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Abstract: Robinson's implicit function theorem has played a 
mayor role in the analysis of stabili ty of optimization problems in 
the last two decades. In this paper we take a new look at this 
theorem, and with an updated terminology go back to the roots and 
present some extensions. 
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1. Robinson's theorem 

Given two sets X and Y , we denote by F : X -=. Y a set-valued mapping F 
acting from X to the subsets of Y . The domain of F is defined as dom F = 

{x E X I F(x) # 0} while its range as rge F = {y I y E F(x) , x E domF}. 
The graph of a mapping F : X-=. Y is gph F = { (.1:, y) E X x Y I y E F(x)}. 
If for any x E domF, F(x) consists of exactly one element, we say that F is 
a function or an operator and write F : X -+ Y. The inverse of a mapping 
F : X-=. Y is another mapping, denoted p-I, and defined as 

Y 3 y 1-l p - 1 (y) = {x EX I y E F(x) }; 

that is, 

y E F(x) <=} x E p-1 (y) . 

DEFINITION 1.1 (graphical localization) Given a mapping F acting from a topo
logical space X to the subsets of a topological space Y with (x, y) E gph F , a 
graphical localization ofF around (x, y) is a mapping P whose graph is the graph 
ofF restricted to a "box" U x V , for some neighborhoods U of x and V of y; 
that is, 
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In other words, a graphical localization of a mapping F around (x, y) is 

F(x)={ :(x )nV 

The inverse of F satisfies 

when x E U, 
otherwise. 

p-1(y) = { : -
1
(y) n u when y E V, 

otherwise, 

and hence P- 1 is a graphical localization of F- 1 around (fj, x). The domain of 
a graphical localization F may be different from dom F n V and depends on the 
choice of U. 

The classical implicit function theorem is about mappings that are implicitly 
defined by equations; that is, mappings of the form: 

P 3 p ~ {x EX I f (p,x) = 0}, (1) 

where Pis the space of "parameters" p and f: P x X -t Y. Assuming that P, 
X and Y are, e.g., Banach spaces and f : P x X -t Y with (j5 , x) E int dom f is 
a continuously Frechet differentiable (C1) function in a neighborhood of (p, x), 
it claims that if the partial derivative of f with respect to x at (j5, x), '\7 x f (p, x), 
is an invertible operator, then the mapping (1) has a single-valued graphical 
localization x (-) around (j5 , x) which is C1 . Furthermore, the derivative of the 
implicit function p ~ x(p) can be computed by using the chain rule. 

In a landmark paper, Robinson (1980), S. M. Robinson proved an implicit 
function theorem for variational inequalities that goes beyond the format of the 
classical theory. Let X be a Banach space and X* be its dual. For a mapping 
f : X -t X* and a nonempty convex closed set C C X, the variational inequality 
problem is as follows: 

Find x E C such that (f(x), v - x) 2: 0 for all v E C. (2) 

In terms of the normal cone mapping defined as 

X N ( )
- {{yEX* I (y,v-x):S Oforall vE C} forx EC, 

3x~ ex- r11 
VJ otherwise, 

the variational inequality (2) can be written as the inclusion 

f(x) + Nc(x) 3 0 (3) 

which Robinson called generalized equation. For C = X, the normal cone 
Nx(x) = {0} for all x EX and we come to the equation f(x) = 0. 

To put the stage for Robinson's theorem, we make (2) dependent on a pa
rameter p from a topological space P: 
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where now f : P x X ---+ X *. Let x be a solution of ( 4) for the value j5 of the 
parameter, that is , 0 E f(p,x) + Nc(x). Next come the two assumptions in 
Robinson's theorem. The first one concerns the smoothness off: 

(R1) f is Fnkhet differentiable with respect to x in a neighborhood of (p, x) 
and both f and 'V xf are continuous in this neighborhood. 

The second condition is about an auxiliary variational inequality involving 
the linearization with respect to x of the function f. Robinson called this 
property of the variational inequality (2) strong regularity: 

(R2) The mapping 

(J(p,x) + 'lxf(p,x)(-- x) + Nc(-))- 1 (5) 

has a single-valued localization around (0, x) which is Lipschitz continuous near 
zero. 

The original formulation of Robinson's theorem is as follows: 

THEOREM 1.1 (Robinson (1980) Let the variational inequality {5) satisfy the 
conditions {Rl) and {R2) and let L be a Lipschitz constant of the single-valued 
graphical localization of the mapping {5). Then, for every c > 0 there exist 
neighborhoods U of x and V of j5 and a function x : V ---+ U such that for each 
p E V , x (p) is the unique solution of the variational inequality (4) in U and 
also for every p, q E V one has 

ll x(p)- x(q) ll :S: (L + r::)llf(p, x(p))- f(q , x(p))ll- (6) 

In other words, under (Rl) and (R2) the mapping 

p f---> { x E X I x is a solution of ( 4) for p } (7) 

has a lipschitzian single-valued localization around (p, x). Moreover , if (R2) 
holds with a Lipschitz constant L, then for any r:: there exists a single-valued 
localization of (7) that satisfies (6) . An immediate corollary of Robinson 's the
orem is 

COROLLARY 1.1 In addition to {Rl) and {R2), let P be a m etric space with a 
metric dp (-, ·) and let the function f be Lipschitz continuous with respect to p 
near j5 uniformly in x near x; that is, there exists a constant l such that for 
every p, q near j5 and for every x near x 

llf(p,x)- f(q,x)ll::; ldp(p,q). 

Then, for any r:: > 0 the mapping {7) has a lipschitzian single-valued graphical 
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While the central role in the classical implicit function theorem is given to 
the (continuous) differentiability, in Robinson's theorem the main player is the 
property of Lipschitz continuity, and this is apparently the best one can get for 
variational problems with constraints, in general. The good news is that with 
Lipschitz continuity one can get quite a lot, and in particular prove convergence 
of optimization algorithms and estimate errors of approximations of variational 
problems. 

Numerous applications of Robinson's theorem in optimization are available 
in the literature, see e.g. the recent books by Bonnans and Shapiro (2000) and 
Klatte and Kummer (2002). Robinson's theorem has also found many appli
cations to optimal control problems for both ordinary and partial differential 
equations, for an extended state-of-the-art review see Malanowski (200la) . 

2. Extensions 

We adopt some terminology from Rockafellar and Wets (1997) . Let X and Y 
be metric spaces with metrics dx ( ·) and dy ( ·), respectively. Recall t hat the 
Lipschitz modulus of a function f : X --t Y at a point x E int dom f is 

l. !(-) 1. dy(f(x
1
), f(x)) ip X := JmSUp 
1 

• 

"·"'- "' dx (x, x) 
x-::f.:c 1 

Iff is Lipschitz continuous in a set D C X with a constant L then lip f(x) ::; L 
for every x E D. Conversely, if there exist a constant L and a neighborhood 
of U of x such that f is Lipschitz continuous in U with a constant L, then 
lip f( .f) ::; L; the absence of this property is identified by lip f(x) = oo. For a 
topological space Panda function h : P x X --) Y, the partial Lipschitz modulus 
with respect to x at (p, x) E dom h is defined as 

. _ _ . dy(h(p,x1),h(p,x)) 
hpx h(p, x) := lun sup, , ,'.-''· ~'-'' d ( 1 ) • 

1:#a:1 )'( X ,X 

For a set-valued mapping S : X-=. Y with (x, y) E gph S, we use the following 
convention: if S has a single-valued graphical localization around (x, y), with 
appropriate neighborhoods U of x and V of j} , which is Lipschitz cont inuous in 
U, we denote 

lipS(xiy) = lip(Sn V)(x), 

where S n V : U --) 1! is the associate single-valued graphical localization. The 
absence of a single-valued graphical localization of S at (x , y) or the case when 
the single-valued graphical localization of S at (x, y) is not Lipschitz continuous 
near x, is signaled by lip S(x I y) = oo. For a function s we have lip s(x) = 
lips(xis(x)). 
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DEFINITION 2.1 (strong regularity) A mapping F : X~ Y is strongly regular 
at x for fi if F-1 has a lipschitzian single-valued graphical localization around 
(fi,x) . 

In other words, 

F is strongly regular at x for fi ¢=> lip F- 1 (fi \ x) < oo . 

The Lipschitz modulus of the inverse F- 1(y \x) is also called strong regularity 
modulus. IfF is a function and strongly regular at x for fi = F(x), we simply 
say F is strongly regular at x. 

The simplest example of a strongly regular mapping is any invertible op
erator A E C(X, Y) acting, e.g., in Banach spaces X and Y. Indeed, if A is 
invertible, then A- 1 is single-valued everywhere and lipA- 1 = 1\ A- 1 1\. From 
the classical inverse function theorem, a function f : X ~ Y, which is C1 

near x, is strongly regular at x if and only if \l f(x) is invertible and then 
lipf- 1(fi\ x) = 1\\lf(x)- 1 1\. We use this "double" terminology for convenience 
only: in some cases it is easier to operate with the mapping itself than with 
its inverse. E .g., it is more convenient to say "an invertible matrix A" than "a 
matrix A whose inverse mapping A- 1 is a matrix." 

One should note that in his original definition Robinson (1980) called the 
variational inequality (2) strongly regular when the inverse of the linearization 
(5) had a lipschitzian single-valueJ graphical localization. Here we use the 
term "strong regularity" as a property of a general set-valued mapping. This 
definition is equivalent to Robinson's definition for the mappings Robinson had 
in mind. 

Robinson's theorem (1.1) will be deduced from the following more general 
result which, in turn, can be extracted from the original proof of Robinson 
(1980). 

THEOREM 2.1 (Extended Robinson 's Theorem) Let X be a complete metric 
space, Y a metric space, and P a topological space. Consider a mapping M : 
Y~X with (fi, x) E gph M and a function h: P x X~ Y which is continuous 
at (p,x) and with f)= h(p,x). lflipM(y\ x) < 'Y and lipxh(p,x) < .A < 'Y -1, 
then the mapping 

P :1 p ...._, N(p) := { x EX I x E M(h(p ,x))} 

has a lipschitzian single-valued graphical localization x(-) around (p, x) which 
satisfies 

dx(x(p), x(q)) < ('Y- 1
- .A) - 1dy(h(p, x(p)), h(q, x(p))) (8) 

for all p, q near p. 

Proof. Choose neighborhoods U of x, V of fi and Q of j5 such that m := MnU is 
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is Lipschitz continuous in x E U with a Lipschitz constant >. for all p E Q. Also, 
take U and Q smaller if necessary so that h(p, x) E V for all (p, x) E Q x U. 
Choose a positive number a such that 1Ba(x), the closed ball centered at x with 
radius a, is a subset of U. Also, chose a number o with 0 < o < a(1 -1>.) and 
take Q smaller, if necessary, to obtain that 

dy(h(p,x), h(p,x)):::; o for all p E Q. 

Fix p E Q and consider the mapping 

1Ba 3 x t--t <I>p(x) := m(h(p,x)). 

Since x = m(h(p, x)), for any x E 1Ba(x) we have 

dx(<I>p(x), x) dx(m(h(p, x)), m(h(p,x))) 

< !(dy(h(p, x), h(p, x)) + dy(h(p,x), h(p, x))) 

:::; !(>.dx (x, x) + o) :::; 1>-a + o :::; a. 

Further for every x' x" E JB (x) x' _;_ x" , ,. a ' I ' 

dx(<I>p(x'), <I>p(x")ll = dxm(h(p, x')) , m(h(p, x"))) 
:::; ')'dy (h(p, x'), h(p, x")) :::; ')'Adx (x', x") < dx (x', x") . 

Thus, by the contracting mapping theorem, il>p is a unique fixed point x(p) for 
every p E Q. This means that the mapping N has a single-valued graphical 
localization p t--t x(p) around (p,x). Moreover, since x(p) = m(h(p,x(p))), for 
any p,q E Q, 

dx(x(p), x(q)) :::; dx(m(h(p, x(p))), m(h(q, x(q)))) 

:::; !(dy(h(p, x(p)), h(q, x(p))) + >.dx(x(p), x(q))); 

that is, x satisfies (8) and the proof is complete. • 
Proof of Theorem 1.2 Apply 2.1 with 

M = (f(p, x) + \l xf(p, x)(-- x) + Nc(-)) -l 

and 

h(p,x) = f(p,x)- f(p,x)- 'lxf(x,p)(x- x), 

and with fi = 0. Then N, as defined in 2.1, is exactly the mapping from (7), 
that is, the solution mapping of the variational inequality (4). The condition 
(R1) implies that his continuous at (p, x) and lipx h(p, x) = 0 while (R2) means 
that M has a lipschitzian single-valued localization around (0, x). To complete 
the oroof it is sufficient to note that for 1 = L and any E > 0 one can choose 
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While the strikingly simple proof of 2.1 above is close to the original proof 
of Robinson, the result itself goes beyond the framework of the variational in
equalities. In particular, Robinson's theorem can be stated for inclusions of the 
form 

f(p, x) + F(x) 3 0, 

where the normal cone mapping Nc is replaced by any set-valued mapping 
F : X ~ Y. For the function f it is sufficient to require f have a first-order 
approximation g such that g + F is strongly regular. Specifically, by a first-order 
approximation we mean the following. 

DEFINITION 2.2 Let X be a metric space, Y be a linear normed space, and P 
be a topological space. For f : P x X --) Y with (p, x) E int dom f , a function 
g : X --) Y with x E int dom g is said to be a first-order approximation off at 
(p,x) when, for cp(p,x) = f(p,x) - g(x) one has 

lip X cp(p, x) = 0. 

This concept was introduced by Robinson (1991) where he called it strong 
approximation. For example, for X and Y Banach spaces, if f is Frechet dif
ferentiable in x around (p, x) and its partial derivative "V xf is continuous near 
(p, x ), then x ~ "V xf(p, .'i )x is a first-order approximation off at (p , i ). More
over, for h(p, x) = f(p , x) + cp(x), where f is Frechet differentiable in x around 
(p, x) and its partial derivative "V xf is continuous near (p , x) , and cp is any 
function, the function X~ \l xf(p, i)x + cp(x) is a first-order approximation of 
f + cp at (p, x ). Iff is not dependent on the parameter p, then g is a first-order 
approximation of f (and f is a first-order approximation of g) at x if and only 
if lip(!- g)(x) = 0 which is the same to say that the strict derivative of the 
difference f - g at x is zero. Putting all this together we obtain 

THEOREM 2.2 Let X be a complete metric space, Y a linear normed space, and 
P a topological space. Given F : X ~ Y and a function f : P x X --) Y with 
fj E f(p, x) + F(x) and such that f(- ,x) is continuous at p, let g: X --) Y be a 
first-order approximation off at (p, x) and let g + F be strongly regular at x for 
fj with associated Lipschitz constant L of the graphical localization of (g + F) - 1 

around (y, x) . Then the mapping 

p ~ {x EX I f(p , x) + F(x) 3 0} (9) 

has a single-valued localization x(-) around (p, x) with the property that for every 
E > 0 the inequality (6) holds for p sufficiently close top. 

Proof. We apply 2.1 with M = (g + F)- 1 and h(p, x) = - f(p, x) + g(x). Then 
for (p, X) close to (p , X), 

llh(p,x) - h(p,x)ll < llf(p, x)- g(x)- f(p ,x) + g(x) ll 

+ ll f(p, x) - f(p ,x)ll 
_ 1 1 - \ , 11 r t -\ 
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from which it follows that his continuous at (p, x). Moreover, from the definition 
of the strong approximation, lipx h(p, x) = 0. The mapping N is the one in (9) 
and hence 2.1 applies withy= 0. • 

Observe that 2.1 is not really about approximation or linearization of a 
function. It is about a relation between two constants, the modulus of the lips
chitzian single-valued localization of a given mapping and the Lipschitz modulus 
of a perturbing function. This observation is becoming more explicit in the fol
lowing result which is obtained from 2.1. In the next two assertions the spaces 
X and Y are as in 2.2 . 

THEOREM 2.3 Consider a set-valued mapping F: X-::2,Y and a point 
( x, y) E gph F. Consider also a function G : X ---) Y with x E dom G. 
If lipF- 1(Yix) · lipG(x) < 1, then 

lip(F+G)- 1(Y+G(x)lx) ~ (lipF- 1 (iJix)- 1 -lipG(x))- 1
. 

Proof. Apply 2.1 with h(p, x) = p- G(x) and M = F-1 . We have 

N(p) = {x EX I X E F-1(p- G(x))} = (F + c)- 1(p) 

and lipx h(p, x) =lip G(x). Also , h(p, x(p))- h(q, x(p)) = p- q. It remains to 
substitute iJ = j5 . • 

In particular, we have 

COROLLARY 2.1 Consider a set-valued mapping F : X -::2, Y with lip F - 1 (y I x) < 
oo and a function G : X ---) Y with lip G(x) = 0. Then 

lip(F + c)-1 (iJ + G(x)lx) = lip F- 1 (iJ ix)). 

From this result we obtain an "inverse function" version of 1.1: 

COROLLARY 2.2 Let F: X-::2, Y , f: X---) Y and g: X---) Y be such that 

iJ E f(x) + F(x), g(x) = f(x ) and lip(!- g)(x) = o. 

Then 

lip(! + F)- 1 (iJix) = lip(g + F )- 1 (iJix). 

Proof. Take F = F + f and G = g - f. Then F + G = g + F and lip G(x) = 0 
and we can apply 2.1. • 

The inverse function version of the original Robinson's theorem then becomes 

COROLLARY 2.3 For X a Banach space, let f : X ---) X* be strictly differen
tiable at x and C be a convex and closed set. Then 

1\T \-ll/"\1-\ 1• . /r/~\ 1 rif:f =\f ;::.\ 1 l\T (\\-l{f\1,::;;\ 
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We conclude this sectior/ wfth two remarks. First, observe that in 2.3 the 
mapping F and the function G play similar (but not identical!) roles. Can we 
have a set-valued mapping G instead of the function G and replace the Lipschitz 
modulus of G by the modulus of a lipschitzian single-valued localization of G? 
If yes, the claim would be more appealing esthetically. However, the answer of 
this question is no, in general, as the following example shows. 

EXAMPLE 2.1 Let X = Y = lR and let F(x) = {2x, 1}, G(x) = {0, -1} . Both 
F-1 and G have lipschitzian localizations at 0 for 0 and lip F-1 (0 I 0) = .5, 
lip G(O I 0) = 0, but (F + G)(x) = {2x, 2x -1, 1, 0} and lip(F + G)- 1 (0 I 0) = oo. 

The second remark concerns a property weaker than strong regularity, re
cently studied by A. Levy (2000) . Up to certain notational adj ustments, a 
mapping A : Y ~X with (y, x) E gphA is called calm at y for x in Levy 
(2000) when there exist a constant c > 0 and neighborhoods U of x and V of 
y such that the truncated mapping V 3 y f-t A(y) n U is single-valued, that is , 
V 3 y f-t x (y) := A(y) n U is a function and also ll x(y) - xll :::; c ll v- fl ll for all 
y E V. Our question is whether the calmness of the inverse of a mapping is pre
served under perturbations by a single-Vf!.lued mapping with a small Lipschitz 
modulus, as it is for the strong regularity. The answer turns out to be again 
negative. 

EXAMPLE 2.2 Consider a multivalued mapping F which is a concatenation of 
infinitely many linear pieces symmetric with respect to the vert·ical axis and with 
lengths and slopes going to zero, namely: 

F(x) _ 4n+1 4n+ 1 J' 2n+ 1 - - 2n 
{ 

- 1- x- _L_ •or- - 1 - < x < _l_ 

- 1 4n+2 f 1 < < 1 
- 4n+3X + {2n+l}(4n+3) ;Or- 2n+1 - X - 2n +2 

for n = 1, 2, . . .. The inverse of this mapping is single-valued, calm at the origin 
but not Lipschitz continuous near the origin. Now for every E > 0 the mapping 
x f-t F(x) + EX has the property that there exists a neighborhood of y = 0 such 
that the inverse mapping (F + cl) - 1 is not single-valued in this neighborhood. 
Indeed, close to the origin (where n is very large) all linear pieces ofF+ Ef will 
have positive slopes and then the inverse mapping may have two or more values 
for the same y. We can modify the example by taking pieces of parabolas with 
minimum on the y axis, then perturb by Ex2 and again obtain a multivalued 
inverse; in this case the Lipschitz modulus of the perturbation at zero is zero, 
that is, we can destroy the property of calmness without changing the first-order 
information about the mapping. 

3. Semidifferentiable graphical localization 

In this section we consider a class of functions , called semidifferentiable func
tions, that play an important role in the analysis of variational problems with 
................... 4. - .... ~ -- .L - 'T' t. _____ L ___ .._ v 'l.r ____ , n _ 
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DEFINITION 3.1 A function f : X ---+ Y is said to be semidifferentiable at x E 
dom f when there is a continuous and positively homogeneous function, denoted 
D f ( x), such that 

f(x +h)= f(x) + Df(x)h + o(llhl l) . 

By defining the norm of D f(x) as 

IIDf(x)ll =sup IIDf(x)xll, 
xEB 

when D f(x) exists, we obt ain 

IIDJ(x)ll = lirr:sup_ llf(l~) = ~~x )ll :::; lipf(x). 
x-+x, x,.Cx X X 

(10) 

If D f( x ) is a linear mapping then f is Frechet differentiable at x. The simplest 
example of a semidifferentiable function is any function f for which f(x)- f( x) 
is a positively homogeneous function; then Df(x) = f(x) - f(x). Recall that a 
function cp is positively homogeneous when 0 E domcp and cp(.Ax) = .Acp(x) for 
all x E dom cp and .A > 0, i.e. when gph cp is a cone in X x Y. 

With a slight abuse of notation, for a set-valued mapping S : X~ Y with 
a single-valued graphical localization s around (x,y) we denote DS(xly) := 
Ds(x) . The semiderivatives, also called Bouligand derivatives, have been intro
duced in various ways in the literature, for a thorough treatment see Malanowski 
(2001). 

Our fir st result is in line of 2.1. 

THEOREM 3.1 Consider a mapping M : Y ~X with lipM(y l.i) < oo and 
suppose that its graphical localization rn(-) around (y, x) is semid·ifferentiable at 
y. Consider also a function h : P x X ---+ Y which satisfies lip h(p, x) < oo 
and h(-, x) is semidifferentiable at p with semiderivative Dph(p, x). In addition, 
assume that 

lip M(y I x) · lipx h(p, x) = 0. (11) 

Then the mapping 

p 3 p f-) N (p) : = { X E X I X E M ( h(p, X))} 

has a lipschitzian single-valued graphical localization around (p, x) which is semid
ifferentiable at p and its semiderivative is 

DN(plx) = DM(y lx) o Dph(p, x). 

Proof. The existence of a lipschitzian single-valued graphical localization x(-) of 
N around (p, x) follows from 2.1. Indeed, the condition lip h(p, x) < oo implies 

. . . (' 
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and then the Lipschitz continuity of the single-valued localization follows from 
(8). 

Let E.> 0 and let Q be a neighborhood of v such that, for a fixed p E Q, the 
function x f---7 m(h(p, x)) is Lipschitz continuous with a constant E.. That such 
choice of Q is possible follows from the condition (11) and from the continuity 
of x(-) and h(-) around v and (v, x), respectively. Indeed, taking Q smaller if 
necessary, for any arbitrary small neighborhood U of x and any arbitrary small 
neighborhood V of y one can have x(p) E U whenever p E Q and h(p, x) E V 
whenever p E Q and x E U. Further, from (11), for some ex> lipM(ylx) = 

lip m(Y) and (J > lipx h(v, x) such that ex(J::::; E., we take U, V and Q small enough 
such that m(·) is Lipschitz in V with a constant ex and h(p, ·) is Lipschitz (with 
respect to x) in U uniformly in p E Q with a constant (J. We can also take Q 
and V even smaller, if needed, such that for p E Q, 

II h(p, x) - h(v, x) - Dph(v, x) (p - v) II ::::; E. liP - vii (12) 

and for y E V, 

llm(y)- m(y) - DM(ylx)(y- y)ll ::::; EIIY - 'YII· (13) 

For p E Q we write 

llx(p) - x- DM(Yix)(Dph(v,x)(p - v))ll 
= llm(h(p,x(p)))- m(y)- DM(Yi x)(Dph(v,x)(p- v))l l 
::::; llm(h(p, x(p)))- m(h(p, x))ll (14) 
+ llm(h(p, x))- m(y + Dph(v, x)(p- v))ll 
+ llm(Y + Dph(v, x)(p - v))- m(Y)- DM(yl x)(Dph(v, x)(p- v))ll· 

The expressions in the right-hand side of (14) are now estimated. For the first 
expression we use the assumption (11), that is , with the so-chosen Lipschitz 
constants ex of m( ·) and (J of h(p, ·): 

llm(h(p, x(p)))- m(h(p, x)) ll ::; ex ll h(p, x(p)) - h(p, x)ll 
::::; exfJIIP- vii ::::; E.IIP- vii· 

(15) 

The second expression is estimated by using the Lipschitz constant of m( ·) and 
(12): 

llm(h(p, x))- m(Y + Dph(v, x)(p- v))ll 
::::; exllh(p, x) - h(v, x) - Dph(v, x)(p - p) II ::::; exE.I IP- vii· 

From (13), for the third expression we obtain: 

llm(y + Dph(v, x)(p- v)) - m(Y)- DM(y lx)(Dph(v, x)(p - v))ll 
::::; EII Dph(v, x)(p - v))ll ::::; E.II Dph(v, x)II IIP - vii · 

Using (15), (16) and (17) in (14) and taking into account (10) we obtain 

(16) 

(17) 

ll x(p) -X- DM(Y I x)(Dph(v, x) (p- v)) II ::; E.(1 +ex+ lip X h(v, x))llp- vii· 

Since E. can be arbitrary small, the last expression is o( \\ p- ;0\1) and thus the 



540 A.L.DONTCHEV 

THEOREM 3.2 Given F: X -:4 Y and f : P x X -+ Y with fiE f(p, i) + F(i), 
let lip f(p, i) < oo and f (-, i) be semidifferentiable at j5. Let g : X -+ Y be 
a first-order approximation off at (p, i) and let (g + F)-1 have a lipschitzian 
single-valued localization around (fi, x) which is semidifferentiable at fi. Then 
the mapping 

p .._, S(p) := {x EX I f(p , x) + F(x) :3 0} (18) 

has a lipschitzian single-valued localization around (p , i) which is semidifferen
tiable at j5 and moreover 

DS(pjx) = D(g + F)- 1(fiix) o ( -Dvf(p, i)). 

Proof. The existence of a lipschitzian single-valued localization follows from 
2.2. Further, forM= (g + F) - 1 and h(p, x) = g(x)- f(p, x) by the first-order 
approximation we have that lipx h(p, i) = 0 and h(- , i ) is semidifferentiable at 
j5. Clearly, liph(p,i) :::; lipg(i) + lipf(p, i ) < oo and then the claim follows 
from 3.1. • 

The inverse mapping form of the above theorem is 

THEOREM 3.3 Consider a set-valued mapping F : X -:4 Y with lip F-1(fili) < 
oo and let the associated single-valued localization ofF- 1 around (fi, i) be semi
diferentiable at fi . Consider also a function G : X -+ Y with lipG(i) = 0. 
Then 

and the associated single-valued graphical localization of (F + G)- 1 around (fi + 
G(i),i) is semidiferentiable at fi + G(i). 

The results in this section partially st rengthen author's results from Dontchev 
(1995), where it is also shown that, with appropriate modifications, the semid
ifferentiability property in the above analysis can be replaced without major 
changes by other types of differentiability, such as directional differentiability 
or Frechet differentiability. An application of these results to optimal control is 
given in Malanowski (2001b) . 

References 

BONNANS, J. F., and SHA PIRO, A. (2000) PerturbationAnalysisof Optimiza
tion Problems. Springer Series in Operations R esearch. Springer-Verlag, 
New York. 

DONTCHEV, A.L . (1995) Implicit function theorems for generalized equations. 
Math. Programming, 70, Ser.A, 91- 106. 

KLATTE, D. and KUMMER, B . (2002) Nonsmooth equations in optimization. 
RP.!!nlaritv. calculus. methods and applications. Nonconvex Optimization 



Robinson's implicit function theorem 541 

LEVY A .B . (2000) Calm minima in parameterized finite-dimensional optimiza
tion, SIAM J. Optim. 11, 160- 178. 

MALANOWSKI, K. (2001a) Stability and sensitivity analysis for optimal control 
problems with control-state constraints. Dissertationes Math. 394 . 

MALANOWSKI, K. (2001 b )Bouligand differentiability of solutions to parametric 
optimal control problems. Numer. Funct. Anal. Optim. 22 , 973-990. 

ROBINSON, S .M . (1980)Strongly regular generalized equations, Math. of Oper. 
Research 5, 43- 62. 

ROBINSON, S.M. (1991) An implicit-function theorem for a class of nonsmooth 
functions. Math. of Oper. Research 16, 292-309 . 

WETS, R.J.-B. and ROCKAFELLAR, R.T. (1997) Variational Analysis, Sprin
ger-Verlag, Berlin. 




