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Abstract: The problem considered in the paper can be de
scribed as follows. Vve are given a continuous mapping from one 
metric space into another which is regular (in t he sense of met
ric regularity or, equivalently, controllability at a linear rate) near 
a certain point. How small may be an additive perturbation of the 
mapping which destroys regularity? The paper contains a new proof 
of a recent theorem of Dontchev-Lewis-Rockafellar for linear pertur
bations of maps between finite-dimensional Banach spaces and an 
exact estimate for Lipschitz perturbations of maps between com
plete metric spaces. 
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1. Introduction 

We start with a brief informal description of the problems to be dealt with in 
the paper. Suppose we have an equation F(x) = y (or an inclusion y E F(x) 
with F being a set-valued operator) . Let S(y) be the collection of solutions 
of the equation depending on the right-hand side parameter y. One of the 
important and often asked questions is how to check that the set of solutions does 
not change sharply under a minor change of the parameter. A Lipschitz-type 
behavior of the solution set is often considered satisfactory. Properly formulated , 
it leads to the concept of the pseudo-Lipschitz, or Aubin property (a precise 
definition will be given later). 

An elementary but very important fact is that a reformulation of this prop
erty in terms of the mapping F leads to the concept of metric regularity, one of 
the most fundamental in nonsmooth and, generally, nonlinear analysis. 

Let X and Y be complete metric spaces, and let F : X ::::4 Y be a set-valued 
mapping of which we shall always assume that Gr F = {(x,y): y E Gr F}, the 
graph ofF, is a closed set. We shall denote the distance in either space by the 

' 
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parenthesis always explains to which space this applies. Given (x, y), it is said 
that F is metrically regular near (x, y) if there are K > 0, c > 0 such that 

d(x, F- 1(y)) :=:; K d(y, F(x)) , 

provided d(x, x) < c, d(y, y) <c. The lower bound of all such K is called the rate 
(or the norm) of metric regularity ofF near (x , y) and is denoted RegF(x , y) . 

In case of a single-valued mapping we slightly change the terminology and 
notation and say that F is metrically regular near x and write RegF(x). 

The concept of metric regularity acquired this final form after decades of 
developments whose starting points were the Banach-Schauder open mapping 
theorem and the Ljusternik-Graves theorem on local openness of smooth maps 
with surjective derivatives. Each of these theorem can be interpreted as a the
orem on metric regularity of corresponding maps. We refer to Ioffe (2002) for a 
detailed historical discussion. 

The relationship of metric regularity to local solvability and Lipschitz sta
bility of solutions of equations or inclusions can be stated in an equally general 
setting. Namely, it is said that F covers (or is open) at a linear rate near (x, y) if 
there are r > 0, E > 0 such that whenever d(x, x) < E, d(y, y) < c, the inclusion 

B(y, rt) c F(B(x, t)) 

holds for all sufficiently small t. 
The upper bound of such r is called the rate of covering ofF near (x, y) and 

is denoted SurF(x, y). 
Furthermore, F is said to be pseudo-Lipschitz (or to have the Aubin property) 

near (x, y) if there are K > 0 and c > 0 such that for any y of a neighborhood 
of fj the function d(y, F(-)) satisfies the Lipschitz condition with constant not 
exceeding Kin the c-ball around x. 1 The lower bound of such K is t he Aubin 
constant of F near ( x, y). 

The fact of a principal importance is that all three concepts are equivalent 
in the following sense: F is metrically regular near (x, y) at the rate K if and 
only if it is open near (x, y) with the rate K- 1 and if and only if the inverse 
mapping F- 1 is pseudo-Lipschitz near (y, x) with constant K. The proof of 
this equivalence, which is rather a simple reformulation of the definitions can 
be found in Ioffe (2002). 

In view of this fact , it seems to be convenient to have an umbrella word 
to refer to the three properties when there is no need to specify one of them. 
The term first order regular seems to be a suitable candidate. However, to 
simplify the terminology, we adopt in this paper the following convention, a 

1 This amounts to saying that 

F(u) n B(y,c:) c {y: d(y,F(x))::; Kd(x,u)} 
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sort of return to the terminology used in the 1970s, which will allow us to use 
the most convenient of the three equivalent properties whenever necessary: 

Convention: A set-valued mapping will be called regular near (x, y) if it has 
the three equivalent properties. 

Now let us return to the main question we are going to discuss: how the 
regularity property can be affected by perturbations of the mapping. Suppose 
now that Y is a Banach space and we perturb F by adding to it a certain 
single-valued mapping H . What can be said about regularity of the perturbed 
mapping F + H? The following fundamental theorem was proved by Miljutin 
in 1980 (see Dimitruk, Miljutin, Osmolovskii , 1980) . 

THEOREM 1.1. Let X be a complete metric space, let Y be a Banach space, let 
F : X -+ Y be a (single-valued mapping) defined in a neighborhood of x E X 
which is regular near x with SurF(x) = r. Let H: X-+ Y be another mapping 
also defined in a neighborhood of x and satisfying there the Lipschitz condition 
with constant L < r. Then F + H is regular near x and 

Sur(F + H)(x) 2 r - L. 

This result remains valid (with only a slight modification of the proof) for 
the case when F is a set-valued mapping and , with a somewhat greater effort , 
when H is also a set-valued mapping and the Lipschitz constant relates to the 
Hausdorff metric in the space of closed subsets of Y (see Ioffe, 2000) . 2 

Surprisingly, the natural question whether this lower estimate is precise was 
not discussed t ill very recently when Dontchev, Lewis, Rockafellar (2002) showed 
that at least in two cases, when both X and Y are finite dimensional Banach 
spaces and when X is also a Banach space and the mapping F is positively 
homogeneous of degree one (that is , when F(>.x) = >.F(x) for all ).. > 0), (a) 
the lower bound of Lipschitz constants of operators H such that F + H is not 
regular is precisely SurF(x, y) and (b) moreover, in either case the lower bound 
is realized by linear maps of rank one. 

These results provide a partial answer to the question and, in turn, in an 
equally natural way, lead to further questions of whether it is possible to extend 
t he results to broader classes of set-valued mappings. As far as part (b) is con
cerned, the answer is generally negative (although recently Mordukhovich, 2003, 
described a class of set-valued mappings from a Banach space into IRn for which 
(b) holds) . Already in the case of X= Y = H, a Hilbert space, and F single
valued the lower bound of Sur(F + A)(x ) over all linear mappings A with norms 
equal or smaller that L ::; SurF(x) can be strictly greater than SurF(x)- L. 

2 To be precise: the results quoted, as stated, deal with global rather than local regularity. 
However t he reduction to local results is straightforward in each case. For an independent 
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An example of such F, even having reasonably good differentiability properties, 
was given in Ioffe (2002). 

The final result of this paper (Theorem 4.1) shows that (a) is valid for 
arbitrary single-valued mappings from metric into normed spaces, t hat is to 
say, that the lower estimate in the theorem of Miljutin is exact on the class of 
locally Lipschitz perturbat ions. The question of whether or not a similar fact is 
valid for set-valued mappings remains open. 

We also give a new proof of (b) for set-valued mappings between finite di
mensional spaces based not on the powerful machinery of subdifferential calculus 
(see e.g. Ioffe, 2002, for connections between subdifferential calculus and the 
three regularity properties) but rather on simpler calculations involving prop
erties of the so-called slope which is the simplest and the most precise tool to 
characterize the regularity property. We start by discussing necessary properties 
of slope in the next section. 

2. Slope and the regularity criterion 

In this section we formulate the principal local regularity criteria for set-valued 
mappings. This criterion is based on the concept of slope introduced in 1980 by 
De Giorgi-Marino and Tosques (1980). 

DEFINITION 2.1. Let X be a metric space, and let f be a function on X with 
values in ( -oo, oo] which is finite at x . The quantity 

lnf'l( ) I' (f(x) - f(u))+ 
v x = nnsup 

, _,. d(x , u) 
1/ ~:J; 

is called the slope off at x. 

The meaning of this concept is very simple: this is just the highest speed of 
decrease of the function from the given point. Slope also can be considered the 
quantitative measure of the qualitative concept of calmness due to Clarke and 
Rockafellar. 

If X is a Banach space and f is Frechet differentiable at x, then IVf l(x) = 

llf'(x)ll (that is, the slope coincides with the norm of the derivative). More 
generally, iff is uniformly directionally differentiable, that is - if the directional 
derivative f'(x; h) exists for any hand C 1(f( x + th) - f(x)- f'(x; h)) goes to 
zero uniformly on the unit ball as t --> 0, then 

IV fl(x) = [ inf f'(x; h)r = sup [J'(x; h)r , 
Jlhll=l llh ll=l 

where a - = max{O, -a}. For a lower semicontinuous function on a finite dimen
sional space slopes are completely defined by the lower Hadamard directional 
derivative: 

r(x; h)= liminfC 1(f(x + th') - f (x)). 
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For such functions the value of the slope is defined as in the formula above with 
f' replaced by r. 

We turn now to the general regularity criterion for set-valued maps, stated 
in terms of slopes. Let X, Y be metric spaces. With every F : X ::::::l Y we 
associate the following family of functions on X x Y: 

<py(x, v) = { d
00

(y', v), if v E F(x); 
if v rf_ F(x). 

In other words, 

<py (x, v) = d(y, v) + XGr F(x, v), 

the second term in the sum being the indicator of Gr F , that is the function 
equal to zero on Gr F and infinity outside. 

We shall also consider the following family of a-distances in X x Y: 

da((x, v), (u, w)) = d(x, u) + ad(v, w), 

and by \7 a we shall denote the slopes of functions on X x Y with respect to the 
a-distance, so that 

I
n fl( ) 1. (f(x, v)- f(u, w))+ 
va x,v = unsup 

<"·"'l-<"·"l da((x, v), (u, w)) 
(:1:, ..,.)-i:-(u ,·w) 

THEOREM 2.1. (Joffe, 2000}. Let X andY be complete metric spaces, let F : 
X ::::::l Y be a set-valued mapping with nonempty closed graph and let (x, y) E 

Gr F. Let finally 

Then 

m(a) = limi~f __ l\la<pyi(x,v). 
(:J: , y,o) -o (:~: , y,y) 

·y:f- ·u 

SurF(x, y) 2: m(a)( ) 
l -am a 

Moreover, the equality actually holds if Y is a Banach space. 

Implicit in this theorem is that, in case of a Banach Y, am(a) < 1 for any 
a and m(a) _, SurF(x, y) as a_, 0. 

We refer to Ioffe (2000, 2001) for an explanation how all known subdifferen
tial regularity criteria follow from the theorem. 

The criterion assumes a nicer form if F has the property that the functions 

'l/Jy = d(y, F(-)) 

are lower semicontinuous for ally (or at least for ally of a neighborhood of y). 
1 ' 1 -
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THEOREM 2.2. (Joffe, 2000) If in addition to the assumptions of Theorem 1.1, 
the functions '1/Jy are lower semicontinuous for ally of a neighborhood of fj , then 

SurF(x,y) 2: liminf I\7'1/Jy l(x). 
( x,y)~(,<•.fj) 

yfiF( x) 

Moreover, the equality holds if Y is a Banach space. 

REMARK 2.1. The assumption that Y is a Banach space is not necessary for 
the equality to hold in both theorems. This is also true if Y is a metric space 
with the the following approximate geodesic property: for any Yl, Y2 E Y and 
any c > 0 there is a y such that d(y, Yi ) ::; (1/2)d(yl, Y2) + c (see Joffe , 2001). 

REMARK 2.2. Both functions 'Py and '1/Jy, as functions of y , satisfy the Lipschitz 
condition with constant 2 (for the fixed values of arguments). 

REMARK 2.3. The rates of surjection and metric regularity as well as the values 
and slopes of '1/Jy of course depend on specific choice of distances in X and Y. 
A simple calculation shows however, that small change of a norm results in a 
small change of the rates and the slopes. 

3. The finite dimensional case. 

In this section we shall apply Theorem 2.2 to prove the following result which 
is equivalent to the mentioned theorem of Dontchev, Lewis, Rockafellar (2002). 

THEOREM 3.1. Let X andY be finite dimensional Banach spaces, let F : X =l Y 
be a set-valued mapping from X into Y with closed graph which is regular near 
(x, y) E Gr F and SurF(x, y) = r > 0. Then for any positive p ::; r there is 
a linear operator A : X ~ Y of rank one with norm equal to p and such that 
Sur(F + A)(x , y +Ax)= r- p. 

The theorem proved in Dontchev, Lewis, Rockafellar (2002) corresponds 
to the case p = r. The proof given in Dontchev, Lewis, Rockafellar (2002) 
is based on the finite dimensional subdifferential regularity criterion for set
valued mappings, see Mordukhovich (1993), which reduces the problem to non
singularity of the coderivative at a given point (where "nonsingularity" of a 
homogeneous set-valued mapping means that the distance from zero to any 
value of the mapping is not smaller than the norm of the argument times a fixed 
constant). An obvious observation is that non-singularity of a homogeneous 
mapping can be destroyed by an addition of a rank one linear operator. The 
criterion is one of the most advanced results of finite dimensional nonsmooth 
analysis. We give below an alternative proof of the theorem which does not 
need any reference to subdifferential calculus. 

We precede the proof with with a lemma which gives important information 



On robustness of the regularity property of maps 549 

LEMMA 3.1. Let X be a finite dimensional Banach space with smooth norm, and 
let f be a lower semicontinuous function on X. Suppose that I \7 f I ( x) = r > 0. 
Then, for any c > 0 there are wE X, r' > 0 an x* EX* such that ll x- wll <E., 
II x* II = 1, r' :=:; r + c and 

f(u) + r' (x*, u) + cllu- wll 2: f(w) 

for all u in a neighborhood of w . 

Proof By the definition of slope for any 8 > 0 the function f ( u) + ( r + 8) II u- x II 
attains a local minimum at x . 

Given an c > 0, we choose a 8 E (0, c), e.g. 8 = c/2, and find a a < 8 to 
make sure that 

f(u) + (r + 8)llu- xll > f(x) 

if llu- xll :=:;a, x =/ u. 
Next, we choose K > 0 and p > 1 for which the following inequality holds: 

r· +E. 
r + 8 < K ap-l < --. 

- p 

This is clearly possible as 8 <c. 
Consider the function 

Then 

g(u) = f(u) + KaP- 1 IIu- x ll > g(x) = f(x) 

if llu - xll =a. It follows that g(u) attains a local minimum at a certain w with 
llw- xll < a. Clearly w =f x . Indeed, as the norm is smooth and p > 1, the 
function II · liP is smooth and its derivative at zero is zero. Therefore, w = x 
would mean that IV' f l(x) = IY'gl(x) = 0, contrary to the assumption. 

The derivative of II·IIP at w can thus be written in the form Pllw- xiiP- 1x*, 
where llx*ll = 1 and (x*,w- x) = llw- xll · We have for u close tow: 

g(w) :=:; g(u) = f(u)+K))u-x iiP = f(u)+KIIw-xllp-l(x*,u-w)+o( ll u - w ll ). 

The proof is completed by setting r' = Kpllw- :r: ll p-l :=:; KpaP-l < r +c. 

REMARK 3.1. The lemma easily extends to spaces with Gateaux difJerentiable 
renorms (or even to spaces with a Lipschitz Gatea·ux differentiable b·ump) with 
the help of one of the variational principle of Borwein-Preiss. 

Proof of Theorem 3.1. 
1. It follows from Remark 2.3 in the preceding section that we only need 
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strictly convex and smooth. Indeed, let II · lin be a sequence of smooth strictly 
convex norms in Y converging to II · II · Let r·n be the corresponding rate of 
covering by F near (x, y) and let An be a rank one linear operator X ---> Y 
whose norm (corresponding to the n-th norm in Y) is Pn ---> p. We can assume 
that An converge to a certain operator A which will obviously be of rank one 
and whose II · 11-norm is p. By Remark 2.3 the rates of covering ofF+ A near 
(x , y +Ax) corresponding to the n-th norms converge to Sur(F + A)(x, y +Ax). 
On the other hand, by Miljutin's theorem, the rates of covering of F + A and 
F +An (at the corresponding points) corresponding to the n-th norm differ by 
at most IIA - An lin. 

2. For a finite dimensional space the functions d(y, F(-)) are automatically 
lower semicontinuous if the graph ofF is closed, so we can apply Theorem 2.2. 
It follows that IVy·l{!l(x) > 0 for all (x,y) 9!. Gr F of a neighborhood of (x,y), 
and in any neighborhood of (x, y) we can find an (x, y) such that IV1f!yl(x) is 
arbitrarily close tor. By Lemma 3.1 the latter implies the existence of sequences 
(xn)---> x, (Yn)---> y, (rn)---> r, (En)"'>. 0 and x~ such that Yn 9!. F(xn) , l lx~ll = 1 
and for any n 

(1) 

for all u of a neighborhood of Xn· 
Let Vn E F(xn) be the closest to Yn in F(xn). We can assume without loss of 

generality that Vn is the unique closest point to Yn in F(xn)· Indeed, otherwise 
we can replace Yn by Ci.nYn + (1 - O:n)vn with O:n ---> 1. As the norm in X is 
strictly convex, Vn becomes a unique closest point to Yn after the replacement . 

For each n consider two complementary sets: 

Pn = { U: d(yn, F(u)) 2 d(yn, F(xn)) + Pllu - Xnl}; 

Qn = {u: d(yn, F(u)) < d(yn, F(xn)) + Pllu- Xnll}. 

The second set meets any neighborhood of Xn at infinitely many points as 
the slope of d(yn, F(-)) is positive. For any u E Qn , u =J. Xn choose a v(u) E F(u) 
such that llYn- v(u)ll = d(yn,F(u)). We claim that 

U E Qn, U---> Xn, V E F(u), d(yn, F(u)) = llv- Ynll :::} V---> Vn· (2) 

Indeed, let w be any limiting point of such v. Clearly, w E F(xn) as F is 
closed-graph. Therefore 

d(yn,F(xn))::; llYn - wll::; limsupd(yn,F(u))::; d(yn,F(xn)) (3) 
·u -::r.: n 
uEQ, 

which proves the claim as Vn is the unique closest point to Yn in F(x11 ). 

3. Set hn = llvn- Ynll- 1(vn- Yn) · We may assume that hn converge to a 
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for x EX 
Ax= p(x*, x) h, 
F(x) = F(x) +Ax, 
Yn = Yn + Axn. 

Then A is a rank one linear operator of norm p. 
We have 

d(Yn , F(xn)) = d(yn + Axn, F(xn) + Axn) = d(yn , F(xn)). 

If u E Pn, then (as [[A[[ :S p) 

d(f;n, F(u)) 2': d(yn, F(u)) -[[A[[[[u - Xn[[ 2': d(yn, F(xn)). 

551 

(4) 

(5) 

Let on the other hand u E Qn be sufficiently close to Xn. Let v( u) E F( u) be 

such that [[v(u)+Anu-ffn ll = d(fJn, F(u)). Let finally y~(u) satisfy [[y~(u)[[ = 1, 
(y~(u), v(u)- Yn ) = [[v(u)- Yn[[ . Then, by (1) 

d(ffn,F(u)) d(yn ,F(u)+A(u-xn)) = [[v(u)+A(u -xn) -yn[[ 
> (y~(u), v(u) + A(u - Xn) - Yn)) 

[[v(u) - Yn[[ + (y~(u), A(u - Xn )) 
> d(yn, F(u)) + p(y~(u), h)(x~, u- Xn) 
> d(yn, F(xn)) - En[[u- Xn[[ - Tn(x~, U - .rn) 

+p(y~(u), h)(x~, u- Xn) · 

Comparing this with (4), we get 

d(iJn, F( u) )+cn [[ u - xn[[ +rn (x~, u - xn) - p(y~( u) , h) (x*, u-xn) 2': d(Yn, F(xn)) 

(6) 

We have seen that v(u) ~ Vn when u ~ Xn. As the norm in X is smooth, it 
follows that y~(u) ~ y~ where [[y~ [[ = 1 and (y~, Vn - Yn ) = [[vn- Yn [[ . Hence 
by the definition of h, (y~, h) ~ 1 as n ~ oo. Finally, x~ ~ x*. Therefore, (6) 
implies that there are qn ~ r - p such that 

for 1L E Qn sufficiently close to Xn· Together with (5) this implies that the 
slope of d(i;n, F(-)) at Xn is not greater than q11 and therefore by Theorem 2.2 
SurF(:r) :S T - p. But by Miljutin 's theorem the opposite inclusion also holds. 

4. A general robustness estimate 

In this section we show that for single-valued continuous mappings from metric 
spaces into normed spaces the lower estimate given by Miljutin 's theorem is 
--~~ = -- =- .L l-- _ , _ 
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Let us say that F : X -) Y is a Lipschitz rank one mapping on an open 
set U if in a neighborhood of any point of U it can be represented (up to a 
diffeomorphism of the range space Y), in the form 

F(x) = ~(x)y, 

where .; is a real valued function satisfying the Lipschitz condition in the neigh
borhood. 

THEOREM 4.1. Let X be a metric space, let Y be a Banach space, and let F : 
X -) Y be a continuous mapping which is regular near x EX with SurF(x) = 
r > 0. Then, for any 0 < p ::; r there is a mapping H : X -) Y which is a 
Lipschitz rank one mapping with Lipschitz constant p and such that Sur(F + 
H)(x) = r- p. 

Proof Step 1. Take a z f. F(x) and set cp(x) = IIF(x)- zll· Suppose that for 
a certain x sufficiently close to x, I'Vcpl(x) = r. At the first step of the proof 
we shall show that, given a o > 0, there is a Lipschitz rank one mapping Hx 
with Lipschitz constant p, such that the slope of '1/Jx(-) = IIF(-) + Hx(·)- zll at 
x satisfies I'V'l/Jxl(x) = (r- p)+ and Hx (u) = 0 if d(x,u) 2 0. 

To this end we first note that, as x is sufficiently close to x, we can be 
sure that r > 0 (by the main regularity criterion) and F(x) f. z. Set fj = 
[cp(x)]- 1 (F(x)- z) and define 

a>.= inf{ (y*,fj): IIY* II = 1, (y*,v) = ll vll for somevwith liy-vll < >.}. 

Clearly, a>. / 1 as >. -) 0. 
As I'Vcpl(x) = r, 

IIF(u) - zii 2 IIF(x)- zll - rd(tt, x) + o(d(u, x)). (7) 

and there is a sequence ( un) -) x such that 

IIF(un)- zii - IIF(x) - zll = rd(un , x) + o(d(un, x)). (8) 

Take a small positive o, set 

J-L(t) = max{O,min{t,28 - t}} 

and define Hx as follows: 

Hx(u) = pJ-L(d(u, x) )y. 

Then the Lipschitz constant of Hx is p and Hx(u) = 0 if u = x or d(u, x) 2 28. 
We have for a y* such that IIY*II = 1 and (y*,F(u)- z) = IIF(u) - zl l 

'1/Jx(u)- '1/Jx(x) IIF(u) + Hx(u)- zii-IIF(x) - z ll 
> (y*, F(u) + Hx(u)- z) - IIF(x) - z ii 

(y*, F(u)- z) - IIF(x)- zil + PJ-L(d(u, x))(y*, fj) 
" 
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where .A= !!F(u) - F(x)!!· 
If d(u,x) < c5, then f.L(d(u,x)) = d(u,x) and therefore in view of (7) (and 

since a.x --> 1 as u--> x) 

1/Jx(u) -1/Jx(x) 2: -(r - p)d(u, x) + o(d(u, x) 2: -(T- p)+d(u, x) + o(d(u, x)). 

This means that j\71/Jx!(x) ::; (r- p)+. 
On the other hand, for the Un of (8) we have (as a.x ::; 1) 

1/Jx(un) -1/Jx(x) < !!F(un)- z!! + IIH(un)I!-IIF(x)- z!! 
< - rd(un, x) + pd(un, x) + o(d(un, x)), 

which shows that the slope of 1/Jx is not smaller than (r- p)+ . 

Step 2. We can now complete the proof of the theorem. As SurF(x) = f, 

there is are sequences (xn) --> x and (Yn) --> F(x) such that (Yn f= F(xn) and) 
jV'cpj(xn) = rn--> f. \Ve shall consider two cases. 

(A) Xn = x for infinitely many indices n. In this case we can assume that 
Xn = x for all x and jV'cp(x)l = f'. Then the mapping Hx gives the desired 
result. 

(B) For all (sufficiently large) n, Xn i= x. In this case we may assume that 
all Xn are different. In other words, 

O'n =min llxn- Xk! ! > 0, V n. 
kf-n 

Clearly O'n --> 0 as n --> oo. 
By Step 1 for any n there is a rank one Lipschitz mapping Hn with Lipschitz 

constant p such that 
(a) Hn(Xn) = 0; 
(b) Hn(x) = 0, if llx- Xn !! > O'n / 3 ; 
(c) IY'1/Jnl(xn) = (rn- p)+, where 1/Jn(x) = !!F(x) + Hn(x)- Yn ll · 

It follows from (b) that the supports of Hn do not meet: if Hn(x) f= 0, Hm(u) f= 
0, then x f= u. Therefore the mapping 

00 

H(x) = 2.:: Hn(x) 
1 

is well defined, is rank one Lipschitz and its Lipschitz constant in a neighborhood 
of x is p. By Miljutin 's theorem, Sur(F +H) 2: i'; - p. On the other hand , setting 
1/Jy(x) = !! F(x) + H(x)- yjj, we get from (b) and (c): 

lim IY'1/Jy,. !(xn) = !Y'i/Jn!(xn) --> f- p, 
n_,oo 
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