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1. Introduction 

Stability analysis of scalar optimization problems has attained the stage of de
velopment permitting the syntheses in the form of monographs or books, see 
Bonnans and Shapiro (2000), Malanowski (2001). For vector optimization prob
lems formulated in partially ordered spaces, stability analysis is not so advanced. 
The results obtained thus far depend heavily on properties of cones, which gen
erate order structures of spaces. In investigation of upper types of continuity 
(Hausdorff, Lipschitzian, Holder) of efficient points of a given set A(u) depend
ing upon a parameter u, one of the crucial requirements is that the ordering 
cone K have nonempty interior (see e.g. Bednarczuk , 2002a, 2002b ). 

We define order-Lipschitzian properties of set-valued mappings. Our ap
proach is inspired by that of Papageorgiou (1983) who introduced order-Lipschitz 
continuity for functions with values in Banach lattices. For other concepts of or
der continuities of set-valued mappings and functions see e.g. Nikodem (1986), 
Papageorgiou (1983, 1986) , Ke (1996), Sterna-Karwat (1989), Penot and Thera 
(1982). The definitions we introduce allow us to investigate stability of efficient 
points without the requirement that the ordering cone K has a nonempty inte
rior . In Theorems 4.1, 4.2 we prove sufficient conditions for local upper order-
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of u. Other order type continuities of efficient points have been investigated, 
e.g., in Sterna-Krawat (1989), Penot and Sterna-Krawat (1989) . 

Throughout the paper U and Y are normed vector spaces with open unit 
balls, Bu, and By , respectively. The space Y is partially ordered by an order 
s_ generated by a closed convex pointed cone K C Y in the usual way, i.e. , us_v 
if and only if v- u E K. A convex set 8 c Y is a base of K if 0 (j. cl8 and 
K = U{>-81>-?: 0} closed convex cone K is normal for a given topology of Y if 
there exists a base V of a-neighbourhoods in Y consisting of saturated (or full) 
sets V, ie, 

V = [V] = (V + K) n (V - K) = U{[x, y]l x E V, y E V}, 

where [x, y] denotes the order interval with the end-point x, y, 

[x, y] = (x + K) n (y- K), 

(see Peressini, 1967, Schaefer, 1971) . By Proposition 1.4 of Peressini (1967), 
if cone K is normal , then every order interval is topologically bounded. The 
converse, however, is not true. In topological vector spaces with normal cones, 
there exist topologically bounded sets which are not order bounded. In a normed 
space (Y, II · II) the following are equivalent (see Proposition 1.7 of Peressini , 
1967): 

(i) K is normal, 

(ii) there exists a constant"'(> 0 such that Ds_xs_y implies 'YIIxlls.IIYII, 

(iii) there exists a constant"'(> 0 such that ll x + Yll ?: "'( max{ll xll, IIYII}. 

2. Order-Lipschitzian properties of set-valued mappings 

Let K c Y be a closed convex pointed cone in (Y, II ·II), K = {y E Y I y?: 0}. 
Let r : U=t, Y be a set-valued mapping defined on (U, II · II) and taking values 
in (Y, II · II) . 

DEFINITION 2.1 f ·is : 

(i) locally upper order-Lipschitz, or shortly l.u.o-Lipschitz, at u0 if there exist 
a constant r > 0 and fl. E K such that 

r(u)cr(uo)+[-fl. llu -uoll,fl.l l·u-uolll for llu -uolls.r (1) 

(ii) locally lower order-Lipschitz, or shortly l.l.o-Lipschitz at u0 if there exist a 
constant r > 0 and fl. E K such that 

r(uo) c r(u) + [-fl. llu- uoll, fl.l lu- uolll for llu- uolls.r. (2) 

(iii) order-calm at (uo,yo), Yo E r(uo) , if there exist a neighbourhood V of yo, 
a constant r > 0 and fl. E K such that 

II ., /<"1 \ 
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If intJC :f. 0, order continuities defined above reduce, respectively, to up
per local Lipschitzness, lower local Lipschitzness, and calmness , as defined in 
e.g. Robinsons (1976), Klatte and Kummer (to appear), Henrion and Out
rata (2001). If JC is normal for the topology generated by the norm II · II, then 
[- £11u - uo II , £11u- uo Ill C 11£1111u - uo II By , and consequently, order continuities 
defined above are stronger than their topological counterparts (see e.g. Bednar
czuk, 2002b). 

Recall that an ordered vector space Z with order ~ is a vector lattice if 
x Vy := sup{x,y} and x 1\ y := inf{x,y} exist. For any z E Z, the modulus 
of z, lz l is defined as lz l = sup{z,O} . A subset A C Z of a vector lattice Z is 
solid if x E A, y E Z and IYI~Ixl implies y E A. A topological vector lattice 
Z is a vector lattice and a Hausdorff topological vector space (over R) which 
possesses a base of solid a-neighbourhoods. A Banach lattice Z is a normed 
vector lattice (Z, II · II) which is norm complete. For any lattice norm, lxi~IYI 
implies ll x ii~ IIYII . The classical examples of Banach lattices are the spaces of 
p - th integrable functions, LP(0.), and sequence spaces £P, with order defined 
by cones of nonnegative elements. If Y is a topological vector lattice, the positive 
cone JC = {y E Y I y 2 0}, is normal. The converse, however, is not true, and 
a normal cone does not necessarily generate the lattice structure. For instance, 
in R2 equipped with the norm II · llo the cone JC = { (x , y) I x 2 0 y = 0} is 
normal but does not generate the lattice structure. 

If Y is a Banach lattice, Definition 2.1 can be rephrased as follows. r is 
I. u.o-Lipschitz, at uo if there exist a constant r > 0 and e E JC such that for 
each y E r(u), llu- uoll~r, there exists Yo E r(uo) such that 

IY- Yol~£11u - uoll· (4) 

r is l.l.o-Lipschitz at ·u0 if there exist a constant r > 0 and £ E JC such that 
for each Yo E r(uo), there exists y E r(u), llu- uoll~r , such that 

(5) 

r is order-calm at ( uo, Yo), Yo E r( u0 ), if there exist a rieighbourhood V of 
Yo, a constant r > 0 and£ E JC such that for each y E r(u) n V, llu - uoll~r, 
there exists Yo E r ( uo) satisfying 

(6) 

Some elementary examples illustrating the notions introduced above will 
now be given. 

EXAMPLE 2.1 Let JC C R 3 be given as 

K={(x,y,z) I z = Ox,y20} . 

The set-valued mapping r : R=! R 3 defined as 

T"'. fn\ ( / 
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is locally upper Lipschitz at 0 in the usual sense but not locally upper order
Lipschitz. 

EXAMPLE 2.2 Let J( C R2 be given as 

K = {(x,y) lx=yx~O}. 

The set-valued mapping r : R -=! R2 defined as 

f(O)={(x,y) IO::;_x~_l 0:::;_1/5_1 y~-x+1}, 

f(u) = f(O) \ co{(O,O), (1 , 1)} U {(1, 1)} , 

where co stands for the convex hull, is locally lower Lipschitz at 0 in the usual 
sense but not locally lower order-Lipschitz. 

PROPOSITION 2.1 Let Y and U ue normed spaces and let K be a closed convex 
pointed cone in Y . 

1. Iff ·is locally upper order-Lipschitz at uo, then any y E f(u) , llu - uollsr, 
can be represented as y = Yo+ l llu - uoll-kt, y = Yo -illu - uoll +k~ , where 
Yo E f(uo) , kt E K, and k~ E JC, with kts2£llu- uoll, k~S2illu - uo ll · 

2. If r is locally lower order-Lipschitz at Uo' then any Yo E r(uo) can be 
represented as Yo = y - lllu- uoll + kt, Yo = y - lllu- uoll + ky, where 
y E f(u), llu- uollsr, kt E K, and k~ E Y+, with kts2£llu- uoll, 
k~S2illu- uoll· 

Proof. By definition, 

- £11u- uoiiSYo- Y5.£llu- uo ll , ll ·u- uolisr, . 

By the left-hand-side inequality, kt = Yo- y + £11u- uoll E K, and, by the right
hand-side inequality, kts2£llu- uoll· Other cases can be treated similarly. • 

3. Order-containment property and its rate 

Let K c Y be a closed convex and pointed cone in Y. Let A C Y be a subset of 
Y. An element y E A is efficient, y E Eff(A), if 

(A - y) n ( -K) = {0}. 

An element y E A is locally effici ent, y E Efftoc( A) , if there exists a 0-neighbour
hood 11 such that 

(An (y + 11)- y) n ( -JC) = {O}. 

Let e E K , £ =/= 0 . Denote 

A fiJ\ A\ IDJII A\ t r n nl\ 



Order-Lipschitzian properties of multifunctions 495 

DEFINITION 3.1 A set A has an £-order containment property,£- (OCP ) , w'ith 
£ E K if for each c: > 0 there exists o > 0 satisfying: 
(C) for each y E A(c£) there exists T/y E Eff(A) such that 

y - TJv - 0£ E K. (7) 

Clearly, (7) holds if and only if y- T/y - k E K, for all k E K, k~OC . 

If K is normal , and (C) holds for£ E K, then 

A c cl(Eff(A)) + K. (8) 

Indeed, if y E A\cl(Eff(A)), there exists a> 0 such that (y+aBy )ncl(Eff(A.)) = 

0. There exists c: > 0 such that c:ll£11~a, andy E A\ (Eff(A) + [-c£, d]), since K 
is normal. By (C), there exists T/y E Eff(A) satisfying y- T/y E K, which proves 
(8). 

EXAMPLE 3.1 

1. Let Y be an ordered vector space and let K C Y be a closed convex pointed 
cone in Y. Let 0 f.£ E K, and let K1 C Y be a closed convex cone, K1 C K, 
satisfying the following condition: for each c: > 0 there exists 8 > 0 such 
that 

k -M EK forall kEK1\ [-d,c£]. (9) 
Any order interval [a, bh, (with respect to Kt) , 

[a, bh = (a+K1)n(b - Kl), 
a, bE K, is/!- ( OCP). To see this, note that Eff([a, bh) = {a} . Let c: > 0, 
andy E [a, bh \(a + [-d, d]). Hence, y- a E K1 andy- a ef. [-c:f!, d]. 
By ( 9) , there exists 8 > 0 such that 

y- a - of! E K. 

2. Let Y = /!2 and K = /!~. Consider a closed convex cone (!!~h C £~ of the 
form 

? 1 3 
(/!+)1 = {k = (kn) E /!~ 1-kl ~ kn ~ -kl} 

2n 2n 
and the order interval with respect to ( /!~ h , 

A= [a, bh = {y E /!2 I a~1 y:;_ 1 b}. 
Note that (!!~h satisfies condition (9) with e.g.!!=(*). 
Let c: > 0 . For any 

1 
Y E A(c£) ={yEA I Yn - an> C:-, n = 1, 2, ... } 

2n 
the inequality 

y- a- 8£ 2: 0 
holds fo r 8 = ~ . 

3. Let Y = R3 and K = {y E R3 I YI, Y2 2: 0, Y3 = 0}. Let 
Kl = {y E K I Y2~3/2yl Y2 2: 1/2yt} . 

For the order interval 
A= [(1 , 1, 0), (2, 2, 0)]1 
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Let c > 0 . Denote 

A(c) =A\ (Eff(A) +cBy). 

The following properties are related to the one introduced in Definition 3.1. 
The containment property (CP) (Bednarczuk, 2000a) holds for a subset 

A C Y if int K.. =/:- ¢ and for any c > 0 there exists o > 0 such that 

(Cl) for each y E A(c) there exists r]y E Eff(A) satisfying 

y - r]y - oBy E K... (10) 

Let Y * be the topological dual space of Y with the bilinear duality form ( ·, ·) . 
Let e be a base of the dual cone K..* = {! E Y* I (!, y) 2: 0 for all y E K..}. 
The dual containment property (DCP) (Bednarczuk, 2002) holds for a subset 
A c Y with respect to 8 if for any c > 0 there exists o > 0 such that 

( C2) for each y E A( c) there exists r]y E Eff( A) satisfying 

B(y-rJy) > o for all () E 8. (11) 

In the proposition below we investigate the relationships between these prop
erties and the £- order containment property. 

PROPOSITION 3.1 Let K.. C Y be a normal cone in Y . For any subset A C Y 
the following relations hold: 
(i) If intK.. =/:- 0, then (C) ---> ( C1) , 

(ii) If K..* is based, then (C)---> (C2). 

Proof. Let c > 0 and y E A(c). For any£ E K.., since K.. is normal, there exists 
c1 > 0 such that y E A(c1£). By (C), there exist r]y E Eff(A) and o > 0 such 
that 

y - 'T}y - 0£ E K.. . (12) 

(i). Take£ E intK... By (12), there exists 81 > 0 such that y- r]y- o1BY C K... 

(ii). Take£ E (K..)+ = {k E K.. I (!, k) > 0 for all f E K..* \ {0}}, and the base 
e of K..* , e = {() E K..* I (8,£) = 1} . By (12), 

B(y - r]y - o£) 2: 0 for all () E 8 , 
and consequently, 

B(y- rJy) > J for all () E 8, and some J > 0. 
which amounts to (C2). • 
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Let 

dome(A) = {e > 0 I A(d) ::/= 0}. 

DEFINITION 3.2 The function 5~ : R----> R is the rate of f.-order containment 
of a set A C Y if 

5~(e) = inf{v~(y) I y E A(d)}, 

where, for any y E A, 

v~(y) = sup{J/(y - TJ) I 7J E Eff(A) n (y- K)} , 

and, for any k E K, 

1/ ( k) = sup{ 5 I k - 5fl. E K} . 

We put 5e, whenever it is clear from the context which set we refer to in 5~ . 
The following properties of the function 5~ follow directly from the definition. 

1. 5~ is a nondecreasing function of e, 

2. if C1 c C2, then 5b
1 
(e) 2:: 5b

2 
(e). 

PROPOSITIO N 3.2 The following ar-e equivalent: 
(i) 5~ (E) > 0 for each E E dome(A), 

(ii) fl. - (OCP) holds. 

Proof. (i) ----> (ii). Let E > 0. If 51(e) = r > 0, then IJe(y) ;::: r for any 
y E A(d) . By definition of ve, t here exists 7Jy E Eff(A) such that f..L1(y - 7]y) > 
r- ~ > 0, for some positive~ . This means that there exists 5 > r- ~such that 
y -7]y - 5€ E K. (ii)----> (i) . Let E > 0, andy E A(Efl.). By (C), there exist 5 > 0 
and 7]y E Eff(A) such that 

y - 7]y - 5€ E K . 

Hence, 1l(y - TJy) ;::: 5 , ve(y) ~ 5, and 

PROPOSITIO N 3.3 Let K C Y be a closed convex pointed cone in Y. Let A C Y 
be a subset of Y . Assume that for each y E Eft( A)+ K the set Eft( A) n (y- K) 
is weakly compact. If fl. - (OCP) holds for A, then for each e > 0 andy E A( d) 
there exists 7]y E Eft( A) such that 

• 
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Proof. Let c: > 0, y E A(c:C). It is enough to show the existence of T}y E Eff(A) 
such that 

ve(y) = Ji(y- TJy). 

Indeed, for each TJ E Eff(A) n (y- K) 

Ji(y- TJ)5Ye(y), 

and for each a > 0 there exists TJo: E Efl:"(A) n (y- JC) such that 

Ji(y- TJo:) > ve(y)- a 

This means that for f3o: = 1/(y- TJo:)- a we have 

y- TJo: = f3o:C + ko:, where ko: E JC, f3o: -) ve(y), as a-) 0. 

By assumption, { rJo:} contains a weakly convergent subnet with the limit point 
T}o E Eff( A), then 

y - TJo - ve (y )£ = ko E JC , 

since JC is weakly closed. This ends the proof. 

4. Order-Lipschitz continuity of efficient points 

Let M : U=t Y be a set-valued mapping defined as 

M(u) = Eff(r(u)). 

• 

The set-valued mapping M is called the minimal point mapping. Order-type 
continuities of M have been investigated in Penot and Sterna-Krawat (1989), 
Sterna-Krawat (1986, 1989). 

THEOREM 4.1 Let (Y, II ·II) and (U, II · II) be normed spaces. Let JC C Y be a 
closed convex pointed cone in Y . Assume that 
{i) for any y E Ejj(r(u0 )) + JC the set Ejj(r(u0 )) n (y - JC) is weakly compact, 

{ii) r is l. u. o-Lipschitz at uo , and l.l. o-Lipschitz at uo , with constant C E }( , 

{iii) of(uo)(c:) ~cc:, c>O. 
The minimal point multifunction M is l. u. a-Lipschitz at u0 . 

Proof. By (ii), for alll lu - uoll~.r we have 

r(u) c {Eff(r(uo)) + [-(~ + 1)£11u- uo ll, (~ + 1)£11u- uoii]}U 
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We show that if 

y E f(u) n { {f(uo) \ (Eff(r(uo)) + [-~l'llu- uoll, ~l'llu- uoll])} 

+[-l'llu - uoll,l'llu- uoll]}, 
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for all llu- uoll::;r, then y 1. Eff(f(u)) . Indeed , take any y E f(u), ll u - uoll::;r, 

such that 

Y E {f( uo) \ (Eff(f( uo)) + [- ~l'llu- uo II, ~ £ 11u- uoll])} + [-l'llu - uoll , l' llu- uoll]. 

Then y = 1 + ~, where 

1 E f(uo) \ (Eff(f(uo)) + [-~£11u- uoll, ~l'llu- uoll]), 

~ E [-£ 11 u-uoll , €llu -uoll], 

~ = l'llu- uoll - kE, kE E K kE::;_2l'llu- uol. 

By Proposition 3.3, there exists T/-y E Eff(f(uo)) such that 

1- T/-y- k E K for all k E K, k::;_of(uo)(~llu- uoll)l' (13) 

By the lower order-Lipschitz continuity off at uo there are z E f(u), ll u-uo ll::;r, 
kz E K such that 

T/-y = z + l'llu- uoll - kz, llu- uoll::;r, kz::;_2l'iiu- uoll . 

In consequence, 

y-z = 1-z+l'llu-uoii-kE 

[r- "1-rl + l' llu - uoll - kz + l' llu - uo ll- kE , 

and by (iii), since kz + kE::;_4€IIu- uoll::;oe(~llu- uoll)€, 

y-zEK\{0} . 

This proves that for alll lu- uoll::;r the following inclusion holds 

M(u) C Efj(f(uo)) + [-(~ + 1)£11u- uoll, (~ + l)l'llu- uoll]. • 

REMARK 1 By examining the proof one can see that we exploited l.l. o-Lipschitz 
property off only partially. Namely, only right-hand-side inequality of (2) from 
Definition 2.1 was used. In the following example we show that, in Theorem 
4.1 , the order-Lipschitz continuity off cannot be dropped. 

ExAMPLE 4.1 Let Y, K , and f be as in Example 2.2. Then 

M(O)={(x,y)lx~O y~O y=-x+1} , 

and 

M(u)=(M(O)\(~,~))u{(1 , 1)} u~O. 
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THEOREM 4.2 Let (Y, II · II) and (U, II · II) be normed spaces. Let JC C Y be a 
closed convex pointed normal cone in Y and let r(uo) be convex. Assume that 
Yo E Efftoc(r(uo)), i.e., Yo E Eff(r(uo) n V1), where V1 is a neighbourhood of yo 
and 
(i) r is order-calm at (uo, Yo), with constant f. E JC, and neighbourhood V2 of 

Yo, and l.l. o-Lipschitz at uo , with constant f. E JC , 

(ii) for any y E Ejf(f(uo) n V) + JC the set Eff(r(uo) n V) n (y- JC) is weakly 
compact, where v = vl n v2 , 

(iii) 5f(uo)n\f(c) ,2: Cc, C > 0. 
The minimal point multifunction M is order-calm at ( uo, Yo). 

Proof. Let v be a a-neighbourhood such that (Yo+ V) + v c v. Without losing 
generality we can assume that riiR. IIBy C V. By (ii), 

f(u) n V c {Eff(f(uo) n V) + [-(~ + 1)R.IIu- uoll, (~ + 1)R.IIu- u01l]}u 
{f(1to) n V \ (Eff(r(uo) n V) + [ -~R.IIu- uoll, ~R. II u- uoll])} 

+ [-R.IIu- uoii,R.IIu- uoll]}, 

for llu- uo ll::;,r. We show that if y E r(u) n lf n { {r(uo) n V \ (Ejf(f(uo) n 
V) + [-~f.llu - uoll, ~R.Jiu- uoll])} + [ -R.JJu - uoll, R.J iu - uoll]}, ll u - uoJI::;,r, then 
y r{. Eff(f(u)) n V. 

Indeed, take any y E f(u) n V, llu- uoll::;.r, such that 

y E {r(uo) n V \ (Eff(f(uo) n V) + [-~R.IIu- uoll, ~R.IIu - uoll])} (14) 

+ [-R. IJu- uoJJ,R.IJu- uoiiJ. 

Then, y = "' + ~ , where 

"' E r(uo) n V \ (Eff(r(uo) n V) + [- ~R.JJu- uoll, ~eJJu- uoll]), 
~ E [-£JJu-uoJI ,£Jiu-uoll], 

~ = R.llu- uoll - k~, k~ E JC, k~::;_2R. J Ju - uoll· 

By Proposition 3. 3, there exists 7)7 E EjJ(r ( u0 ) n V) such that 

"(- 7)7 -kEJC forall kEJC , k::;_of(uo)nv(~llu-uoll)£. (15) 

By the lower order-Lipschitz continuity off at uo there are z E f(u), kz E JC 
such that 

7)7 = z + R.JJu- uoll - kz , kz::;,2e11u - uoll· 

In conseq·uence, 

y- z = "( - z + R. JJ u- uoll- k~ 
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and by (iii), since kz + k{-::;_4£Jiu- uoJI-::;_5e(%11u- uoll)£, 

y-zEK\{0}. 

Since f(uo) is convex, for all u such that llu- uoll-::;_r, 

M(u) n V C Efftoc(r(uo)) + [-(% + 1)£11u- uo ll , (% + 1)£11u - uo ll ] 
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C M(uo) + [-(% + 1)£11u - uoll, (% + 1)£1Jv.- uoll]. • 

5. Conclusions 

The order-Lipschitz continuity of set-valued mappings introduced her-e is stronger 
than the usual Lipschitz continuity. In finite-dimensional case, roughly speaking, 
it allows r to vary only in directions parallel to aff!C. On the other hand, to 
derive sufficient conditions for- efficient points to have or-der-Lipschitz continu-ity 
of efficient points we need only standard assumptions on K . 

In assumption (ii) of Theorem 4.1 we r-equir-e that the order containment 
rate is at least l-inear for small arguments. If the order containment rate is of 
higher order, then one can prove order-Holder behaviour of the minimal point 
multifunction. 

References 

BEDNARCZUK , E.M. (2002a) Upper Holder continuity of minimal points. Jour
nal of Convex Analysis, 9, 327-338. 

BEDNARCZUI< , E .M. (2002b) Holder-like properties of minimal points in vector 
optimization. Control and Cybernetics, 31, 423-438. 

BONNANS, F.J. and SHAPIRO A. (2000) Perturbation Analysis of Optimiza
tion Problems. Springer-Verlag, New York. 

HENRJO N, R. and OUTRATA, J. (2001) A subdifferential condition for calm
ness of multifunctions. Journal of Mathematical Analysis and Applica
tions, 258, 110-130. 

JJNGWEI, K. (1996) Nonsmooth Analysis: Quasilinear Approximations with 
orders. Nonlinear Analysis, Theory and Applications, 27, 493-538. 

KLATTE , D . and KUM MER, B. , Constrained minimal and Lipschitzian penal
t ies in metric spaces, to appear. 

MALANOWSKI, K. (2001) Stability and Sensitvity Analysis for Optimal Con
trol Problems with Control State Constraints. Dissertationes Mathemat
ical, CCCXCIV. 

NIKODEM, K. (1986) Continuity of K-convex set-valued functions. Bulletin 
of the Polish Academy of Sciences, series Mathematics, 34, 393-400. 

PAPAGEORGIOU, N.S. (1983) Nonsmooth analysis on partially ordered vector 
spaces: Part I - convex case. Pacific Journal of Mathematics, 107, 403-



502 E.M. BEDNARCZUK 

PAPAGEORGIOu, N .S. (1983) Nonsmooth analysis on partially ordered vec
tor spaces: Part2 - Nonconvex case, Clarke's Theory. Pacific Journal of 
Mathematics, 109, 463-495. 

PAPAGEORGIOU N .S. (1986) Nonsmooth analysis on partially ordered vector 
spaces: the subdifferential theory. Nonlinear Analysis, 10, 615-637. 

PENOT, J.-P . and STERNA-KARWAT, A. (1989) Parametrisedmulticriteriaop
timization: order continuity of the marginal multifunctions. Journal of 
Mathematical Analysis and Applications, 144, 1-15. 

PENOT, J-P. and THERA M. (1982) Semi-continuous mappings in general topol
ogy. Arch.Math. , 38, 158-166. 

PERESSINI, A. (1967) Ordered Topological Vector Spaces. Harper and Row, 
New York 1967. 

ROBINSON, S. (1976) Regularity and stability for convex multivalued func
tions. Mathematics of OR, 1, 130-143. 

ScHAEFER, H. (1974) Banach Lattice and Positive Operators. Springer Verlag, 
Berlin-Heidelberg-New York. 

SCHAEFER, H. (1971) Topological Vector Spaces. Graduate Texts in Math., 3, 
Springer Verlag. 

STERNA-KARWAT, A. (1986) A note on the solution set in optimization with 
respect to cones. Optimization, 17, 297-303. 

STERNA-KARWAT, A., (1989) Convexity of the optimal multifunctions and its 
consequences in vector optimization . Optimization, 20, 799-807. 


