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Abstract: By using the complete discrimination system for 
polynomials, we study the number of positive solutions in C[O, 1] 
to the integral equation cp(x) = J; k(x, y)cpn(y)dy , where k(:c, y) = 
'Pl(x)¢I(Y) + 'P2(x)¢2(y),cpi(x) > O,¢i(Y) > 0,0 < x,y < 1, ·i = 1,2, 
are continuous functions on [0, 1], n is a positive integer. We prove 
the following results: when n = 1, either there does not exist, or 
there exist infinitely many positive solutions in C[O, 1]; when n ~ 2, 
there exist at least 1, at most n + 1 positive solutions in C[O, 1]. 
Necessary and sufficient conditions are derived for the cases: 1) 
n = 1, there exist positive solutions; 2) n ~ 2, there exist exactly 
m ( m E { 1, 2, ... , n + 1}) positive solutions. Our results generalize 
the ones existing in the literature, and their usefulness is shown by 
examples. 
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1. Introduction 

The existence of positive solutions to integral equations is an active research 
field and has important applications in the stability of feedback systems (Cor
duneanu, 1973, Courant and Hilbert, 1953). In 1991, the number of positive 
solutions to the following integral equation 

cp(x) = 11 

k(x, y)cp2(y)dy (1) 

was discussed in Yao (1991) . In this paper, we will study the number of positive 
solutions in C[O, 1] to the following more general integral equation 

cp(x) = 11 

k(x, y)cpn(y)dy (2) 

where 

k(x,y) = IP1(x)(!Jt(y) + cp2(x)¢2(y), 

IPi(x) > 0,¢i(Y) > 0,0 < x,y < 1, ·i = 1,2 

are continuous functions on [0, 1], n is a positive integer. We prove the following 
results: when n = 1, either there does not exist, or there exist infinitely many 
positive solutions in C[O, 1]; when n ;::: 2, there exist at least 1, at most n + 1 
positive solutions in C[O, 1]. Especially, when n is an odd number greater than 
2, there exist at least 1, at most n positive solutions in C[O, 1]. The necessary 
and sufficient conditions are derived for the cases: 1) n = 1, there exist positive 
solutions in 0[0,1]; 2) n;::: 2, there exist exactly m (mE {1,2, ... ,n + 1}) 
positive solutions in C[O, 1]. Our results generalize the results existing in the 
literature, and their usefulness is shown by examples presented in this paper. 

In essence, the analysis of the number of positive solutions to (2) can be 
transformed into determination of real roots of a certain polynomial, which is 
a century-long, albeit still active research area in mathematics. The classical 
Sturm method or Newton formula can be employed to determine the real root 
distribution of polynomials (Gantrnacher, 1960, Yang, Zhang, Hou, 1996), but 
the Sturm method is inefficient in establishing discriminant systems for high
order polynomials with symbolic coefficients (Gantmacher, 1960, Yang, Hou, 
Zeng, 1996, Yang, Zhang, Hou, 1996) , and the Newton formula involves a re
cursive procedure to determine the real roots, thus it is difficult to establish 
explicit criteria (Gantmacher, 1960, Greub, 1967, Yang, Zhang, Hou, 1996) . 

More recently, Yang and associates established the complete discrimination 
system for polynomials, which can give a set of explicit expressions based on 
the coefficients of polynomials to determine the root distribution of polynomials 
(Yang, Hou, Zeng, 1996, Yang, Zhang, Hou, 1996). 

Let 
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the Sylvester matrix of f(x) and its derivative j' (x) (Yang, Hou, Zeng, 1996, 
Yang, Zhang, Hou, 1996) 

ao a1 a2 an-1 an 
0 nao (n- 1)a1 2an-2 an-1 

ao a1 an-2 an-1 an 
0 nao 3an-3 2an-2 an-1 

ao a1 a2 an 
0 nao (n - 1)a1 an-1 

be called the discrimination matrix of f(x ), denoted as D·isC'r(j). Further, 

the even-order principal minor sequence of D'iscT(j) , is called the discriminant 
sequence of f(x), and 

[s·ign(D1), s'ign(D2), . . . , s'ign(Dn)] 

is called the sign list ofthe discriminant sequence [D1, D2, ... , Dn], where sign(-) 
is the sign function, i.e., 

s'ign(x) = { ~ 
-1 

if X> 0, 
if X= 0, 
if X< 0. 

Given a sign list [s1, s2, ... , sn], we can construct a revised sign list 

as follows: 
1) If [si, Si+l, . . . , Si+i l is a section of the given sign list and Si =f. 0; Si+l = 

Si+2 = ... = Si+j-1 = 0; Si+i =f. 0, then replace the subsection consisting of all 
0 elements 

by the following subsection with equal number of terms 

I.e ~- - (-1)[~ 1 · s· ·r·- 1 2 y·- 1 · .,~ ·t+r- 1.,-, , ... , · 
2) Let c k = s k for all other terms, i.e., all other terms remain the same. 

LEMMA 1 (Yang, Hou, Zeng, 1996, Yang, Zhang, Hou, 1996) Given the poly
nomial with r-eal coefficients f(x) = aoxn + a1xn-l + . .. +an E pn, if the 
n·umber- of sign changes in the Tev'ised sign list of ds d'iscT·im'inant seq·uence is 
v, and the number of non-zero elements 'in the revised sign foist is J.L, then the 
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REMARK 1 The discriminant seq·uence of f(x) can also be constructed by the 
principal minors of the Bezout matrix of f(x) and J' (x) (Yang, Hou, Zeng, 
1996, Yang, Zhang, Hou, 1996); the number of distinct real roots of f(x) can 
also be determined by the sign difference of the Bezout matrix off (x) and J' ( x) 
(Yang, Hou, Zeng, 1996, Yang, Zhang, Hou, 1996). 

REMARK 2 The complete discrimination system for polynomials can also be 
used to determine the number and the multiplicity of complex TOots (Yang, Hou, 
Zeng, 1996, Yang, Zhang, Hou, 1996). 

Yang and Xia (1997) also proposed a method to determine the number of 
positive (negative) roots of a polynomial, which is similar to Lemma 1 in prin
ciple, but is more efficient. 

LEMMA 2 (Yang, Xia, 1997) Given the polynomial with real coefficients f(x) 
= aoxn + a1xn- 1 + .. . +an E pn, ao :j:. O,an :j:. 0, let h(x) = f(-x) and 
{ d1, d2, . .. , d2n+ 1} be the sequence of the principal minors of the discrimination 
matrix Discr(h) of h(x). If the number of sign changes in the revised s·ign 
list of the sequence { d1d2, d2d3, . .. , d2n d2n+d is v, and the number of non-zeTO 
elements in the revised sign list is J.L, then the number of distinct positive roots 
of f( x ) is J.L- 2v . 

2. Main results 

Consider the problem of determining the number of positive solutions in C[O, 1] 
to the integral equation of the following form 

(3) 

where 

k(x , y) = cp1(x)¢1(y) + cp2(x)¢2(y), 

cpi(x) > O,¢i(Y) > 0,0 < x,y < 1,i = 1,2 

are continuous functions on [0, 1] , n is a positive integer. 
Denote 

an-i,i = C~ 11 
¢1 (y )cp~-i(y )cp~(y )dy, 't = 0, 1, . . . , n, 

bn-i,i = C~ 11 
¢2(Y )cp~-i(y )cp~(y )dy, i = 0, 1, . .. , n, 

Oi = bn-i,i- an-i+1,i-1, i = 1, 2, ... , n, OQ = bn,0 1 On+1 = -ao,n, 

where C~, i = 0, 1, ... , n , stand for the combinatorial number. Our main result 
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THEOREM 1 When n = 1, either theTe does not exist, or there exist infinitely 
many positive solutions in C[O, 1] to the integml equation (3). The necessar·y 
and sufficient conditions for the ex·istence of positive solutions in C[O, 1] are 
a1,o- 1 < 0 and (a1,0- 1)(bo,l- 1)- ao,1b1,0 = 0. 

THEOREM 2 When n 2: 2, there exist at least 1, at most n + 1 positive solutions 
in C[O, 1] to the integral equation (3). Especially, when n is an odd number 
greater than 2, there exist at least 1, at most n positive solutions in C[O, 1]. 

THEOREM 3 When n 2: 2, the necessary and sufficient conditions for the ex
·istence of exactly m (mE {1, 2, ... , n + 1}) posdive solutions in C[O, 1] to the 
·integral equation (3) aTe: the nurnbeT of sign changes v in the revised sign 

list of the discr·iminant sequence of the polynom·ial f(s) := 'L~01 O:iSZ(n+ 1-i) 
and the numbeT of its non-zero elements J.L satisfy m = e-;~v; or, eq·uiva
lently, the number of sign changes v in the -revised sign list of the sequence 
{ d1d2, dzd3, ... , dzn+2d2n+3} and the numbe-r of its non-zer·o elements J.L satisfy 
rn = 1

'-;
2
v, wher·e { d1 , dz, . .. , dzn+3} is the sequence of the principal minor-s of 

the discr"iminant matrix D·iscr(h) of h(s) := L~:; O:i( -s)n+l-i. 

Specifically, when n = 2, denote 

p = o:1 , .,. = nz, t = 0:3 < O, 
o:o o:o o:o 

.6.1 = ri- 3r, .6-z = Tp2 + 3tp- 4-r2, 

.6.3 = - 4r3 + 18rtp + p2r2 
- 4p3t- 27t2, 

[D1, Dz, D3, D4, D5, D6] = [1 , -p, -p.6.1, .6.1.6.2, .6.2.6.3, -t.6.~]. (4) 

Then, we have 

COROLLARY 1 There exist at least 1, at most 3 positive solutions in C[O , 1] to 
the integral equation ( 1). 

COROLLARY 2 The necessaTy and suffic·ient condd·ions for the integral equation 
(1) to have exactly 3 positive sol·ut·ions in C[O, 1] are p < 0, .6.1 > 0, .6.2 > 0, .6.3 > 0. 

COROLLARY 3 The necessary and sufficient conddions for· the integral equation 
(1) to have exactly 2 positive solutions in C[O, 1] are p < 0, .6.1 > 0, .6.2 > 0, .6.3 = 0. 

COROLLARY 4 The necessary and sufficient conditions fo-r the integral equation 
(1) to have exactly 1 positive sol·ution in C[O, 1 J aTe p 2: 0, or .6.1 ~ 0, or .6.2 ~ 0, 
or .6.3 < 0. 

REMARK 3 If n ·is even, the integral equation (3) does not have any negative 
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REMARK 4 If n is odd, since cp(x) is a positive solution in C[O, 1] to the ·integr·al 
equation {3) if and only if -cp(x) is a negative solution in C[O, 1] to the integml 
equation {3}, thus, when n = 1, the integml equation {3} either does not have, 
or has infinitely many negative solutions in G[O, 1]; when n is odd and greater 
than 2, the integml equation {3} has at least 1, at most n negative solutions ·in 
C[O, 1]. 

REMARK 5 When n = 1, the necessary and suffic·ient condit·ions for existence 
of negative sol·utions in C[O, 1] to the ·integral equat·ion {3} aTe the same as ·in 
Theorem 1, When n ·is odd and gTeater than 2, the necessaTy and s·ufficient 
conditions for existence of exactly m(m E {1,2, ... ,n}) negative solutions in 
C[O, 1] to the integral equation {3} are the same as in TheoTem 3. 

REMARK 6 Our method can be extended to the case when the integml kemel 
k(x,y) is taken as 2:::!=1 cpi (x)<Pi(y), where cpi(x) > 0,</li(Y) > 0, 0 < x,y < 
1, i = 1, 2, ... , l, are continuous functions on [0, 1]. 

REMARK 7 The conclusions in Yao {1991} are equi·ualent to Corollar·ies 1, 2, 3 
above. 

3. Proofs of the theorems 

Proof of Theorem 1. When n = 1, the integral equation (3) becomes 

cp(x) = 11 

k(x, y)cp(y)dy. (5) 

Thus, we have 

cp(x) = cp1(x) 11 
<P1(y)cp(y)dy + cp2(x) 11 

<P2(y)cp(y)dy. 

If cp(x) is a positive solution in C[O, 1] to equation (5), then cp(:c) can be ex
pressed as cp(x) = A1cp1(x) + A2cp2(x), where AI > 0, A2 > 0 are coefficients to 
be determined. Taking this into equation (5), we get the following system of 
algebraic equations 

{ 
ai,oA1 + ao,IA2 = AI (6) 
bi,oAI + bo,1A2 = A2 

where ai,o = J; <PI(y)cpi(y)dy, ao,I = J; ¢I(y)cp2(y)dy, bi,O = J; <P2(y)cpi(y)dy, 

bo,I = foi <P2(y)cp2(y)dy. Apparently, the necessary and sufficient conditions 
for the system of algebraic equations (6) to have positive solutions AI, A2 are 
ai,O- 1 < 0, and (ai,o - 1)(bo,I - 1) - ao,Ibi,O = 0. Moreover, if cp(x) is 
a positive solution to equation (5), then, obviously, for any positive constant 
number c, ccp(x) is also a posit ive solution to equation (5). Thus, there are 
infinitely many positive solutions in C[O, 1] to equation (5). This completes the 

r 
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LEMMA 3 The system of eq'Uations 

{ 
an,OXn + an-1 ,1Xn-1y + an-2,2Xn- 2y2+ . .. +a1,n-1XYn- 1 + ao,nYn =X 
bn,OXn + bn-1 ,1Xn- 1y + bn-2,2Xn-2y2+. · .+b1,n-1XYn- 1 + bo,nYn = Y 

an-i,i > 0, bn-i ,i > 0, 't = 0, 1, 2, ... , n. (7) 

has at least 1, at rnost n + 1 (at rnost n, when n ·is odd) positive sol'Ut-ions, wheTe 
n ~ 2. 

Pmof. Let 

X 
p(x,y) = - ' 

an,OXn + an-1,1Xn 1y + · · · + ao,nYn 
y 

q(x,y)=b b 1 b ' n,OXn + n-1,1Xn- Y + · · · + O,nYn 
X> 0, y > 0, 

then 

1 1 
p(n,x, n,y) = ---;;--TP(X, y) , q(n,x , "'Y) = .,.n - 1 q(x , y), li > 0. 

K, - •• 

Let 

E = {xip(x, 1) = q(x, 1)}, 

then the number of positive solutions to the system of equations (7) is equal to 
the number of elements in E. In fact, if (x, y) is a positive solution to (7), then 

p(x, y) = q(x, y) = 1, 

thus ~ E E. Conversely, if x E E, since n ~ 2, it is easy to verify that 

( n-{!p(x , 1)x, n-{!p(x, 1)) is a positive solution to (7). 
Suppose x E E, by p(x, 1) = q(x , 1), we have 

bn ,oXn+1 + (bn-1 ,1- an,o)xn + (bn-2,2- an-1 ,I)xn- 1 + ... 
+ (bo,n- a1,n-dx- ao,n = 0. 

Namely 

where 

fri = bn -·i.-i - an-i+1,i-1, 't = 1, 2, · · ·, 'n, frO = bn,O, frn+1 = -ao,n· 

(8) 

Since ao = bn ,o > 0, an+1 = -ao,n < 0, equation (8) has at least 1, at most 
n + 1 positive roots. Especially, when n > 2 and is odd, since equation (8) has 
at least 1 negative root, it has at most n positive roots. This completes the 
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Pr-oof of Theor·erns 2 and 3. When n 2: 2, since 

cp(x) = 11 
k(x, y)cpn(y)dy 

= Cf'1(x) 11 
</>l(y)cpn(y)dy + Cf'2(x) 11 

</J2(y)cpn(y)dy 

similarly to the proof of Theorem 1, the positive solution cp(x) in C[O, 1] to the 
integral equation (3) can be expressed as cp(x) = A1cp1(x) + A2cp2(x), where 
A1 > 0, A2 > 0 are coefficients to be determined. Taking this into equation 
(3), by a simple but lengthy calculation, we see that A1, A2 should be positive 
solutions to the following system of algebraic equations 

where 

an-i,i = c~ 11 
<1>1 (y )cp~-i(y )cp~(y )dy, ·i = 0, 1,. ' ' ) n, 

bn-i,i = c~ 11 
¢2(y)cp~-i(y)cp~(y)dy, ·i = 0, 1, ... ) n. 

By Lemma 3, we complete t he proof of Theorem 2. 

(9) 

• 
Moreover, from the proof of Lemma 3, we know that finding the positive 

solutions to the system of algebraic equations (9) or (7) can be transformed 
into finding the positive solutions to equation (8). Applying Lemmas 1 and 2 
to equation (8), we complete the proof of Theorem 3. • 

Proof of Comllaries 1, 2, 3, 4. Some notations in this proof are defined in 
Section 2. Corollary 1 is a direct consequence of Theorem 2. When n = 2, 
equation (8) becomes 

(10) 

By a direct computation, we know that the discriminant sequence [D1 , D2, D3 , 
D4, Ds, D6] of the polynomial f(s) := aos6 + 0:18

4 + 0:28
2 + a3 is determined 

by ( 4) (up to a positive factor). 
Since t < 0, it is easy to see that the number of sign changes v in the revised 

sign list of [D 1 , D2 , D3 , D4, Ds, D6] and the number of its non-zero elements J..L 
satisfy 6 = J..L- 2v if and only if the revised sign list of [D1, D2, D3, D4, Ds , D6] 
is [1. 1. 1. 1. 1, 11, which is equivalent to p < 0, b.1 > 0, b.2 > 0, b.3 > 0. This 
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Similarly, the number of sign changes v in the revised sign list of [D1, D2, D3, 
D4 , Ds, D6] and the number of its non-zero elements J.L satisfy 4 = J.L- 2v if and 
only if the revised sign list of [Db D2, D3, D4, Ds, D6] is [1 , 1, 1, 1, 0, OJ, which 
is equivalent to p < 0, 6.1 > 0, 6.2 > 0, 6.3 = 0. This completes the proof of 
Corollary 3. • 

By combining the Corollaries 1, 2, 3, we get Corollary 4. 

4. Some illustrative examples 

EXAMPLE 1 Consider the integral equation 

Let 

cp(x) = 11 
(~xy + ~Y )cp(y)dy, 0 ~ x ~ 1 

c/>1(y) = y, 
3 

'P2(x) = -, 
5 

(11) 

Then, it is easy to get a1,0 = b1 ,0 = ~' ao,1 = bo,1 = ~- The conditions 
in Theorem 1 are met. Hence, there are infinitely many positive solutions in 
C[O, 1]. In fact, cp(x) = c(~x + ~), Vc > 0 are such solutions. 

REMARK 8 From the proof of theorems and Example 1, we can see that, joT a 
given integral equation, we can not only determine the number· of its positive 
solutions, but also find the positive solutions explicitly by solv·ing the algebr·aic 
equat·ion (8). 

EXAMPLE 2 Consider the integral equation 

cp(x) = 11 

[18rnax{c , -2x + 1 + c} +max { ~' ~(2x -1 +c) } 

X max{6, 272y- 130}] cpn(y)dy, 0 ~ x ~ 1, 

where c 2: O,n = 1 or 2. 
Let 

cp1(x) = max{c, -2:t + 1 + c}, c/>1(y) = 18, 

cp2(x) =max { ~' ~(2x- 1 +c) }• c/>2(y) = max{6, 272y- 130}. 

(12) 

When n = 1, using the notations in Section 2 and by a simple computation, we 
can get 

a1,0 = 11 
cf>1(Y)'PI(Y)dy = 18c + ~' ao,1 = 11 

c/>1(y)cp2(y)dy = 6c + ~; 
/,, ~ = {1 tf.~ f.,\ ,, . r.,\A.,- An .. .L ~ ' · · . - {1 A.. r .. ,\ ,A r ... u .. - 40 - ' 145 
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Since a1,0 - 1 > 0, the conditions in Theorem 1 are not met. Thus, equation 
(12) does not have any positive solutions in C[O, 1]. 

Similarly, when n = 2, by a simple computation, we can get 

az,o = 3 + 9c + 18c-2
, a1,1 = 6c + 12c-2

, a0 ,2 = ~ + c + 2c-2
; 

b2,o = 1 + 3c- + 40c2
, b1,1 = 

1 ~4 c + 
8
3
° c- 2 , bo,2 = 2 + 

1

2~ c + ~O c- 2 ; 

2 26 2 73 
ao = b2,o = 1 + 3c + 40c , a1 = bt 1 - a2 o = -c + -c - 3, , , 3 9 

68 2 17 2 1 
a2 = bo 2- a11 = --c - -c + 2 0:3 = -ao 2 = -2c- -c--. , , 9 27 ) , 3 

Let 

a1 az 0:3 
p = -, T = -, t = -; 

ao ao ao 

flt = p2
- 3T, fl2 = Tp2 + 3tp- 4T2

, 

fl3 = -4T3 + 18Ttp + p2
T

2 
- 4p3t - 27t2, 

we have (up to a positive factor) 

p = -1 + 2.7037c + 2.8889c-2
, 

flt = -65.959c2 + 94. 716c3 - 21.593c + 327.26c4 + 1, 

fl 2 = 702.22c4 - 1291.9c5 + 255.78c-3 - 2356.3c-6 - 78.517c2
- 26.207c + 1, 

fl3 = 1- 27.778c- 1.4371 x 105c- 6 - 23275.0c4 - 1.0374 x 105c- 5 

- 63.724c2
- 1222.6c-3

. 

By numerical computations, it is easy to get 

The real roots of p = 0 are - 1.2197 and 0.2838; 
The real roots of fl 1 = 0 are 0.041426 and 0.45024; 

The real roots of fl 2 = 0 are -0.70495 and 0.034952; 
The real roots of fl 3 = 0 are -0.21287 and 0.03143. 

Hence, by Corollaries 2,3,4, it is easy to know that there exists a positive number 
r 0 ~ 0.03143 (note here the difference between the exactness of the conditions 
in Corollaries 2,3,4 and the inexactness of the numerical computations above), 
such that: when 0 ~ c < 'ro, equation (12) has 3 positive solutions in C[O, 1]; 
when c = To, equation (12) has 2 positive solutions in C[O, 1]; when c > To, 
equation (12) has 1 positive solut ion in C[O, 1]. 

REMARK 9 The case when n = 2 'tn the example above has also been st'udied 
'tn Yao (1991). Our res'ult heTe is completely consistent with the Tes'ult in Yao 
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EXAMPLE 3 Consider the integral equation (12) in the example above. When 
n = 3, c: is 2 or 0.2, determine the number of its positive solutions in C[O, 1]. 
Similarly to Example 2, when n = 3, using the notations from Section 2 and by 
a simple computation, we can get 

9 27 2 3 27 2 3 
a3 o = - + 9c: + -c: + 18c: , a2 1 = 3c: + -c: + 18c: , . 4 2 . 2 

9 2 3 2 3 1 1 1 2. 
a1 2 = -c: + 6c: + c: , ao 3 = -c: + - + -c: + -c: 

. 2 . 3 12 3 2 
3 9 2 3 163 2 3 

b3,o = 4 + 3c: + 2c: + 40c: , b2,1 = c: + 6c: + 40c: , 

299 2 40 3 163 2 287 37 3 
b1 2 = 18c: + 3 c: + 6c: bo,3 = 54c: + 

540 
+ 2c: + 

27
c: . 

3 9 41 2 3 9 
a 0 = 4 + 3c: + 

2
c:2 + 40c:3, a1 = -8c: + 

3
c: + 22c: - 4' 

28 2 14 3 40 2 287 125 3 
a2 = -gc: - 3c: + 3c: a3 = -

27
c: + 

540 
+ c:- 2:7c: , 

23 1 1 12 
a 4 = -3c: - 12 - 3c:- 2c: 

Hence, when c: = 2, we have aos8 + a1s6 + a2s4 + a3s 2 + a 4 = 344.75s8 + 
212.42s6 - 18.889s4 - 40.431s2 - 8.0833. By a simple computation, the revised 
sign list of its discriminant sequence is 

[1 , -1, -1 , -1, 1, 1, 1, -1] . 

By Theorem 3, equation (12) has only 1 positive solution in C[O, 1] . 
When c: = 0.2, we have aos8 + cx1 s6 + a2s4 + a3s2 + cx4 = 1.85s8

- 3.1273s6 + 
0.68711s4 + 0.63519s2 - 0.17533. By a simple computation, the revised sign list 
of its discriminant sequence is 

[1, 1, 1, -1, -1, -1, -1, -1]. 

By Theorem 3, equation (12) has 3 positive solutions in C[O, 1] . 

REMARK 10 In th'is paper·, we have investigated the nmnbeT of posdive solutions 
to a class of 'integml equations by us'ing a new tool: the Complete Discrimination 
System for · Polynom'ials. For· S'trrtplicity of d'iscussion, we have only cons'ider·ed 
the Riemannian integmls 'tn the space of cord'irmo'us functions . Extens'ions to 
moTe geneml integmls 'in more gener·al function spaces ar-e C'U1Tently under- in
vestigation. 

REMARK 11 The integml ker·nels cons'ider·ed in th,is paper· U're standa'rd kr::mels 
in the theory ofintegml equations (C01duneanu , 1973, Yao , 1991). and a're nwr-e 
gener·al than the integral ker·nels in Yao ( 1991). 

REMARK 12 Integral equat'ions play an irnpor·tant Tole in r-ob'ust contml theor·y, 
classical mechanics, digital signal pmcess'ing, nonl'inea'r systems analys'is, and - __ ] ____ -------
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5. Conclusions 

By using the complete discrimination system for polynomials, we have inves
tigated the number of posit ive solutions in C[O, 1] to the integral equation 

<p(x) = J~ k(x, y)<pn(y)dy, where k(x, y) = <t'l(x)<f>t(y) + <t'2(x)<!J2(y), <t'i(x) > 
0, ¢.;(y) > 0, 0 < x, y < 1, ·i = 1, 2, are continuous functions on [0, 1], where n 
is a positive integer. We get the following results: when n = 1, either there 
does not exist, or there exist infinitely many positive solutions in C[O, 1]; when 
n ~ 2, there exist at least 1, at most n + 1 positive solutions in C[O, 1]. The 
necessary and sufficient conditions are derived for the cases: 1) n = 1, there 
exist positive solutions; 2) n ~ 2, there exist exactly m(m E {1, 2, ... , n + 1}) 
positive solutions. Our results generalize the ones known from the literature, 
and their usefulness is shown by examples presented. 
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