €J,
)t;-' >0, j € J such that

Ngi(£)=0,1€1,

N;hi(E) =0, j € J,
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and
D*f(@,d)+ Y XiD*gi(@,d) + Y X;D*h;(i,d)
i€l JjeJ
+ 5 A D*(=hy)(&,d) > 0.
jEJ

By the last condition, it follows that

0< D*f(&,d)+ Y ND*gi(@,d)+ Y XD hj(@,d) = Y X;Dyh(@
iel jEJ j€J
= D*f(3, +ZAD i@, d) + Y u;hj(3,d),
i€l jed

where \; = Aj, i € I, pj = X — )\; € R, j € J. So, we obtain conditions
(a)-(c).

(Sufficiency) Assume that conditions (a)-(e) hold. Let d=x-7%. Sinced € K;
and the functions g;, i € I*(d ), are QCX-Dini at Z (by condition (e)), then
inequality

gi(z) < gi(&), forall z € F, i € I*(d)
implies that

D*gi(&,2—%) <0, forall z € F, i € I"(d).
Next, since A; > 0 by condition (a), then

A\iD*gi(&,z— %) <0, for all z € F, i € I*(d).
By the definition of the set I*(d), we have that

D*gi(,d)=0foric L\ | I"(d),

deK;

so that the above condition holds for all i € I;. Moreover, by the condition (b)
it follows that A; =0 for¢ € I'\ I; i.e.,

MiD%gi(#,x2—%)<0, forallz € F, i € I. (12)

Since the functions h;, j € J*(d), are QL-Dini at Z (by condition (e)), then, by
Lemma 3, the equality h;(z) = h;(Z) implies that

Wi(#,z — &) =0, for all z € F, j € J*(d).
By the definition of the set J*(d), we have that

Ki(E,d)=0forjeJ\ |J J*(d),
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so that the above condition holds for all j € J. Hence obviously,
pili(Z,2—%) =0, forallz e F, j€ J. (13)
Now, including (12) and (13) in condition (c), we obtain that
Dt f(i,x—%) >0, forallz € F.

We consider now the case (f;). Since f is PCX-Dini at Z, then we obtain the
inequality f(z) > f(%), for all z € F, which means that Z is a global minimum
point of problem (MCP). In the case (J3), since D¥ f(,d) # 0, for all d € K3,
we have D f(&,2 — %) > 0, for all z € F. Next, since f is QCX-Dini at Z, the
above inequality implies that f(z) > f(Z), for all z € F, which means that this
time Z is a strict global minimum point of problem (MCP). [}

REMARK. If condition (10) is written in the form:
K:z:={d€ R":¢{(%,d) < 0,4 € I3; hi(%,d)=0,j€J}CK;,

the assumption of convezity of the upper Dini derivatives is omitted, generalized
properties in the conditions (e), (f1) and (f2) are in the Clarke sense, and
condition (c) has the form:

Fo(E,d)+ ) Mgl (F,d) + Y pik(#,d) 2 0, for all d € Kz,
iel JjEJ

then we obtain the second version of the optimality conditions for problem
(MCP'), just as in Theorem 2.

6. Summary

The results obtained in this work are not surprising, but the purpose was ful-
filled. The first order optimality conditions were formulated for the Lipschitz
programming problems without the cones. The optimality conditions use only
the upper Dini derivative or the Clarke derivative for problems with inequality
constraints and additionally the usual directional derivative for problems with
mixed conditions. In fact, the Dini and Clarke derivatives are not the only
useful generalized derivatives in these cases. The sensible optimality conditions
can be obtained for many different classes of derivatives. Here, we mention e.g.
the upper Dini-Hadamard derivative (or upper Hadamard derivative or upper
hypo-derivative), the Rockafellar derivative (or the Clarke-Rockafellar derivative
or the circa-derivative), the weak Rockafellar derivative (or incident derivative
or inner epiderivative). The properties and relationships between these and
other derivatives are given by Komldsi (1995), Penot (1998) and Elster, Thier-
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