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Abstract: It is well known that local stability analysis of a 
Walrasian multiple markets model is performed by approximating, 
according to Taylor's expansion, a system of first-order differential 
equations. So, one has to study the stability of a linear system 
(with constant coefficients). Since the earlier studies of Wah·asian 
economic equilibrium, economists have suggested numerous condi
tions ensuring local stability of the same. 

The aim of this note is to give a survey of various conditions, used 
in economic analysis, ensuring that a (real) square matrix is stable. 
We show, in a unified manner, their inter-relations and make some 
new remarks on quasi-dominant matrices and on D-stable matrices. 
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1. Introduction 

The study of economic equilibrium has been concerned, since its earlier rigorous 
treatments, with the "stability" of that price structure which clears the com
modity markets. The aim of this paper is to take into consideration various 
local stability conditions for a Wah·asian system in a unified matter. Moreover, 
we present a diagram which shows the various relationships between the condi
tions of stability considered, emphasizing the role of the so-called " Metzlerian 
assumption". 

To be more precise: we consider an economy in which there are n goods ex
changed at positive prices. In such a system, if Di (Pl, P2, ... , Pn) is the demand 
function for the ·i-th good and Si(Pl,P2, ... ,pn) is the related supply function, we 
can express the equilibrium situation as Ei(Pi,P2, ... ,p~) = 0, ·i = 1,2, ... ,n, 
were B; denotes the excess demand function for good ·i, i.e. B;( .) = Di(.)- Si(.). 
Suppose now that in the said market there is a disturbance. for exarnole a rise in 
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functions will be affected and the equilibrium price vector of the old situation 
will no longer clear all markets. The aim of economic stability analysis is to 
determine the conditions under which the process of adjustment will converge 
to a new equilibrium price vector. 

The modern approach, due to Samuelson (1941) and Lange (1945) , formal
izes the Wah·asian tatonnement process by means of a system of differential 
equations of the type 

dp · 
dt' =fi(Ei(p(t))), i =1, ... ,n, (1) 

where p(t) = [p1(t), ... ,pn(t )], fi(O) = 0, Jf(.) > 0, ·i = 1, ... , n, i.e. the time 
rate of change of any price is an increasing function of excess demand for that 
comodity, which vanishes when excess demand vanishes. An important special 
case is the linear tatonnernent system, formally described by 

dpi dt = kiEi(p(t)), ·i = 1, ... , n, (2) 

where factor k.i > 0 is the "speed of adjustment" on the ·i-th market, a system 
which gives rise to the concept of "stability independent of adjustment speeds" 
(diagonally stable matrices or D-stable matrices). 

If we assume that all speeds of adjustment k.i are the same and equal to 
unity, we have the process 

dpi dt = Ei(p(t)), i = 1, ... , n. (3) 

Consider now the system of differential equations (3) and its equilibrium 
point (supposed unique) p*; we may approximate this system in a neighbour
hood of p* by the Taylor's formula 

dp ( • ) 8 E ( • ) ( • ) -=Ep +"!lP p-p + ... , 
dt up 

where the Jacobian matrix 8Ef8p is evaluated at the equilibrium point. Since 
E(p*) = 0, by defining 1r as the vector of discrepancies between prices and 
equilibrium prices (1r = p- p*), we obtain 

d7r 
dt = A1r(t), 

where A= ~; (p*). 
So, the study of global stability of a dynamic linear system (with constant 

coefficients) leads to consideration of local stability of the original market mech
anism. A crucial economic assumption for existence, uniqueness of equilibrium 
prices, stability and comparative statics results (see the bibliographical refer
ences) is that the commodit ies exchanged in ~t~e markets are gmss s·ubstitutes 



Stable and related matrices in economic theory 399 

all p. Economically speaking, an increase in the price of any cornrnody, holding 
all other prices constant, increases excess demand for any other commodity. 

Economists call "Metzlerian matrix" (from the economist L.A. Metzler) a 
square matrix A, with aij > 0 (or a;1 2: 0) for all ·i -::J j. This explains the 
emphasis on the "Metzlerian case" in the diagram at the end of the present 
paper. We also give some new results concerning quasi-dominant matrices and 
D-stable matrices. 

2. D efinitions and results 

It is well known that, given the homogeneous, autonomous linear system with 
constant coefficients 

x'(t) = Ax(t) (1) 

where A is an n x n matrix, its equilibrium solution i = 0 is globally stable if 
and only if the real part of any eigenvalue of A is negative: Re(>.i(A)) < 0, Vi. 

For simplicity, also in view of economic applications, we shall consider only 
the case where A is a r·eal matrix, even if it is easy to adapt the subsequent 
considerations to the complex case. If we are given a nonlinear autonomous 
system of first-order differential equations 

x'(t) = f(x(t)), (2) 

with f : ~n ~ ~n, f continuously differentiable, it is well known that its 
equilibrium solution i = a (i.e. one has fi(a) = 0, i = 1, . . . , n) is locally or 
asymptotically stable if J f(a), the Jacobian matrix of (2) evaluated at a, has 
only eigenvalues with negative real parts (if at least one eigenvalue has a positive 
real part, then a is unstable) . 

It has been shown, quite recently, that even if J f has all eigenvalues with 
negative real part, for any x in the domain of f , we cannot deduce the global 
stability of the equilibrium solution of (2) i = a (see Cirna, van den Essen, 
Gasul!, Rubbers, Manosas, 1997) . 

A square matrix such that (1) is globally stable, i.e. Re(>.;(A)) < 0, Vi, 
is also called a stable matrix. Due to the importance of stable matrices in 
economic theory, there is a vast and scattered literature on conditions assuring 
the stability of A. Here, we put together the most important ones, make some 
remarks on the so-called D-stability and matrices with quasi-dominant diagonals 
and show the relations between the various classes of matrices considered. 

First of all we recall that we have some necessary and sufficient conditions 
asssuring that A is stable. One of them is contained in the famous Routh
Hurwitz conditions (Bellman, 1953, Gantmacher, 1959, Lancaster, 1969, Quirk , 
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THEOREM 1 Let A be ann X n r-eal matrix and let tT;(A) be the trace of or-deT 
·i of A, i.e. the sum of all its (~) principal minor·s of or-der· i. Let 

K; = { 

and let 

(-1)itT.;(A), V·i= 1, ... , n 
0, Vi > n or for ·i < 0 
1 fori= 0 

K1 K3 Ks K1 
Ko = 1 K2 K4 K6 

H; = K_ 1 = 0 K1 K3 K s 

················· · ······· K.; 

i = 1, 2, . .. , n. 

Then A is stable if and only 'if H1 > 0, H2 > 0, ... , Hn > 0. (Th·is ·implies 
K; > 0, Vi= 1, . .. ,n). 

This criterion is also att ributed to Lienard-Chipart and Fuller (Gandolfo, 
1997, Gantmacher, 1959). See also Murata (1977) for a simpler version. 

Before introducing the other necessary and sufficient conditions for the sta
bility of A, let us recall the following definitions: 

DEFINITION 1 Let A be symmetTic; A is positive definite (p .d.) ·if xT Ax > 
0, Vx "I 0; A is negative definite (n.d.) if xT Ax < 0, Vx "I 0. The sq·uar·e 
matTix A ·is posit·ive q·uasidefinite (p.q.d.) ifxT Ax> 0, Vx "I 0, or, eq·u·ivalently, 
·if A + AT is p.d. The sq·uare matr-·ix A is negative quas·idefinde (n .q.d.) ·if 
xT Ax < 0, Vx "I 0. 

THEOREM 2 (Lyapunov theorem; see Lancaster, 1969) Let W be a (symmet7·ic) 
n .d. matr-ix; then A is stable if and only if ther-e exists a p.d. matr·ix B such 
that AT B + B A = W . 

Let us now recall the following definitions and notations. 

• M = M(A) = lrn;jJ, ·i ,j = 1, . .. ,n is the compar·ison matr-ix of A, i.e. 

. {laid, if ·i=j 
TIL·ij = I . I "f . _J_ • - Uij , I 't r J . 

• The square matrix Z = lz;jJ is a Z-rnatrix (belongs to the class Z) if it is 
Zij ~ 0, V·i "I j. Note that M(A ) is a Z-rnatrix. 

• D is the class of diagonal matrices with real diagonal elements; o+ is the 
class of diagonal matrices with pos-itive diagonal elements. 

• The square matrix A is a P-matrix (belongs to the class P) if all its principal 
minors are positive. A satisfies the Hawkins-Simon conditions (H.-S .) if all its 
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• We shall note (with x vector of Rn) 

x ~ 0, if x; ~ 0, V·i E N = {1, ... , n} (x non negative vector) 

x > 0, if x; > 0, V·i EN= {1, . .. , n} (x positive vector) 

x ~ 0, if x ~ 0, x -# 0 (x semipositive vector) 

x ~H 0, if x ~ 0, L x; > 0, (H proper nonernpty subset of N) 
·iEH 

x=u, ifx;=1, V·iEN={1, . . . ,n}. 

401 

Similarly for the reversed notations and similarly for the comparison between a 
matrix A of order rn X n and the m. X n zero matrix. 

• S is the class of matrices M (not necessarily square) such that there exists 
a vector x > 0 solution of M x > 0. 

• $0 is the class of matrices M for which there exists a vector x ~ 0 solution 
of Mx ~ 0. 

• A = la;jJ, i, j E N, is reducible or H-red'Uc·ible if N = {1, .. . , n} admits a 
nonempty proper subset H such that ('i E H, j ¢ H) =? a;j = 0. Otherwise A is 
irr·ed·ucible or connected. 

In economic literature we encounter also the following defininitions: 
If B is a P-rnatrix, then - B = A is called a H·icks·ian matr"ix, i.e. A has its 

principal minors of order ·i with the sign of ( -1 )i, ·i = 1, ... , n. A is also called a 
NP-matr·ix. If BE Z, then -B =A is a Metzlerian matr·ix, i.e. a;j ~ 0, V·i -::J j. 

DEFINITION 2 Let A E Z; then A is a K-rnatr"ix (belongs to the class K) if A is 
a P -matr-ix. So K is the set of Z-matri ces: K = Z n P. 

More than 70 tests are available to check whether a Z-matrix is in K (see, 
e.g., Berman, P lemmons, 1976, Fiedler, Ptak, 1962, 1966, Magnani , Meriggi , 
1981, Samuelson, 1947, Uekawa, 1971). 

As Metzlerian matrices are of utmost importance in obtaining stability re
sults and as A is Metzlerian iff -A E Z, it is possible and convenient to adapt 
the above tests in order to check the stability of a Metzlerian matrix. Here we 
list the most useful conditions. 

THEOREM 3 Let A be MetzleTian; then the following conditions ar-e m'Ut·ually 
eq·uivalent. 

1. The real par·t of all the eigenval-ues of A ·is negat·ive, i.e. A ·is stable. 
2. -A ·is a K -matrix, i.e. A ·is Hicksian. 
3. -A sai'ifi es the H.-S. condit·ions, i.e . all the lead·ing prinC'ipal rn·inor-s of A 

have the sign of(-l) i, ·i = 1, ... ,n. 
4. There exists a vector· x ~ 0 S'Uch that Ax < 0. 
5. Ther·e exists a vectoT :c > 0 S'Uch that Ax < 0. 
6. FaT any y ~ 0 there ex·ists an x ~ 0 S'Uch that Ax = y . 
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8. The matrix A is nowringulaT and we have A - 1 ::; 0. 
9. If A is wTitten in the form A= [B-pi ], wher·e B ~ 0 and p E ~' then 'it 

is p >)..*(B), wher-e )..*(B) is the Fmbenius mot of B . 
10. If A is wT'itten as in 9 above, then 

1 +oo ( 1 ) k 
[B- plr1 =--I: -B 

p k=O p 

11. Ther-e exists a d·iagonal matr-ix DE o+ such that (AT D + DA) is n.d. 

For the proof of the equivalence between Conditions 1 to 10 see, e.g. Berman, 
Plemmons (1976), Fiedler, Ptak (1962, 1966), Takayama (1985). Condition 11 
is due to Tartar (1971). 

Obviously, Condition 4 is equivalent to -A E S. As the classes S and S0 

are linked by the Ville theor·em of the alternative (M E S ¢:> -MT ¢ S0
), 

Condition 4 is equivalent to AT ¢ S0
. 

It is rather simple to prove the following result: 

THEOREM 4 Let A be Metzler-ian; if A satisfies any of the conditions descr-ibed 
in Theor-em 3, then the same condition holds for· AT, for- IIAIIT, wher-e II is 
any per·mutation matr-ix, and for-D A E, wher-e D, E E o+. 

If the Metzlerian matrix A is, in addition, irreducible, then some conditions 
from Theorem 3 may be expressed in another form. For example, we have: 

4'. There exists a vector x ~ 0 such that Ax::; 0. 
7'. There exists a y::; 0 such that Ax= y admits a solution x > 0. 
8'. A- 1 exists and there is A- 1 < 0. 

An important generalization of the Metzlerian matrices has been introduced by 
Morishima (1952). 

DEFINITION 3 The n x n matTix A is a Morishirna matrix, if ther·e exists a 
peTmutation rnatr·ix II such that 

with Au ~ 0, Azz ~ 0, A12 ~ 0 and Az1 ::; 0, Au and A22 being sq·uaTe 
mat7·ices. 

Note that An and the nonnegative matrix 

are similar, and therefore have the same eigenvalues, namely 

r I 0 1 f An A 12 1 f I 0 1 _ f An -A12 l 
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So, Theorem 3 may be reformulated under the assumption that A is a Mor
ishima matrix with A11 and A22 Metzlerian matrices (MM matrices): in partic
ular, we may note that an MM matrix A is stable if and only if is Hicksian (i.e. 
1 and 2 of Theorem 3 remain unchanged). 

It is also possible to prove that if A is written in the form A = [M- pi], 
where M is a Morishima matrix, then A is stable if and only if p > )..*(M). In 
this case - A -l exists and is a Morishima matrix. 

In McKenzie (1960) the following important definition which generalizes a 
previous one, due to Hadamard, was introduced: 

DEFINITION 4 The n X n matTix A is said to have a row dominant d·iagonal 
(r·dd) if theTe exists a vectoT d > 0 such that 

diia;;i > L djia;jl, i = 1, ... , n. 
ji.i 

A is said to have a column dominant d·iagonal { cdd) if theTe exists a vector- d > 0 
such that 

djiajji > L d;iaijl , j = 1, . . . ,n. 
ii'j 

Using the comparison matrix the above definition may be rewritten as fol
lows: 3d> 0: Md > 0 (row dominant diagonal) or dM > 0 (column dominant 
diagonal). In other words, the Z-matrix M is a K-matrix or MT is a K-matrix. 

In the original Hadamard definition (Hrdd and Hcdd) we have d = ·u. As 
both sets Z and K are closed under transposition, it is therefore clear that A has 
an rdd if and only if it has a cdd (this is not true for the Hadamard definition); 
so, we have no need to specify whether the dominance refers to the rows or to 
the columns and simply speak of dominant diagonal (dd) matrices. Therefore, 
the class of dd matrices is closed with respect to transposition. It is not hard 
to prove that if A has dd , also DAE, with D, E E o+, has dd, and conversely. 

The most important results of McKenzie are contained in the following the
orem. 

THEOREM 5 i) If A has a dd, then IAI =I 0; ·ii) if A is Metzler·ian then A ·is 
stable if and only if has a negative dd {ndd) , i.e. we have a;; < 0, V·i and A 
has add. 

McKenzie proved also that if A has an ndd, then A is stable, i.e. the sufficient 
part of ii) in the previous theorem holds without the Metzlerian assumption. 
Moreover, it can be shown that ii) of Theorem 5 holds also under the assumption 
that A is an MM-matrix. 

McKenzie (1960) introduces also the following definition: 

DEFINITION 5 The n x n matrix A ·is said to have a quasidom·inant diagonal 
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i) 3d > 0 : M d ~ 0 or· dM ~ 0 in case A ·is ir"f'ed·ucible; 
ii} 3d > 0 : M d ?.H 0 or dM ?.H 0 in case A is H -Ted·uC'tble (joT any cho·ice 

of H). 

The above definition is not acceptable, as, for example, the following irre
ducible matrix 

A~ [ ~: ~: Jl l 
exhibits nqdd but it is JAI = 0 and A is not therefore stable. 

Similarly, the following definition of Lancaster (1968) is not acceptable: 

DEFINITION 6 Then X n matr-ix A has a qdd if 3d> 0 : M d ?_ 0 OT dM ?_ 0. 

Consider, e.g., the following reducible matrix 

[ 

-8 2 
0 -1 

A= 0 2 

1 1 

2 1 l 1 0 
-2 0 
1 -5 

which has nqdd in the sense of Definition 6, but JAI = 0 and A is not stable. 
It must be noted that under- the ass·urnption that A is ir-reducible, Definition 6 

coincides with the one given by Taussky (1949), which does not present the 
above anomalies. 

L.W. McKenzie has revised his Definition 5 along the following lines (the 
indirect reference is in Uekawa, 1971): 

DEFINITION 7 The n X n rnatTix A is said to possess a qdd if joT each principal 
submatTix A(J) of A (J ~ N) we ha·ue d(J)M(J) ?. 0 or- M(J)d(J) ?. 0, ·w-ith 
d( J) > 0 ( d( J) being the vectoT w-ith components dj, j C J) . 

Definition 7 is equally applicable to the case where A is irreducible as to the 
one where it is reducible. Moreover, by adopting the revised Definition 7, we 
can prove, following the same lines of McKenzie (1960), that A has add if and 
only if A has a qdd (in the sense of Definition 7). 

It is clear, from Definition 7, that if A has a qdd , then every principal 
submatrix of A has a qdd and all the diagonal elements of A are nonzero. 

Obviously, the same type of amendment must be applied to the Definition 6 
of Lancaster. 

It is easy to prove that another definition of the qdd matrix, equivalent 
to Definition 7, is the following one, in which we use the Gantmacher- nonnal 
form (Gantmacher, 1959): the n x n matrix A is a qdd matrix if there exists 
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Gantmacher normal form of A, verifying M(Bkk)d(k) 2: 0 or d(k)M(Bkk) 2: 0, 
k = 1, ... ,s. 

Some other conditions of stability of A are obtained under the assumption 
that A is symmetric. In this case the following result is well known. 

THEOREM 6 Let A = AT. Then the follow·ing condit·ions aTe mutually equ·ivu
lent 
i) A is stable. 
i·i) A is nd. 
·i·ii) A is Hicksian. 
iv) -A satisfies the H. -S. conditions. 

Some other important definitions related to stable matrices are given here 
below. 

DEFINITION 8 (see Arrow, McManus, 1958) Then x n rnut·rix A ·is weakly D
stable or- simply D-stable, if DA is stable joT each D E o+ . A is stTongly D-stuble 
'if DE D =?{DAis stable <=?DE o+}. 

DEFINITION 9 (Quirk, Ruppert, 1965) Then x n matrix A is totally stable ·if 
ever·y pr··incipal submatr"ix A( J) of A ( J ~ N) is D-stable. 

Obviously, a totally stable matrix is D-stable; the converse is true if A 
is Metzlerian. Indeed, in this case we have A stable =? A ndqd, whereas the 
following implications are always true: A ndqd =? A totally stable =? AD-stable 
=?A stable. 

DEFINITION 10 (Arrow, McManus, 1958) A ·isS-stable ·if, with S = sr, {SA 
is stable <=? S p. d.}. A is totally S -stable if ever-y pr-inC'ipal s·ubmatr-ix of A is 
S-stable. 

DEFINITION 11 (Quirk, Ruppert, 1965, Quirk, Saposnik, 1968) The matr"ix A 
is qualitat·ively stable or- sign stable if A is stable, as well as any other- n x n ma
tr-ix B having the same sign str-uctur-e as A (each element of B has the same sign 
as the corresponding element of A; zer-o elements cor-r-espond to zem elements). 

Of course, if A is qualitatively stable, then A is also D-stable. Moreover, 
Quirk and Ruppert (1965) have shown that if A is qualitatively stable and 
aii < 0 't/·i, then A is totally stable. 

DEFINITION 12 (Quirk, Saposnik, 1968) Then X n matTix A ·is potentially sta
ble if ther-e ex·ists a matr-ix B having the same sign stTuctur-e of A, wh·ich is 
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Of course if A is qualitatively stable, then it is potentially stable. 
If there is Uii < 0 Vi = 1, .. . , n, then A is potentially stable: indeed, one 

can always choose B with diagonal elements large enough in absolute value, in 
order to obtain that B is an ndd matrix (therefore stable). 

Also with reference to the above definitions some words of comment are 
useful. First we note that it is indifferent to speak of D-stability when AD 
is stable and similarly to speak of S-stability when AS is stable for any p.d. 
matrix S (indeed SA and AS are similar). 

In Arrow, McManus (1958) the following results are proved: 

THEOREM 7 A is str-ongly D-stable if and only if there exists D E D, IDI "I 0, 
such that E = D-1 AD is str-ongly D-stable. If ther·e exists a matr-ix D E D such 
that D- 1 AD is a stable Metzler-ian matr-ix or- a nqd matrix, then A is str-ongly 
D-stable. 

In the same paper, the authors formulate also the following conjecture: 

CONJECTURE. A is str-ongly D-stable if and only if there exist a matTix F, w-ith 
F Metzlerian stable or qnd, and a matr-ix E E D such that A= EF E- 1 . 

This conjecture is shown false by considering the matrix 

A= [ ~1 =; ~ l 
0 2 -1 

which is D-stable, both in the weak and in the strong sense, but which does not 
admit the representation described in the above conjecture. 

We note that stable Metzlerian matrices are strongly D-stable; therefore, if 
A is Metzlerian and satisfies anyone of the conditions of Theorem 3, then A is 
strongly D-stable. What we are able to prove is the following result: 

THEOREM 8 If n = 2 or- if A= EF E- 1 withEE D and F a Metzlerian stable 
matTix, then A is D-stable if and only if it ·is str-ongly D-stable. 

Pr-oof. Obviously, strong D-stability implies weak D-stability. Let us now sup
pose that, given n = 2, A is D-stable only in the weak sense, i.e. D E o+ =} DA 
is stable, but there exists a matrix D * such that D * E D, D * fj. o+, D * A is 
stable. 

Then we have 

and therefore 



BAB-l 

stable ¥B 
(regular) 
~ 

implication alway> true 

implication generally false but true if A is rnetzlerian (~j 1:: 0, ¥ i ¢ j) 

A verif~es 
the Hawkins
-Simon 
conditions 

j ~ 14 I : , ~~o~ally IE I 

Q ~o. 
>-;>-*(Q) 

D,E € ~+=9 
=* DAE has 
dqd«O 

en 
~ cr 

'" ()> 
::l 
"-.., 
"' ~ 
"' "-
s 
~ 
;:;· 
~ 
::l 

"' 0 
0 
::l 
0 
i3 
;:;· 
<'" 
::r-
"' g 

'-< 

H::>-
0 
~ 
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whereas the Routh-Hurwitz criterion, applied to D* A, implies the opposite in
equality. Therefore with n = 2 the weak D-stability implies the strong D
stability. 

Let us now suppose A= EFA- 1 is weakly D-stable, E Eo+ and F Metzle
rian. Therefore, IF=F is stable, as well as F=E- 1 AE. Hence, F is Metzlerian 
and stable and from Theorem 7 we have that F is strongly D-stable. • 

Another interesting result on D-stability is due to Fisher and Fuller (1958) : 

if A is Hicksian, ther-e exists a positive diagonal matr-ix D s'Uch that 
all the mots of DA ar-e r·eal, negative and simple. 

Therefore, if A is Hicksian, there exists at least a matrix D E o+ such that 
DA is stable. 

Other sufficient conditions for D-stability of A (besides the qualitative sta
bility of A) are the following ones (see Arrow, McManus, 1958, McKenzie, 1960). 

i) If ther-e exist a matr-ix DE o+ S'Uch that (DA +AT D) is n.d. , then A ·is 
(weakly) D-stable. 

ii) If A has a nqdd , then A is D-stable. 

A sufficient condition for S-stability is given in Arrow, McManus (1958): nqd 
matr-ices ar·e S-stable (and ther·efor-e stmngly D-stable). 

S-stable matrices are characterized by Carlson (1968) and Carlson, Schneider 
(1963). 

We are now ready to present our scheme showing the various relations be
tween the classes introduced. The proofs of the nontrivial implications may be 
found in the works quoted in the present paper. 
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