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Abstract: In this paper two methods for evolutionary algorithm 
control are proposed. The first one is a new method of tuning the 
probabilities of genetic operators. It is assumed in the presented 
approach that every member of the optimized population conducts 
his own ranking of genetic operators' qualities. This ranking enables 
computing the probabilities of execution of genetic operators. This 
set of probabilities is a basis of experience of every individual and 
according to this basis the individual chooses the operator in every 
iteration of the algorithm. Due to this experience one can maximize 
the chances of his offspring to survive. 

The second part of the paper deals with a self-adapting method 
of selection of individuals to a subsequent generation. Methods of 
selection applied in the evolutionary algorithms are usually inspired 
by nature and prefer solutions where the main role is played by 
randomness, competition and struggle among individuals. In the 
case of evolutionary algorithms, where populations of individuals are 
usually small, this causes a premature convergence to local minima. 
In order to avoid this drawback I propose to apply an approach 
based rather on an agricultural technique. Two new methods of 
object selection are proposed: a histogram selection and a mixed 
selection. The methods described were tested using examples based 
on scheduling and TSP. 

Keywords: genetic algorithms, adaptation, adaptive evolution
ary algorithms. 

1. Introduct ion 

In the early years of evolutionary algorithms (EA) development much atten
tion was devoted to showing their similarity to processes observed in nature 
(Holland, 1975). Such concepts as strong competition among individuals and 
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genetic code of members of the population, were similar to natural ones. As it 
follows from experiments, traditional evolutionary mechanisms are not sufficient 
in many cases for a fast growth of the population in a desired direction. More 
complicated, adaptive methods are much better. There are big difficult ies with 
the theoretical description of their behavior and properties, but there are first 
results, some of them very surprising: Gunter (1999) and Agapie (1999). 

In the classic genetic algorithm, proposed by Holland (1975) , both of the 
operators used, crossover and mutation, had constant probabilities of working, 
chosen intuitively or experimentally. Individuals of the population were coded 
as binary strings. The general rule was to assign a high probability (0.8 - 1.0) 
to crossover and a low one to mutation (0.01 - 0.2). These values were chosen 
not only intuitively, but were also based on biological and experimental data. 
Mutation is responsible for exploration of the search domain, while crossover 
exploits the previously found best regions. Too high level of mutation can lead 
to loss of convergence to the optimal solution, because of the fact that exchanges 
of the genetic material are stronger than process of evolution directed by fitness 
function. Because of this, the probability of mutation is very low. High level 
of crossover, however, intensifies exploration of local extrema and it is useful to 
keep its high probability. 

Many problems cannot be effectively solved using traditional operators and 
methods of encoding. It is necessary to use speciali:ted ways of encoding solu
tions as members of the population and genetic operators designed for operating 
on them. In that case it is difficult to foresee what values the probabilities of 
operator choice should have, because it is often not easy to realize what is a char
acter of a given operator. There are two solutions for overcoming this problem: 
experimental tuning of probabilities or making them self-adaptive1. There were 
some trials of experimental evaluation of parameters of genetic optimization for 
several problems, using traditional genetic algorithm (DeJong, 1975), but it is 
rather impossible to investigate the whole domain of possible modifications of 
genetic algorithms for different problems. Of course, tuning of the parameters 
for a given problem is a very good (though time consuming) way of finding op
timal values of them. The second possibility, however, is much more promising. 
One of the earliest solutions was to use a genetic subalgorithm to optimize the 
parameters of the main genetic optimization process- Grefenstette (1986). But 
it was a rather slow method. Next step was to find the probability of appearance 
of a genetic operator, connected with its behavior. Such methods were described 
in Cronen and Eiben (2001), Davis (1989), Davis (1991) and Julstrom (1995) . 
They are based on the qualities of the operator, which modifies the population 
of solutions. Every operator gets (if chosen) its period of time, when it affects 
the population. So, all the modifications of an evaluation function can be as
signed to a particular operator and they modify its probability of appearance. 
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They are also backpropagated to the previously used operators, whose qualities 
are also taken into account and their probabilities are also changed. Thanks to 
this method any number of operators may be used, no matter how they work, 
randomly or on the basis of knowledge. The method described in Section 2 of 
this paper continues and develops the latter idea. 

The second idea proposed in this paper deals with the problem of individual 
selection. The majority of used methods are based on a natural selection or 
similar, rather non-adaptive methods (a short description of some of them will 
be given later in this paper), which are good mainly for big populations with 
many individuals (ideally infinitely many). Examples taken from real life indi
cate that good results may rather be achieved by applying in the population 
agricultural measures as opposed to the principle of natural selection. It should 
be noticed that in nature each living organism is endangered by a number of 
harmful factors. Simultaneously it endeavors to adopt to a maximum extent 
to the environment. Thus, its objective function is uncommonly complicated. 
The influence of the environment and its disadvantageous effects are largely 
eliminated by man. Due to this fact, individuals with desired features are de
rived much faster than in nature. In such an approach the potential advantages 
of individuals can be utilized to great extent . However, such individuals could 
probably not survive in nature. This idea is the basis of the method of controlled 
selection presented in this paper. 

2. A new method of probability control 

2.1. Description of the method 

In the approach presented it is assumed that an operator which generates good 
results should have higher probability and more frequently affect the population. 
But it is very likely that an operator, which is good for one individual, gives 
worse effects for another, for instance because of its location in the domain 
of possible solutions. Every individual may have its own preferences2 . It is 
rather common situation in nature - every living creature has its own needs 
concerning environment of life, food, temperature, light, etc. The population of 
solutions created for solving technical problems has also biological origins and 
can probably develop better, if the preferences of its members are considered. 
The idea of personal preferences is realized as follows. Every individual has 
a vector of floating point numbers - q (besides the encoded solution). Each 
number corresponds to one genetic operation (the number of operators may 
vary during computations). It is a measure of quality of the genetic operator. 
The higher the number, the higher the probability of execution of the operator. 

2The idea of "personal preferences" of each population member is also used in Krink and 
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This relationship may be written as follows: 

%(t) 
PiJ(t) = "Vi=L(t) ( ) 

wi=l qij t 
(1) 

where: 
!Jij(t) -quality coefficient of the operation ·i at the moment t for the member j: 
Pi.i ( t) - probability of appearance of the operation ·i at the moment t for the 
member j ; 
L(t) - number of genetic operators (may vary Juring genetic computations). 

The algorithm of this method is provided below: 
1. Initialization of the population of solutions and the starting values of qo ; 
2. i:=1 ; 
3. Selection of genetic operators (and partners if necessary) by the members 

of population; 
4. Modification of individuals using selected genetic operators; 
5. Evaluation of new values of fitness function and new values of !Ji j for all 

members of population; 
6. Evaluation of new probabilities of operators selection3 ; 

7. Selection of members of the offspring population; 
8. i:=i+1; 
9. If stop condition not satisfied, then go to 3; 

10. End. 
This method can be applied both in the case of operators changing one individual 
(like mutation) and of those affecting two or more individuals (like crossover). In 
the first case, there is no problem in executing operators, as this depends only 
on personal preferences. In the second case, two (or more) individuals must 
choose the same operator to make it executable. It is necessary to implement a 
mechanism of searching for population members with the same preferences and 
this phenomenon is very similar to situations from nature. 

The parameters qij are closely related with values of the fitness function or, 
more precisely, with changes of t his function resulting from the activity of the 
genetic operators . It is possible t o attribute every chauge of fituess functiou to 
a given operator, because only one operator modifies one member of population 
in one generation. Of course, during one geueratiou different iudividuals use 
different operators, but one individual is changed only by the chosen operator. 
The formula (2) shows how the quality of the operator is obtained . 

{ 

x; ; (t) + (t) 
!]ij(t + 1) = !JO + f(Q(t ),x;(t)) ex* qi.i 

!]ij(t) 
for i=l 

for other i 
(2) 

where: 
3 In real use it is not necessary to co mpute these probabilities, because the process of 
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q;j(t), q;j(t + 1)- quality of the ·i-th operation for the j-th individual in consec-
utive generations; 

l - number of the chosen operator; 
qo - a small credit value4

; 

f ( .. ) - normalizing function, its arguments can be: 
Q(t) -the best solution at the moment t (the quality function value); 
:c.i ( t) - the mean value of improvements of the quality function of the individual 

j (and its ancestors) during evolutionary computations; 
:c;.i(t)- an improvement of the problem's quality function, obtained by the ·i-th 

operation for the j-th member of the population, defined as follows: 

{ 

Q(t)- Q;j(t) 
Xij(t) = ~ij(t)- Q(t) 

minimization 
maximization 
no improvement 

Q;j(t) - solution of the j-th individual, obtained using ·i-th operator; 
a - a coefficient of forgetting E (0, 1). 

The first element of the formula (2) - qo plays a role of a credit - a small 
value, which supports small level of q;j even if the operator does not give any ad
vantages for a long terrrt. Dropping this value to zero would eliminate operation 
corresponding to it for current individual and for its possible offspring. This 
fact is not advantageous, because it is possible that the excluded operator will 
work better on other stages of the evolution process. For exploring operators 
like mutation it is often necessary to let them work even without any visible 
improvement of the fitness function. 

The second term in addition is a normalized value of an improvement of 
the problem's quality function in the current generation. The improvement of 
the quality function can be taken into account in two ways: improvement of 
the globally best solution (which is more desirable) and improvement of the 
offspring in relation to its parents. Both possibilities can be used in formula 
(2) with appropriate weights (higher for the first and lower for the second way). 
The normalization function is responsible for making changes of the quality 
function independently of the character of the problem. It is easy to imagine 
a problem where a small change of quality function (for solutions found in 
consecutive generations) is for instance 105 and another one, where this value 
is typically 1010 times smaller. This situation would require a long process of 
tuning the parameters of the formula (2), if the normalization function were 
not applied . After adding normalization the range of searched optimal values 
of parameter qo and a can be significantly decreased. The exact form of the 
normalization function is not given in formula (2). It is possible to use any 
function that transforms the values of quality function improvements into the 
numbers from the range (0, 1) and higher positive changes are kept higher after 
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normalization. The successfully tested functions are: the best value of quality 
function reached by optimization process and the mean value of improvements 
during the algorithm simulation. More information about normalizing function 
will be given further in this paper. 

The third part of the formula (2) is responsible for storing previous achieve
ments of an operator multiplied by a forgetting factor ex. The parameter ex is 
responsible for balancing the influence on the quality factor of an operator from 
old and new improvements. It should be noticed that some genetic operators 
may achieve good results in some phase of simulation, and then exhaust their 
capabilities. On the other hand, the remaining operators, probably better in the 
subsequent phases, would have small probabilities of appearance, if the factor ex 
had not been introduced. So, it would take a lot of time to change this situation 
and the process of genetic computations would be slowed down. The effect of 
forgetting former achievements can overcome this problem. When operators do 
not change the globally best solution for some time, the probabilities of opera
tors become small. After every generation only the value of qij bounded with 
the chosen operator is updated, the other ones remaining unchanged. Only one 
operator is executed in one generation for one individual, so there is no reason 
to change the coordinates corresponding to the other, not selected operators. 
Setting the value of ex to 1 can cause the situation of domination of operators, 
which do not produce any profit , but were good in the early stages of evolution
ary process and consequently slow down computations. On the ot her hand, the 
value of 0 causes the situation where the quality of operator relies only on the 
most recent information. It gives the situation of almost equal probabilities of 
appearance of all operators, because significant improvements of quality func
tion are rare and all operators' qualities would have the same values during the 
major part of computation. In the case of prolonged lack of positive achieve
ments of an operator, its value % is established at the level described by the 
formula (3) : 

%( oo) = lim q;j(t) = _!l!!_ 
t-+oo 1 -ex 

(3) 

where: 
q;j(oo)- a limit value of Qij(t); 
all other symbols being like in the formula (2). 

It is obvious that formula (2) reduces itself to a sum of infinite convergent 
geometric sequence (ex < 1) when the profit is zero for a long time. 

2.2 . Parameters for pra ctical use 

The formula (2) requires two numerical parameters qo, ex , and a normalizing 
function. The process of selecting these elements is not very complicated and 
is described below. Generally, the parameter qo ought to be smaller than the 
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belong to the range (0, 1) to assure convergence of geometric sequence, generated 
by formula (2) . The span of the practically used values of o: is narrower (0.6, 1). 
Too small values of o: cause lack of positive feedback between the high quality 
of an operator and its frequency of appearance, because all qualities quickly 
become equal for all operators. Too big values cause practically elimination of 
worse operators at the beginning of the evolution, though they might become 
very useful later. Even selecting o: = 1 should not bring overflow errors (not 
convergent geometric sequence), because computations last a finite number of 
iterations. 

It is also important to assure non-zero starting values of Qij (Qi;(O)), because 
probabilities corresponding to operators cannot be zero. In the case of qualities 
equal zero only one operator chosen randomly or manually at the beginning of 
simulation would appear all the time until the end of evolutionary computations. 
A good idea for setting the initial values of q;j is to use the formula (3). This 
value is achieved when no improvement is detected and that situation appears 
at the beginning and also at the end of simulation. 

Beside the factors o: and qo the third unknown parameter in the formula 
(2) is the normalizing function. Its role is to make changes of problem's quality 
function (x;j(t)) independent of the specific problem. It makes possible to choose 
values of o: and q0 more universally. The simplest way of solving this problem 
is to take the best-found solution as a normalizing function. But this has some 
shortcomings: 

• in the case of negative values of quality function it is necessary to use a 
modulus of the function: 

f(Q(t), x.i(t)) = IQ(t)i (4) 
where: 
Q(t) -the best solution at the moment t; 
ij(t) - the mean value of improvements of quality function; 

• in the case the quality function approaches zero , its normalized value 
could infinitely increase. Scaling and translation of the quality function 
can overcome this problem (parameters a and b used in (5) are strictly 
connected with the specific problem): 

f(Q(t),ij(t)) = b + aQ(t) (5) 
where: 
Q(t) - the best solution at the moment t ; 

ij(t) -the mean value of improvements of quality function; 
a, b - chosen coefficients; 

• in the situation of a change in the sign of the quality function, the method 
described above can fail. In that case a good solution is to use the mean 
value of improvements of the quality function, calculated separately for 
each individual of the population: 

f(Q(t), ij(t)) = ij(t) = ij(t- 1) * (t+- 1) + Xij(t) (6) 
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Q(t) -the best solution at the moment t ; 
i.i(t) - the mean value of improvements of quality function ;. 

The latter case seems to be the most interesting. The main advantage of this 
function is adaptation. The mean value of improvements decreases during com
putation and also possible improvements become smaller on more advanced 
stages of evolution. This effect compensates for the decreasing intensity of evo
lution during computations. 

The formulae (3) and (2) rnay be also used as a basis for determination of 
values of a and q0 . It is possible to accept the assumption that the quality 
factor of an operator can change its value in the first iteration by not more than 
1.0 (using normalizing function as in formula (6) 5 ) : 

Xij ( t) 
-:-:-:::-:---:--'--''--:---:-:- < 1. 0. 
j(Q(1), Xj(1)) -

(7) 

This should be an important change in relation to the coefficient Qij ( oo) amount
ing to , for instance, its 50%, which leads to the following dependence: 

qo 
-- *0.5 = 1.0 
1- a 

where all symbols in (7) and (8) have the same meaning as in (2) and (3). 

(8) 

Assuming the value of c~ = 0.96 we obtain qo = 0.2 and %(oo) = Qi.i(O) = 
2.0. The here described way of finding the parameters of the formula (2) is 
only a rough scheme, but it gives satisfying values. Generally, the method of 
adaptive selection of operators is resistant to the selected values of parameters. 
They can be selected from a wide range without any detrimental effects because 
the main role in valuing the operators is played by their behavior. 

It is also possible to establish vectors of values a , qo and Qij(oo), with co
ordinates specific for every operator. When there is an "a priori" information 
about the behavior of operators there may be a situation where different val
ues of parameters for the operators may be used, but in most cases it is not 
necessary because the main role is played by the achievements of operators. 

3. The non-controlled and controlled selection methods 

3.1. A brief survey of t raditional selection methods 

In traditional evolutionary algorithms the following methods of non-controlled 
selection are used (Michalewicz; , 1996, Goldberg, 1989): 

• The roulette method. Individuals of the offspring population are selected 
in accordance with probabilities which are proportional to the values of 

5 In that case the mean value of improvements equals the value of improvement. 
6'1"'1., : ~ .. .... 1,,,.. ; ,. ... 1 .. ,..,.,.., ... 1-. ............ ....1 ,..., .. .... ....,. • ., ....J,, ,... ;.. ,... ...l "~'""'"'';'"V'\"'"' f.-.-. u.: ... l .., ,,..,. , . ; ,... ,, .., ,,...,1,, 1'\CO ,... .f th r. ,..... ..., , ..... , ..,.., _.. _ 
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their fitness function. An expected value of the offspriug for the member 
of the parent population can be written as: 

Fr(t) 
Er(t+1)=tt* . +A (9) 

'\'}-!' Ft 
L.,J=l } 

where: 
Er(t + 1) - an expected value of offspring of l-th individual in the t + 1 
iteration; 
tt - the size of parent populatiou: 
A - the size of offspring population; 
Fr ( t), F; ( t) - value of fitness function for the l-th or j-th iudividual in the 
iteration t. 

• The method of the best individual selection. In this method the followiug 
formula is applied: 

(t 1) { 
0 for F1(t)- Fm.in(t) < 0 

'n[ + = 
1 for Fz(t)- Fmin(t) 2 0 

(10) 

where: 
Fmin(t)- all individuals, whose fitness exceeds this value, enter the next 
population; 
n1 - the number of offspring for the member l; 
all other symbols are the same as in formula (9). 

• The method of deterministic roulette is described by the function: 

n1(t + 1) = f (M * . F~~) . ) 
'\'J-Il F (t) 
L.,J=l J 

where: 

(11) 

n 1(t + 1) - number of offspring of l-th individual in the next generation; 
f( .. ) - a function converting a real value to an integer value: 
tt, A, Fz(t), Fj(t) - have the same meaning like in formula (9). 

• Selection by stochastic remainder method with repetitions is a kind of 
combined method . Its first phase is based on the deterministic roulette 
method ( 11). The free places remaining after the first part are filled using 
the fractional parts of "individuals" by traditional roulette method, as it 
is described by the formula (12). 

E(n1(t + 1 )) = .f(:c1(t)) 

( 

i~A . ) xz(t)- f(:c,(L)) 
+ tt- L...,; j(:c;(t)) * )'i-i'+A(,. ·(·I·)- j'f,. ·(t))) 

J=l "--".i=l .DJ ' . \.·r; .J 

(12) 

where: 
:c1(t), Xj(t) -an expected value of offspring in the roulette selection (9), 
denoted Xi or x j for shortness; 
f( ... ) - a function, which returns an integer part of the argument; 
all other symbols being like in formulae (9) and (11). 

• Tournament selection is the method, in which tt times a competition be-
-l- ~ . ........... _. J. ....... ( ....... _ , ...... J..! ~ ........... _ ......... ..... '\ ----~ ..1 ......... 1 .. - 1------ ~ -·-1 ~ --~ -l ___ l _ ~ - -- 1 _ j 1 
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and a better one is associated with the descendant populat ion. The ex
pected value of the l-th individual offspring is shown in formula (13): 

E( )
- (J.L+..\-l+1)k-(J.L+..\-l)k 

1 t + 1 - j.L * (J.L + ,\)k (13) 

where: 
E1 ( t + 1) - an expected value of offspring of l- th individual in the t + 1 
iteration, l E (l..J.L + ..\); J.L - the size of parent population; ,\-the size of 
offspring population; k- the size of the tournament (number of randomly 
chosen individuals, from which the best is a winner). 

This list does not exhaust the whole domain of different selection methods; 
there are other very interest ing ideas, like the ranking selection (Baker, 1985 
and Goldberg, Deb and Korb, 1991) and the genetic algorithm with varying 
population size (Arabas, Michalewicz and Mulawka, 1994), and many others. 
The traditional roulette approach in stationary evolutionary algorithm gives 
usually poor results. After a long time of computations it stabilizes oscillat
ing about some value far from the global extremum. Poor properties of the 
roulette method were criticized in very early works on genetic algorithms (De
Jong, 1975). Much better results may be achieved using the selection of best 
individuals. However, this method does not produce a high level of pressure 
for the population development. The deterministic roulette method introduces 
a very strong pressure for the population development but it quickly loses the 
diversity of population and consequently the algorithm terminates at a far lo
cal extremum. The selection by stochastic remainder with repetitions is very 
similar to deterministic roulette but behaves better, because it assures a higher 
level of population diversity. 

Having analyzed the traditional methods of selection we can conclude that 
they can not be controlled nor adapted. Thus, they do not make it possible 
to influence the process of selection and development of population by some 
external factors. The histogram and mixed selection methods presented in this 
paper allow for the fulfillment of this condition. 

3.2. The new approach 

3.2.1. H istogram selection 

In the histogram selection, described by the formula (14), a list of individuals of 
different values of the fitness function is created (this list resembles a histogram): 

( 
F1(t) ) 

'nl ( t + 1) = J J.L * j-s . 
I;1= 1 F1 (t) 

(14) 

where: 
s - number of values on the list ; 
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This list is usually shorter than a number of individuals in the population, 
because there are usually repetitions of the same solution and this fact is con
sidered only once in the list produced by the histogram selection. Next, the 
mean value of the fitness function is calculated using only once each value from 
the list , no matter how many individuals are connected with this value. Each 
individual (or rather value from the list) propagates to the offspring population 
the corresponding number of individuals. First, the particular fitness function 
is divided by a sum of all values from the list. Next, this quotient is multiplied 
by a size of base (parent) population and finally rounded to the nearest integer 
value. In the case the calculated number is lower than the size of base popu
lation, an appropriate number of best creatures that were rejected in the first 
phase is added to the population. In the opposite case some of the worst indi
viduals are removed. Fluctuations of the obtained size of the base population 
are caused by approximation of calculated real values by integers. 

The method of histogram selection delivers a number of interesting features. 
Selection is carried out in a deterministic way, so that there is no possibility of 
the best individuals dying out, which can occasionally happen in the probability 
based methods. It also enables the maintenance the population diversity in a 
simple manner. In this approach the mean value of the fitness function depends 
only on the values of this function existing in the population, not on the number 
of appearances of these values in the population. Thus, the best individuals 
are not advanced excessively. Worse individuals have also got a chance to be 
selected to the new population. However, there is a possibility of losing good 
individuals described by the same fitness function values but with completely 
different genetic code. Thus, histogram sele~lon may be extended so as to 
distinguish solutions having the same values of fitness function but representing 
different individuals. In the case of discrete function optimization, the simplest 
manner to distinguish individuals is to check if their genetic codes differ at 
least on a single position. When optimizing continuous functions it is also 
possible to check the similarity of individuals. In this case one should introduce 
some neighborhood of the respective point in which two solutions are considered 
identical. 

3.2.2. Mixed selection 

As follows from the previous point, histogram selection operates effectively by 
not allowing for a too early convergence of the algorithm. Its characteristic 
feature is the lower level of selective pressure towards promoting the best in
dividuals than in the deterministic roulette. On the contrary, the determinis
tic roulette method outstandingly selects the best solutions, which results in 
rapid loss of population diversity and consequently - premature convergence. 
Thus, these two methods have different faults and advantages and a method 
connecting good features of these two methods can work better than each of 
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both methods. This method consists of two parts: histogram selection and de
terministic roulette, which are selected in random during the execution of the 
algorithm. The performance of this method is explained in Table 1. 

Table. 1. An example of mixed selection performance (J.L-parent population, .A-off 
spring population). 

Iteration J.L .A J.L .A 
Histogram Selection Deterministic Roulette 

1 5, 5, 4, 3, 2 1, 2, 3, 1, 4 5, 5, 4, 3, 2 1, 2, 3, 1, 4 
2 5, 5, 4, 3, 2 0, 2, 3, 2, 4 5, 5, 4, 4, 3 0, 2, 3, 2, 4 
3 5, 5, 4, 3, 2 1,2,3,2,4 5, 5, 4, 4, 4 1, 2, 3, 2, 4 

Deterministic Roulette Histogram Selection 
4 5, 5, 4, 4, 3 5, 5, 4, 3, 2 

In Table 1, an example of certain fit ness function maximization is considered. 
Two cases of possible sequences of appearance of the component selection meth
ods are provided. Particular fields of the table comprise the values of the fitness 
function, where each number corresponds to one individual. To simplify and 
better illustrate advantages as well as faults of two selection methods, lack of 
improvement in this small part of the algorithm performance was assumed. Such 
situation occurs very often during computations. In the example of Table 1 the 
population size was f..L = A = 5 for the strategy (f..L +.A.). The above hypothetical 
example of evolutionary computations shows the characteristic properties of the 
proposed method. The deterministic roulette selection exhibits the tendency to 
fill up the parent population with almost identical and best individuals 7 , while 
the histogram selection assures to preserve the parent population diversity. As 
follows from this example, histogram selection also has the property of repair
ing the composition of too uniform parent populations. The two versions of 
selection (histogram and the deterministic roulette) supplement each other. 

It is possible to control the properties of the mixed selection operation by 
introducing the probability of appearance of a particular selection version. The 
more frequent appearance of the roulette selection causes higher pressure to
wards promotion of the best solutions, which can in some cases (when there is a 
high level of population diversity) speed up the computations. On the contrary, 
histogram selection increases the level of population diversity, paying for it by 
the weaker pressure towards the promotion of the best individuals. Due to this 
mechanism it is possible to examine a given search area more effectively. 

This approach allows the adjustment of features of the selection operation to 
the current requirements of the population (to preserve the diversity of the pop
ulation or to intensify the selection pressure). The adaptation of probabilities 

. ro. l . ! - ...• LL - J t'- - LL ~ ...., .,. ... ,......, 1.. .,...,.. ....,,,l...,t-: '"' '"' 
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of selection operations may be derived from statistical properties of the popu
lation. An idea of this method is shown in formula (15) (in all the equations 
below there is Ph = 1 - Pd - because one of selection methods must appear). 

Ph(t + 1) = 

{ 

Ph(t) * (1- a) 
Ph(t)*(1-a)+a 

Ph(t) * (1- a)+ 0.5a 

where: 

for 
for 

for 

nw:c(Fav- Frn.;n, Frnax - Fav) > 3a(F) 
nwx(Fau- Frn.;n, Frna a: - Fav) < 0.5a(F) 

{ 
0.5a(F) :S Tnax(Fau-. Frn.;n,Frnaa:-Fav) 
max(Fav- Fmin, Fmax- Fav)::; 3a(F) 

(15) 

Ph - probability of histogram selection appearance (1 -Ph is the probability of 
deterministic roulette method Pd); 

max( ... ) - a function which returns a bigger value of its arguments; 
Fav, Fmin, Frnax -average, minimal and maximal values of fitness function in 

the population; 
a( F) - standard deviation of fitness function in the population of solutions; 
a - a small value to change probability Ph· 

If particular individuals are described by a too small standard deviation of 
the fitness function (a( F)) with respect to the extent ofthis function (max(Fa·v
F min, F max- Fau)), then it is desirable to increase the probability of appearance 
of histogram selection. On the contrary, when the diversity of the population 
is sufficient, the probability of the deterministic roulette selection can be in
creased to possibly speed up the evolutionary computations. If parameters of 
the population are located in some range, considered advantageous, we may 
keep approximately the same probabilities of appearance for both methods of 
selection. In the experiments the statistic parameters of the population: 0.5 
and 3.0 have been found empirically because they yielded the best results. The 
value of the parameter a has been fixed to 0.05. The method of tuning the 
parameters of the selection operation has also been practically tested. It has 
been found that this approach is better than selection with constant (even if 
selected best) values of Ph and Pd. 

4. Simulation results 

4.1. Solved problems 

To assess the usefulness of the proposed methods a number of experiments 
were performed. Tests were carried out for widely known traveling salesman 
problem (TSP) of 1002 cities and for scheduling of time-dependent jobs on a 
multiprocessor system (1000 tasks). 

Solutions for TSP were encoded as lists of cities to be visited in an order 
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used: "problem blind"- random and heuristic. All operators were designed to 
assess problem limitations - the offspring always encoded valid solutions. The 
operators were: 

• mutation - a random exchange of two cities in the list of cities; 
• crossover - starting from the first city of one list, next cities are chosen 

in turn from one or second list (closer to the previously accepted city 
is selected from the parent individual and introduced to the offspring), 
preserving limitations of the problem; 

• inversion - a fragment of the list is used in the reverse order; 
• transposition - a fragment of the list of cities is moved to another place 

in the list; 
• 2-optimal method - exchange of two chosen edges in the route, if it gives 

a shorter route (based on the widely used T-optirnal method (Syslo, Deo 
and Kowalik, 1995) for approximate solving of TSP); 

• neighborhood operator (two versions) -exchanges a city in the route for 
other, chosen from the list of the closest ones in the geometric sense (a 
list of several closest cities is generated for every city during initialization 
of the algorithm). The "neighborhood-1" operator simply exchanges a 
city frorn the list (found on the path) with a randomly chosen one. The 
"neighborhood-2" operator takes a city close to selected one from t he path, 
moves all cities between them by one position an inserts the picked city 
next to the selected one. 

The members of the populat ion for scheduling were coded as lists of tasks wait
ing for processing. A graph of time-dependencies was also introduced into the 
algorithm in the form of labels of waiting tasks. All operators are designed to 
assess valid solutions. Only "problem blind" operators were used (similar to 
those used for TSP): mutation, inversion and transposition. 

4.2. The probability control 

Fig. 1 shows dependence between the quality of an operator and its frequency 
of appearance for selected operators (only TSP). All data are collected from 
the whole population (not from one member) and that is why there is no exact 
and linear proportion between quality and frequency. Fig. 1b shows a very 
big jump of frequency and very small increase of quality - it can be caused 
by an important improvement of fitness function of one member, which has 
many "children" and these children also have chosen this operator. It would be 
difficult to show data from one individual during the iterations, because it lives 
only for one epoch. On the other hand it wold be difficult to trace the offspring 
of one, chosen individual, because it may die out or to the contrary, there can 
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Figure 1. The dependence between a quality fac tor of an operator (at the bottom of 
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By analyzing these pictures it clearly can be seen that a better behavior of an 
operator results in an increase of frequency of its appearance and consequently 
speeds up evolutionary computations (which can be seen from Tables 2 and 3). 
Operators, which do not bring any contribution are not eliminated, but have 
approximately constant frequency. It is very likely that they behave in a way 
like mutation does and have exploration properties. They are very important, 
but they cannot appear too often, due to the possible effect of losing convergence 
to the optimal solution. 

In Table 2 the influence of the factor o: on genetic computations can be 
observed. Data from 75 simulations are collected and their mean values are 
presented for different numbers of iterations and values of factor c~. 

Table 2. A comparison of data obtained from 75 simulations (mean value) for several 
numbers of iterations and values of forgetting factor a (TSP). The row labeled "const" 

shows results obtained using the same probabilities for all operators. 

0 100 500 1000 2000 5000 10000 20000 50000 
const 293042 289893 2821!)1 278390 275278 272748 271492 270593 270376 
Cl=O.O 293232 28!)193 280809 277246 274744 272686 271683 270999 270258 
Cl=0.1 293050 288291 280065 276903 274605 272558 271527 270937 270246 
Cl=0.2 293085 288247 279505 276229 274006 272152 271251 270686 269956 
Cl=0.3 203096 288066 279729 276762 274455 272553 271648 271148 270453 
Cl=0.4 293036 287667 27!)345 276256 273981 272188 271373 270705 269973 
Cl=0.5 293072 287452 278798 275965 273765 271934 271257 270885 270236 
Cl=0.6 293312 287840 278448 275956 274019 272234 271446 270972 270222 
Cl=0.7 292973 286751 278052 275718 273837 272175 271579 271221 270671 
Cl=0.8 293120 286729 277116 275137 273309 271715 271187 270891 270161 
Cl=0.9 292916 285513 276244 274346 272815 271430 270!)84 270682 270154 
Cl=l.O 292968 284877 275277 274980 274299 272262 271030 270588 270121 

All simulations were started from solutions obtained from a simple algorithm 
that generates a route taking the city closest to the last visited one. When 
starting from randomly chosen cities it gives different solutions and works much 
faster than random initialization of the solution population. The strategy (J.L+.\) 
was used with J.L = ,\ = 608 . The optimal solution for the considered task is 
known and equal 259045. The best-found solution by described program is by 
3% worse after 106 epochs. 

Considering the data from Tables 2 and 3 it is easy to see that the best results 
and the fastest computations can be obtained using o: E (0.6, 0.9). It should be 
noticed that setting o: = 0 does not result in equal values of probabilities for all 
operators because it does not eliminate the influence of their behavior. It only 
provides for the shortest period of remembering of their achievements, which 
lasts till the next execution of that operator. 

8 Arabas (2001 \ sue:e:ests that the best results of evolutionarv comoutations can be obtained 
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Table 3. A comparison of data obtained from 25 simulations (mean value) for the 

selected numbers of iterations and values of the forgetting factor a (scheduling of 1000 
tasks). The row labeled "const" shows results obtained using the same probabilities 

for all operators. 

0 50 100 200 500 1000 2000 5000 10000 20000 
const 2342.1 2125.7 2036.0 1924.7 1740.3 1588.4 1445.5 1301.4 1232.0 1190.6 
a=O.O 2348.6 2128.4 2036.6 1921.6 1744.8 1591.7 1450.3 1304.6 1234.2 1190.7 
a= 0.1 2357.6 2134.5 2042.8 1927.6 1739.8 1590.2 1444.5 1301.8 1232.2 1191.1 
a= 0.2 2345.1 2136.5 2042 .5 1927.6 1742.8 1594.5 1450.9 1305.1 1235.2 1192.1 
a= 0.3 2353.9 2121.1 2034.6 1917.3 1732.4 1588.0 1446.9 1302.3 1232.0 1190.9 
a= 0.4 2339.0 2119.3 2024. 1 1923.8 1744.8 1593.1 1450.4 1304.8 1235.3 1191.5 
a= 0.5 2342.5 2138.9 2046.9 1921.2 1744.4 1593.9 1453.5 1301.4 1232.2 1191.1 
a= 0.6 2332.3 2108.6 2014.3 1906.9 1732.0 1582.9 1447.9 1299.9 1231.3 1189.7 
a= 0.7 2337.4 2115 .2 2024.9 1911.4 1736.7 1590.0 1451.1 1303.3 1235.1 1190.8 
a= 0.8 2331.5 2124.9 2025.9 1915.3 1730.9 1588.8 1450.0 1305.4 1233.7 1190.6 
a= 0.9 2326.8 2097.4 2006.0 1894.9 1715.9 1571.0 1441.7 1300.1 1234.3 1190.9 
a= 1.0 2344.5 2128.4 2022.7 1888.9 1686.0 1532.1 1413.5 1329.2 1290.3 1257.6 

It should be noticed that the biggest influence of the adaptation method 
takes place at the early stages of the evolutionary computations (0-10000 itera
tions for TSP and 0-2000 iterations for scheduling). This is because the process 
of evolution is fast then and the operators bring a lot of information about it. 
This information enables to choose operators effectively. At the late stages of 
the evolution process the improvements of individuals are rare and the qualities 
of operators become almost equal. That is why the results are similar to the 
ones of the method without probability tuning. 

The parameters of simulation for scheduling are the same as in TSP. Optimal 
solution is unknown, the best found one equals 1121 (after 106 epochs). Optimal 
values of a are from the same range as before, but differences between solutions 
for various a are bigger than in the case of TSP. This fact is related to the 
operators used. For TSP both "blind" and knowledge-based operators were used 
and they played the main role in computations. In scheduling only randomly 
working operators generated improvements and properly tuned probabilities of 
their appearance are much more important than in TSP. 

4.3. The method of controlled selection 

The empirical analysis of select ion operation has been carried out for the two 
described problems. An analytical description of effects of the selection oper
ation on the quality of the evolutionary algorithm is very difficult. Therefore, 
it should be done experimentally. The results of simulations are provided in 
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Table 4. Results obtained for difi'erent methods of selection: I - classical roulette, 
II - deterministic roulette, III - selection by stochastic remainder method with rep
etitions, IV - tournament selection, V- best individuals selection, VI - histogram 
selection, VII - mixed selection with constant probability (Ph = 0.45 and Pd = 0.55), 

VIII - mixed selection with automatic tuning of probabilities. 

Scheduling of time dependent jobs 
Iteration I II III IV v VI VII VIII 

0 2341.1 2355 .4 2350.1 2331.9 2336.3 2353.7 2357.0 2357.3 
100 2154.7 2064 .6 2058.7 2108.0 2062.8 2091.5 2075.7 2082.1 
500 1961.4 1760.0 1767.7 1821.2 1767.8 1801.0 1765.1 1772.5 
1000 1854.7 1613.5 1628.6 1661.3 1643.6 1632.6 1609.5 1611 .7 
2000 1725.5 1493.7 1528.0 1518.6 1550.0 1489.2 1473.4 1480.1 
5000 1590.8 1424.1 1466.9 1373.7 1480.6 1396.6 1348.4 1352.1 
10000 1581.8 1386.9 1432.5 1306.3 1442.3 1364.8 1287.8 1288.6 
20000 1577.7 1364.3 1402.1 1256.5 1422.7 1341.9 1241 .6 1241.7 
25000 1581.4 1358.7 1392.5 1244.2 1413.2 1335.7 1227.3 1229.0 

Traveling salesman problem 
Iteration I II III IV v VI VII VIII 

0 293985 .9 292714.2 292920.2 293120.4 292967.8 292977.5 293108.7 292834.0 
100 341619.9 288221.9 288825.4 292679.0 288479.5 290328 .1 290314.7 289269.1 
500 461707.2 280190.6 280566.5 285446.8 280392.8 282651.9 282931.2 281813.7 
1000 563016.9 276809.3 277017.5 281450.0 276835.1 278948.1 279693.6 278341.4 
2000 575346.3 274590.4 274153.3 278057.3 273991.3 275782 .5 276557.0 275499.3 
5000 673394.7 272519.9 272322.5 275068.4 272245.5 272920.8 273336.3 272899.9 
10000 697337.3 272085.2 271452.4 273558.0 271656.8 271561.3 271830.9 271981.1 
20000 683691.8 271998.7 271003.3 272645.0 271451.5 270769.1 270970.9 270972.4 
50000 717214.7 271951.2 270623.8 271634.0 271406.7 270289.0 270240.2 270150.1 

Those results show average values for 30 simulations. In each case the results 
obtained for the best individual in a given iteration are provided. Except for the 
selection operation all other processes are assumed to have identical parameters. 
The tables comprise results at different stages of evolution so as to investigate 
the changes in operation of the selection methods. As follows from the data 
presented, mixed selection is superior to other methods considered . This is due 
to the adequate balance between selective pressure and ability of preserving the 
population diversity. Both versions behave in quite similar way. It should be 
noted that the deterministic roulette method is fast in the initial phase of evolu
tionary process. However, in further stages its advantage diminishes due to the 
high level of unification of the population. The histogram selection is somewhat 
slower in the initial phase than deterministic roulette and it behaves very well in 
the TSP problem. The tournament selection is close to the proposed methods 
and has very good parameters, but is also a little bit slower (about 2-4%) than 
the mixed approach. The stochastic remainder method with repetitions resem
bles the deterministic roulette. The method of selection of best individuals is 
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TSP (starting from not a randomly init ialized population) it is even divergent. 
The promising properties of mixed selection depend on the probability of its 

component appearance. In order to find better values of these probabilities a 
number of simulations have been carried out in the range (0, 1) with step of 0.1. 
Results of simulations are presented in Table 5. 

Table 5. A comparison of the mixed selection performance for various constant proba
bilities on different stages of the evolution. 

Scheduling of time dependent jobs 

Ph Pd 0 500 1000 2000 5000 10000 250000 
1.0 0.0 2343 .7 1772.2 1626.4 1487.0 1399.2 1366.3 1339.4 
0.9 0.1 2337.7 1773.7 1626.4 1491.8 1375.3 1314.4 1264.5 
0.8 0.2 2330.1 1759.9 1609.8 1476.9 1359.8 1303.0 1247.2 
0.7 0.3 2358.6 1790.8 1634.4 1490.4 1354.6 1289.3 1230.9 
0.6 0.4 2362.5 1761.6 1612.2 1475.4 1360.3 1298.6 1239.7 
0.5 0.5 2334.4 1772.3 1611.6 1468.1 1343.6 1287.3 1229.3 
0.4 0.6 2344.3 1759.6 1598.8 1475.5 1343.5 1281.4 1223.8 
0.3 0.7 2355 .6 1754.5 1600.5 1462.1 1336.8 1280.2 1225.9 
0.2 0.8 2336.0 1751.2 1595.1 1468.0 1351.6 1300.1 1246.6 
0.1 0.9 2338.5 1741.9 1590.8 1472.1 1363.8 1309.3 1251.4 
0.0 1.0 2329.6 1755.9 1610.1 1481.5 1410.3 1379.1 1345.2 

Traveling salesman problem 

Ph Pd 0 500 1000 2000 5000 10000 250000 
1.0 0.0 293022.1 277965.1 275016.6 273035.9 271311.6 270792.8 270725 .1 
0.9 0.1 292851.7 278039.0 275299.7 273235.3 271814.0 271131.8 270770.8 
0.8 0.2 292709.4 279030.7 275583.0 273388.9 271634.6 271089.5 270729.2 
0.7 0.3 292532.3 278236.7 275771 .7 273884.7 272192.5 271638.5 271425.7 
0.6 0.4 292526.1 278653.2 276049.3 274289.7 272505.8 271714.0 271106.4 
0.5 0.5 293037.0 279175.8 276299.6 274511.1 272901.5 271964.5 271505.1 
0.4 0.6 293456.6 279016.6 276748.7 274525.0 272961.3 272096.0 271217.3 
0.3 0.7 294227.5 277955 .7 274835 .8 273062.0 271609.1 271039.0 270527.3 
0.2 0.8 292850.5 276754.4 274105.8 272713.7 271666.7 271177.8 270856.0 
0.1 0.9 293057.8 277903.6 275011.4 273538.0 272243.0 271964.4 271377.1 
0.0 1.0 292867.9 277188.1 275059.4 273288.6 272100.4 271897.6 271870.1 

One may notice that good parameters for mixed selection are located in the 
range 0.4 <Ph < 0.6 (Pd = 1-Ph), especially for the scheduling problem, where 
only blind operators were used and the method of selection plays the main role 
in the development of the population. It has been observed that the best values 
for this problem are in the vicinity of the point (Ph = 0.45, Pd = 0.55). In the 
case of TSP, there are several values of Ph and Pd , which give a good behavior 
of the algorithm. To solve the TSP problem several knowledge-based operators 
were used and selection is not the only one factor, which directs the evolution 
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4.4. The comparison of computational load for the investigated 
methods 
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The fact that evolutionary algorithms require long time of computations is 
widely known. In this section a short comparison of the computational load 
for one previously known method and the proposed methods is made. Results 
have been obtained on a rather slow PENTIUM-100 machine, using LINUX 
operating system and a program written in C++. Simulations have b'een per
formed for the scheduling problem for three cases: 

• tournament selection without tuning of the operators' probabilities; 
• mixed selection with constant probabilities of appearance of its component 

selection methods and tuning of the operators' probabilities; 
• mixed selectildn with adaptation of probabilities of appearance of its com-

ponent selection methods and tuning of the operators' probabilities. 
All performed simulations (10 for each case) have lasted 10,000 iterations, min
imum, maximum and average times of execution have been stored. The results 
are presented in Table 6. 

Table 6. A comparison of execution times for selected methods. 

Method Minimum time [s] Average time [s] Maximal time [s] 
Tournament selectiOn 
without improvements 5452.5 5489.6 5600.8 
Mixect selectiOn with 

constant probabilities ... 5479.5 5507.9 5547.9 
Mixed selectiOn with 

adaptation of probabilities ... 5495.8 5515.3 5584.8 

As it can be seen, the proposed methods do not increase the computational 
load seriously (by about 0.47%). Hence, the advantages of the proposed methods 
prevail over the increase of the computational burden. 

5. Conclusions 

An evolutionary algorithm is a random process and this randomness is the 
basis of its operation and cannot be eliminated , although it causes a rather 
slow operation of the algorithm. It is possible, however, to slightly direct the 
evolutionary computations toward betters solutions using heuristics or methods 
inspired by nature. This paper describes two examples of such methods. They 
improve (or enable) the self-control of the evolutionary algorithm. 

The methods described are not limited to problems shown in this paper and 
may be widely used to improve the performance of the evolutionary algorithms. 
They ensure a speedup of the computations and a better final solution than the 
traditional methods, based on constant probabilities for genetic operators and 
. .. . . - -
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Further possibility of developing the adaptive abilities of the evolutionary 
algorithm consists in application of principles of evolutionary programming, 
which gives not only the possibility of adapting the parameters of operators and 
selection, but also the evolutionary search for new operators, better adjusted to 
the specific features of the solved problem. 
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