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Abstract: Second order necessary and sufficient optimality con­
ditions for bang-bang control problems have been studied in Mi­
lyutin, Osmolovskii (1998). These conditions amount to testing the 
positive (semi-)definiteness of a quadratic form on a critical cone. 
The assumptions are appropriate for numerical verification only in 
some special cases. In this paper, we study various transformations 
of the quadratic form and the critical cone which will be tailored 
to different types of control problems in practice. In particular, 
by means of a solution to a linear matrix differential equation , the 
quadratic form can be converted to perfect squares. We demon­
strate by three practical examples that the conditions obtained can 
be verified numerically. 
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1. Introduction 

There exists an extensive literature on second order sufficient conditions (SSC) 
for optimal control problems with control appearing nonlinearly, see Dunn (1995, 
1996), Levitin, Milyutin, Osmolovskii (1978), Maurer (1981), Maurer, Picken­
hairr (1995), Maurer , Oberle (2002), Milyutin, Osmolovskii (1998), Osmolovskii 
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(1988, 1988a, 1988b, 1995), Osmolovskii, Lempio (2000, 2002), Zeidan (1994) 
and fur ther literature cited in these papers. sse require that a certain quadratic 
form be positive definite on the so called critical cone. In practice, the test for 
SSe can be performed by checking whether an associated matrix Riccati equa­
tion has a bounded solution under appropriate boundary condit ions. The Ric­
cati approach has been extended to discontinuous controls (broken extremals) by 
Osmolovskii , Lempio (2002). The importance of SSe is due to its crucial role in 
the sensitivity analysis of parametric optimal control problems, see Malanowski 
(1992, 1993, 1994, 2001), Malanowski, Maurer (1996, 1998, 2001), Dontchev et 
al. (1995), Augustin, Maurer (2001a,2001b). 

Optimal control problems with control appearing linearly lead either to bang­
bang controls or to singular controls. First and higher order necessary optimality 
conditions have been studied, e.g., by Bressan (1985) , Schii.ttler (1988) and 
Sussmann (1979, 1987a, 1987b) for the generic properties of bang- bang controls. 
General second order necessary and sufficient condit ions for an extremal with 
a discontinuous control (see Osmolovskii, 1995) can be derived from the theory 
of higher order condit ions in Levitin, Milyutin and Osmolovskii (1978). The 
main results for bang-bang controls which follo·w from these general conditions 
are given in Milyutin and Osmolovskii (1998). Some proofs missing in that 
book will appear in Osmolovskii (2003). The li terature on SSe for bang- bang 
controls is rather scarce both in theory and numerics. Only very recently, one 
may observe a revived interest in bang- bang controls and several approaches to 
sse have been developed almost in parallel. 

Sarychev (1997) has obtained first and second order optimality conditions 
for time-optimal bang- bang controls. It is not clear from the article mentioned, 
though, how one might apply the obtained conditions to practical examples. No­
ble, Schii.ttler (2001) develop sufficient conditions for broken extremals which, 
however , are only applicable under the assumption that the reference trajectory 
can locally be embedded into a sufficiently smooth field of extremals. Felgen­
hauer (2003) discusses bang- bang controls where the dynamics are linear in 
control and state. Agrachev, Stefani, Zezza (2002) treat bang- bang control 
problems with fixed final time and are able to reduce the control problem to a 
finite- dimensional optimization problem with respect to the switching t imes as 
optimization variables. We are not aware of any practical bang- bang control 
problem in the li terature except the one given in Ledzewicz, Schii.ttler (2002) 
where sse have been tested numerically. 

Our aim is to develop SSe for bang- bang controls under verifiable assump­
tions. This goal will be achieved by deriving several representations of the 
quadratic form and the critical cone in Milyutin, Osmolovskii (1998), which are 
more convenient for numerical computations. For time- optimal bang- bang con­
trols with fixed initial and terminal conditions, this program was already carried 
out in Maurer , Osmolovskii (2001 ). In the present article, we extend the analy­
sis therein to bang- bang controls with very general state boundary conditions. 
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Section 2. In Section 3, the critical cone is introduced and its properties are 
studied. Second order necessary and sufficient optimality conditions are given 
in terms of the positive (semi-)definiteness of a quadratic form on the critical 
cone. A control problem from economics illustrates the use of SSC. Section 4 
presents the Q-transformation whereby the quadratic form is rewritten into a 
more convenient form using a solution Q of a linear differential equation. The 
general form of the boundary conditions for Q is developed. Positive definiteness 
conditions are given under which the quadratic form is transformed into perfect 
squares. In Section 5, we discuss two numerical examples that illustrate the 
numerical procedure for testing the positive definiteness of the corresponding 
quadratic forms. 

2. Bang- bang control problems on nonfixed time intervals 

2.1. Optimal control problems with control appearing linearly 

We consider optimal control problems with control appearing linearly. Let 
x(t) E 1Rd(x) denote the state variable and u(t) E 1Rd(u) the control variable 
in the time interval t E L'. = [to, t1] with a non- fixed initial time t 0 and final 
time t1. 

Minimize 

subject to the constraints 

i:(t) = f(t , .r(t), u(t)), u(t) E U, (t, x(t) ) E Q, to~ t ~ t1, 

F(to, x(to), h, x(iJ)) ~ 0, K(to, x(to), t1, x(iJ )) = 0, 
(to,x(to),t1,x(t1)) E P, 

where the control variable appears linearly in the system dynamics, 

f(t, x, u) = a(t, x ) + B(t, x )u. 

(1) 

(2) 

(3) 

(4) 

Here, F,K,a are vector functions, B is a d(x) x d(tt) matrix function, P c 
JR2+ 2d(x), Q c JRl+d(x) are open sets and U C 1Rd(u) is a convex polyhedron. 
The functions J, F, }( are assumed to be twice continuously differentiable on P 
and the functions a, B are twice continuously differentiable on Q. The dimen­
sions ofF,}( are denoted by d(F), d(K). We shall use the abbreviations 

xo = x(to), x1 = x(t l) , p = (to,xo,t1,xl). 

A trajectory 

T = (x(t) , u(t) It E [to , t1]) 

is said to be admissible, if x(-) is absolutely continuous, u(-) is measurable 
bounded and the pair of functions (x(t), u(t)) on the interval L'. = [to, t1] with 
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DEFINITION 2.1 The trajectory T affords a Pontryagin minimum, if there is 
no sequence of admissible trajectories 

yn = (xn(t), un(t) It E [t~, tr]) , n = 1, 2, ... , 

such that the following properties hold with 1::::. n = [t0, ti'] 
(a) .J(Tn) < .J(T) 'r/ n and t0 --f to, t)_--f t1 for n --f oo; 

(b) max lxn (t)- x(t)l --f 0 for n --f oo; 
tl."ntl. 

(c) J lun(t)- u(t)l dt --f 0 for n --f oo. 
tl."ntl. 

Note that for a fixed time interval 1::::., a Pontryagin minimum corresponds to an 
L1-local minimum with respect to the control variable. 

2.2. First order necessary optimality conditions 

Let 

T = (x(t) , u(t) It E [to , t1]) 

be a fixed admissible trajectory such that the control u( ·) is a piecewise constant 
function on the interval 1::::. = [to, t1] . In order to make the notations simpler we 
do not use such symbols and indices as zero, hat or asterisk to distinguish this 
trajectory from others. 

Denote by 

8 = { T], . .. 1 Ts}, to < T1 < ... < Ts < t1 

the finite set of all discontinuity points (jump points) of the control u(t). Then 
i:(t) is a piecewise continuous function whose discontinuity points belong toe , 
and hence x(t) is a piecewise smooth function on 1::::.. Henceforth we shall use 
the notation 

[ lk k+ k-u = u -u 

are the left hand and the right hand values of the control u(t) at TkJ respectively. 
Similarly, we denote by [::t]k the jump of the function ::i:(t) at the same point. 

Let us formulate a first-order necessary condition for optimality of the tra­
jectory T - the Pontryagin minimum principle. To this end we introduce the 
Pontryagin function 

H(t, x, 1/J, u) = 1/J f(t , x, u) = ·!j;a(t, x ) + 1/JB(t , x)u, (5) 

where 1/J is a row-vector of dimension d('ljJ ) = d(x) while x, u, f, F and K are 
column-vectors. The factor of the control u in the Pontryagin function is called 
the switching function 



Second orde r conditions for ba ng- bang control 559 

which is a row vector of dimension d(u). Denote by l the end-point Lagrange 
function 

l( o:o, o:, /3, p) = o:oJ(p) + o:F(p) + (JK (p) , 

where o: and (3 are row-vectors with d(o:) = d(F), d((J) = d(K) , and o:o is a 
number. We introduce a collection of Lagrange multipliers 

such that 

are continuous on ~ and continuously differentiable on each interval of the set 
~\e. In the sequel, we shall denote first or second order partial derivatives by 
the subscripts referring to the variables. 

Denote by Mo the set of the normed collections A satisfying the minimum 
principle conditions for the trajectory T: 

o:o 2: 0, o: 2: 0, o:F(p) = 0, o:o + 2:: o:i + 2:: l/3jl = 1, 

~ = -Hx, ~o = -Ht Yt E ~ \ e, 
'lj;( to) = -lx0 , 'lj;( t1) = lx1 , ·t/Jo(to) = -lt.,, 

min H(t, x(t) , 'lj;(t), u) = H(t ,x(t), ·tjJ(t ), u(t)) 
uEU 

H(t, x (t), ·tjJ(t), u(t)) + ·tjJ0 (t) = 0 Yt E ~\e. 

'l/Jo(h) = lt1 , 

Yt E ~ \ e, 

(7) 

(8) 

(9) 

(10) 

(11) 

The derivatives lx" and lx1 are taken at the point (o:o,o:,(J,p), where p = 

(to , x(to), h , x(t1 )) , and the derivatives Hx, Ht are evaluated at the point 
(t, x (t), u(t), 'lj;(t)) , t E ~\e. The condition Mo =I- 0 constitutes the first order 
necessary condition for a Pontryagin minimum of the trajectory T , which is the 
so called Pontryagin minimum principle, see Pontryagin et al. (1961) , Tviilyutin, 
Osmolovskii (1998). 

THEOREM 2.1 If the trajectory T affords a Pontryagin minimum, then the set 
Mo is nonempty. The set Mo is a finite-dimensional compact set and the pro­
jector A f-'> (o:o, o:, (3) is injective on M0 . 

In the sequel, it will be convenient to use the simple abbreviation (t) for 
indicating all arguments (t, x(t) , u(t), 'lj;(t) ), e.g., H(t) = H(t , x(t), u(t), ·tjJ (t)), 
u(t) = u(t, x(t ), 'lj; (t)) . The continuity of the pair of functions ('1j;0(t), 'lj;(t)) at 
the points tk E e constitutes the Weierstrass- Erdmann necessary conditions for 
nonsmooth extremals. We formulate one more condition of this type which is 
important for the statement of the second-order conditions for extremal with 
jumps in the control. Namely, for A E Mo, Tk E e consider the function 

(~~- H)(t) = H(t . x (t) . w(t) .uk+) - H(t . x(t) . ·Mtl . 11k-) = rrltl rn1k 11 ?I 
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PROPOSITION 2.1 For each A E Mo the following equalities hold 

Consequently, for each A E M0 the function (!J.kH)(t) has a derivative at the 
point Tk E B. Define the quantity 

Then, the minimum condition (8) implies the following property: 

PROPOSITION 2.2 For each A E M0 the following conditions hold: 

Dk(H) ~ 0, k = 1, ... , s. (13) 

The value Dk(H) also can be written in the form 

where H~- and H~+ are the left hand and the right hand values of the function 
Hx(t, x(t), u(t), 1/J(t)) at Tk, respectively, [Ht]k is a jump of the function Hi(t) 
at Tk, etc. It also follmvs from the above representation that we have 

(14) 

where the values on the right hand side agree for the derivative &( Tn from the 
right and the derivative iJ(Tj;) from the left . In the case of a scalar control u, the 
total derivative O"t + O"xX + O"..p,j; does not contain the control variable explicitly 
and hence the derivative &(t) is continuous at Tk. 

PROPOSITION 2.3 For any A E Mo we have 

(15) 

Proof. The equalities (15) follow from the equality 1j;(t)x(t)+1/Jo(t) = 0 evaluated 
for t = to and t = h together with the transversality conditions 

2.3. Integral cost function, unessentia l variables, strong minimum 

It is well known that any control problem with a cost functional in integral form 

t, 

:J = / fo(t, x(t), u(t)) dt (16) 
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can be brought to the canonical form (1) by introducing a new state variable y 
defined by the state equation 

iJ = fo(t , x, u), y(to) = 0. (17) 

This yields the cost function :J = y( t 1). The control variable is assumed to 
appear linearly in the function fo, 

fo(t, x, u) = ao(t, x) + Bo(t, x)u. (18) 

It follows from equations (8) and (9) that the adjoint variable 'lj;Y associated with 
the new state variable y is given by 'lj;Y(t) = ao, which yields the Pontryagin 
function (5) in the form 

H(t,x,'lj;,u) = a.ofo(t,x,u)+'l/Jf(t,x,u) (19) 

= a.oao(t, x) + 'lj;a(t, x) + (aoBo(t, x) + 'lj;B(t, .1:))u. 
/ 

Hence, the switching function is given by 

u(t, x, 'lj;) = a.oBo(t, .1:) + 'lj; B(t, x), u(t) = u(t, x(t), 'lj;(t)). (20) 

The component y is called an unessential component in the augmented problem. 
The general definition of an unessential component is as follows: 

DEFI NITION 2.2 The state variable Xi , i.e. , the i-th component of the state 
vector x is called unessential if the function f does not depend on Xi and if the 
functions F, J, K are affine in XiO = xi(to) and Xil = xi(ti)· 

Unessential components should not be taken into consideration in the defi­
nition of a minimum. This leads to the definition of a strong minirn:um which 
is a stronger type than the Pontryagin minimum in Definition 1. The strong 
minimum refers to the proximity of the state components in the trajectory only. 
In the following, let ;r denote the vector of all essential components of state 
vector x. 

DEFINITIO N 2.3 We say that the trajectory T affords a strong rninirnwn 'if there 
is no sequence of admissible trajectories 

T' = (xn(t) , U 11 (t) It E [t~ ' tm , n = 1, 2, ... 

such that 
{a) :J(Tn) < :J(T) , 

{b) tR----. to, t]:----. t1 , X 11 (to) ----. x(to) {n----. oo), 

{c) max l;rn (t)- ;r(t)i----. 0 {n----. oo), where b.n = [t0, t]:]. 
Ll."'nLl. 

The strict strong minimum is defined in a similar way, with the strict in­
equality (a) replaced by the non-strict one and the trajectory yn required to be 

" . 
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2.4. Bang-bang contro l 

The intuitive definition of a bang-bang control is that of a control which assumes 
values only in the vertex set of the admissible polyhedron U in (2). We shall 
need a slightly more restrictive definition of a bang- bang control to obtain the 
sufficient conditions in Theorem 3.2. Let 

Arg minvEU O'(t)v 

be the set of points v E U where the minimum of the linear function O'(t)v is 
attained. For a given extremal trajectory T = { (x(t) , u(t)) I t E D.} with a 
piecewise constant control u(t) we say that u(t) is a bang-bang control if there 
exists ('lj;o, 'lj;) E Mo such that 

Arg min vEU O'(t)v = [u(t - 0) , u(t + 0)] , (21) 

where [u(t- 0), u(t + O)] denotes the line segment spanned by the vectors u(t-0) 
and u(t+ O) in 1Rd(u)_ Note that [u( t -O),u(t+O)] is a singleton {u(t)} at each 
continuity point of the control u(t) with u(t) being a vertex of the polyhedron 
U. Only at the points h E B does the line segment [uk -, uk+J coincide with an 
edge of the polyhedron. 

If the control is scalar, d(u) = 1 and U = [umi n , UmaxJ, then the bang- bang 
property is equivalent to 

0'( t) =1- o v t E D. \ e 
which yields the control law 

u(t) = { Umin, ~f O'(t) > 0 } 1:/t E 6. \B. 
Umax, tf O'(t) < 0 

(22) 

For vector- valued control inputs, condition (21) imposes further restrictions. 
For example, if U is the unit cube in 1Rd(u), condition (21) precludes simul­
taneous switching of the control components. This property holds in many 
examples. Condition (21) will be indispensable in the sensitivity analysis of 
optimal bang- bang controls. 

3. Quadratic necessary and sufficient optimality condi­
tions 

In this section, we shall formulate a quadratic necessary optimality condition of a 
Pontryagin minimum (Definition 2.1) for given bang- bang control. A strength­
ening of this quadratic condition yields a quadratic sufficient condition for a 
strong minimum (Definition 2.3). These quadratic conditions are based on the 
properties of a quadratic form on the so called critical cone, whose elements 
are first order variations along a given trajectory T. The main results of this 
section (Theorems 3.1 and 3.2) are due to Osmolovskii , see Milyutin and Os­
molovskii (1998), Part 2, Chapter 3. Proofs missing in this book will appear in 
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3.1. Critical cone 

For a given trajectory T we introduce the space Z(B) and the c1~itical cone K C 

Z(B). Denote by PeC1(6., IRd(x)) the space of piecewise continuous functions 

x(-) : !:. -> IRd( x)' 

continuously differentiable on each interval of the set !:. \ e. For each x E 

PeC1 (!:., IRd(x)) and for Tk E e we set 

xk- = x(Tk - 0), xk+ = x(Tk + o) , [x]k = xk+- .-rk-. 

Set z = (to,t1,~,x), where toJ1 E IR1, ~ E IRs, x E PeC1 (!:.,IRd(x)). Thus, 

z E Z(B) := IR2 x IRs X P6 C 1(!:.,IRd(x)). 

For each z we set 

The vector p is considered as a column vector. Note that t0 = 0, respectively, 
t1 = 0 for fixed initial time to, respectively, final time t 1 . Denote by h(p) = { i E 

{1, ... , d(F)} I Fi(P) = 0} the set of indices of all active endpoint inequalities 
Fi(P) ~ 0 at the point p = (to,x(to),t1 ,x(tl)). Denote by K the set of all 
z E Z(B) satisfying the following conditions: 

J'(p)p ~ 0, Ff(p)p ~ 0 ViE lp(p) , K'(p)p = 0, 

x(t) = J~(t, x(t), u(t))x(t), [x]k = [x]k~k, k = 1, ... 's, 

where p = (x(to), to, x(h), h). 

(24) 

(25) 

It is obvious that K is a convex finite-dimensional and finite-faced cone in 
the space Z(B). We call it the critical cone. Each element z E K is uniquely 
defined by numbers to, t1 , a vector~ and the initial value x(to) of the function 
x(t). 

PROPOSITION 3.1 For any A E Mo and z E K we have 

lx0 x(to) + lx,x(tl) = 0. (26) 

Proof. Integrating the equality 'lj;(x - fxx) = 0 on [t0 , t 1] and using the adjoint 
t, 

equation'¢= -'lj;fx we obtain J ft('!j;x) dt = 0, whence 
tu 

('lj;x)l:~- L['lj;x]k = o. 
k=l 

From the jump conditions [x]k = [x]k~k and the equality 'lj;(t)±(t) + 'lj;0 (t) = 0 it 
follows that 

~ l.. . ; • ~ ~ ,_ 
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Then the equation ('!/;x)l~:, = 0 together with the transversality conditions 
'!/;(to)= -lx0 and '!/;(tl) = lx 1 imply (26). • 

PROPOSITION 3.2 For any A E Mo and z E K we have 

L O:.iFipP + (JKpp = 0. (27) 
i=l 

Proof. For A E M0 and z E K, we have by Propositions 2.3 and 3.1 

to(lx0 i( to) + lt0 ) + t1 (lx 1 x(t1) + ltt) + lxox( to) + lx 1 x( tl) = 0. 

Now using the equalities xo = x(to) + tox(to) , x1 = x(h) + t1x(tl), and p = 
(to, xoJb xi) we get lpp = 0, which is equivalent to condition (27). • 

Two important properties of the critical cone follow from Proposition 3.2. 

PROPOSITION 3.3 For any A E Mo and z E K, we have 

o:.oJ'(p)p = 0, o:.iF:(p)p = 0 ViE IF(p). 

PROPOSITION 3.4 S·u,ppose that there exist A E Mo with o:.o > 0. Then adding 
the equalities 

o:.iF:(p)p = 0 ViE fF(p) , 

to the system {24) , {25) defining K , one can omit the inequality 

J'(p)p ~ 0, 

in that system without affecting K. 

Thus, K is defined by condition (25) and by the condition p E K0 , where K0 

is the cone in IR.
2
d(x)+

2 given by (24). But if there exists A E M0 with o:.o > 0, 
then we can put 

Ko = {p E IR.d(x)+
2 I F; (p)p ~ 0, O:.iF;(p)p = 0 ViE IF(P), K'(p)p = 0}. (28) 

If, in addition, O:.i > 0 holds for all i E IF(p), then Ko is a subspace in IR.d(x)+ 2. 

An explicit representation of the variations x(t) in (25) is obtained as follows. 
For each k = 1, ... , s, define the vector functions yk(t) as the solutions to the 
system 

y = fx(t)y, y(Tk) = [x]k, t E h, h]. 

Fort < Tk we put yk(t) = 0 which yields the jump [yk]k = [x]k. Moreover, define 
y0 (t) as the solution to the system 
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By the superposition principle for linear ODEs it is obvious that we have 

x(t) = LYk(t)~k + y0 (t) 
k= l 

from which we obtain the representation 

i1 = LYk(ti)~k + y0 (tl) + i(t1)t1. 
k=l 

565 

(29) 

Furthermore, denote by x(t; T1, ... , r8 ) the solution of the state equation (2) using 
the values of the optimal bang-bang control with switching points r 1 , ... T 8 • It 
easily follows from elementary properties of ODEs that the partial derivatives 
of state trajectories w.r.t. to the switching points is given by 

~X (t; r 1 , ... , T8 ) = -yk(t) for t 2: Tk, k = 1, ... , S. 
UTk 

This gives the following expression for x(t) : 

s ox 
x(t) =- L ~(t)~k + y0 (t). 

UTk 
k= l 

(30) 

(31) 

In a special case that frequently arises in practice, we can use these formulas 
to show that K = {0}. This property then yields a first order sufficient condition 
in view of Theorem 3.2. Namely, consider the problem with an integral cost 
functional (16) where the initial time to = to is fixed, while the final time t 1 

is free, and where the initial and final values of the state variables are given: 
minimize 

i
t, 

J = fo(t,x,u)dt 
to 

(32) 

subject to 

x = f(t, x, u), .r(to) = i:o, x (h) = i:1, u(t) E U. (33) 

In the definition of K we then have to = 0, x(t0 ) = 0, .i:(t1) = 0. The condition 
x(to) = 0 implies that y0 (t) = 0 whereas the condition i(tl) = 0 yields in view 
of the representation (29) 

LYk(tl)~k + i(ti)fl = 0. 
k= l 
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PROPOSITIO N 3.5 In problem {32), (33), assume that the s + 1 vectors 

yk(tl) =- ~x (t1) (k = 1, ... , s), :i:(t1) 
UTk 

are linearly independent. Then the critical cone is /( = { 0}. 

We conclude this subsection with a special property of the critical cone for 
time-optimal control problems with fixed initial time and state, 

t1 _, min, :i; = j(t, x, u), u E U, to= io, x(to) = io , K(x(tl)) = 0, (34) 

where f is defined by ( 4). The following result generalizes Proposition 3.1 from 
Maurer, Osmolovskii (2001) and will be used in Example 5.2 to simplify the 
critical cone. 

PROPOSITION 3.6 Suppose that there exists ('l/J0 , '1/J) E Mo such that ao > 0. 
Then f1 = 0 holds for each z = (f1, ~, x) E /C. 

Proof For arbitrary ('1/Jo,'l/J) E Mo and z = (f1.~,x) E /(we infer from the proof 
of Proposition 3.1 that 'ljJ(t)x(t) is a constant function on [to , h]. In view of the 
relations '1/J(h) = f3Kx 1 (x(tl)), Kx, (x(h))il = 0 and i1 = x(tl) + :i:(h)fl we 
get 

Since '1/Jo ( t1) = o:o > 0, this relation yields f1 = 0. • 
In the case of o:o > 0 we note as a consequence that the critical cone is a 

subspace defined by the conditions 

x = fx(t)x, [x]k = [x]k~k (k = 1, ... , s), 

fo = f1 = 0, x(to) = 0, KxJx(h))x(tl) = 0. 
(35) 

3.2. Quadratic necessary optimality conditions 

Let us introduce a quadratic form on the critical cone/( defined by the conditions 
(24), (25). For each), E Mo and z E /C we set 

n(A, z) = (Ap,p) + t (Dk(H)~~ + 2[Hx]kx~v~k) + J (Hxxi(t),x(t)) dt, (36) 
k=l ~ 

where 

(Ap,p) 

(37) 
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Note that the functional rl(A, z) is linear in A and quadratic in z. Also note 
that for a problem on a fixed time interval [to, h] we have to = t1 = 0 and, 
hence, the quadratic form (37) reduces to (Ap, p) = (lppP, p). The following 
theorem gives the main second order necessary condition of optimality. 

THEOREM 3.1 If the trajectory T affords a Pontryag'in minimum, then ihe fol­
lo·wing Condition A holds: the set Mo is nonempty and 

max rl(/\, z) ~ 0 for all z E K. 
>.EMo 

We call Condition A the necessary quadratic condition, although it is truly 
quadratic only if 1VI0 is a singleton. In the last case we have an accessory problem: 
minimize the quadratic form n on the critical cone K. 

3.3. Quadratic sufficient optimality conditions 

A natural strengthening of the necessary Condition A turns out to be a sufficient 
optimality condition not only for a Pontryagin minimum, but also for a strong 
minimum, see Definition 2.3. The following result has been obtained in Milyutin, 
Osmolovskii (1998), Part 2, Chapter 3, section 12.4, and Osmolovskii (2003). 

THEOREM 3.2 Let the following Condition B be fulfilled for the trajectory T: 
(a) u( t) is a bang-bang control for which condition {21) holds, 

{b) there exists A E M0 such that Dk(H) > 0, k = 1, ... , s, 

(c) max rl(A, z) > 0 for all z E K \ {0}. 
AEMo 

Then T is a strict strong minimum. 

Note that the condition (c) is automatically fulfilled, if K = {0}, which gives 
a first order sufficient condition for a strong minimum in the problem. A specific 
situation where K = {0} holds was described in Proposition 3.5. Also note that 
the condition (c) is automatically fulfilled if there exists /\ E M 0 such that 

rl(A,z) > 0 for all z E K \ {0}. (38) 

Example: Resource allocation problem. Let x( t) be the stock of a resource and 
let the controlu(t) be the investment rate. The control problem is to ma1:irnize 
the overall consumption 

.{

1 

x(t)(1 - u(t)) dt 

on a fixed time interval [0, t 1] subject to 
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The Pontryagin function (5) for the equivalent minimization problem is 

H = o:ox(u- 1) + ·lj; xu= -o:ox + CJu, CJ(x , ~~) = x(o:o + 'lj;). 
A straightforward discussion of the minimum principle shows that the optimal 
solution has one switching point 71 = t 1 - 1 for t1 > 1. Moreover, we can take 
o:o = 1 and find 

u(t) { ~ : ~1 ~~t t~~7:1 } ' 

{ 
(xoet, -e-(t- ri)) , 0 ~ t ~ 71 } 

(x(t), 'lj;(t)) = 
(xoe' , t-t1) , 71~t~h 

The switching function is CJ(t) = x(t )(1 - 'lj;( t)) for which we compute 0'(71) = 
xoer' :f. 0. Here we have k = 1, [u] 1 = - 1 and thus obtain D1(H) = -0'(7l)[ujl 
= 0'(71) > 0 in view of (12) and (14). Hence, conditions (a) and (b) of Theorem 
3.2 hold . The check of condition (c) is rather simple since the quadratic form 
(36) reduces here to D(X, z) = D1 (H)~i. This relation follows from Hxx :::::: 0 
and [HxJl = (1 + 'l/;(7l))[ujl = 0 and the fact that the quadratic form (37) 
vanishes . Note that the above control problem can not be handled in the class 
of convex optimization problems. This means that the necessary conditions do 
not automatically imply optimality of the computed solution . 

We conclude this subsection with the case of a time-optimal control problem 
(34) with a single switching point, i.e., s = 1. Assume that o:0 > 0 for a given 
A E Mo. Then, by Proposition 3.6 we have [1 = 0 and thus the critical cone 
is the subspace defined by (35). In this case, the quadratic form [2 can be 
computed explicitly as follows. Denote by y(t), t E [71, t1], the solution to the 
Cauchy problem 

iJ = fxy, y(71) =[±F. 
The following assertion is obvious: if (~ , x) E K, then x(t) = 0 for t E [to, 71) 
and x(t) = y(t)~ fort E (71, t1]. Therefore, the inequality Kx, (x(tl))y(h) :f. 0 
would imply K = {0}. Consider now the case Kx, (x(tl))y(tl) = 0. This 
condition always holds for time- optimal problems with a scalar function J{ and 
o:o > 0. Indeed, the condition 1,_('1/Jy) = 0 implies ('lj;y)(t) = canst . in h, h], 
whence 

('lj;y)(h) = (1j;y)(71) = 'l/;(7l)[±F = CJ(71)[u] 1 = 0. 

Using the transversality condition 'l/;(tl) = f3Kx 1 (x(t1)) and the inequality (3 :f. 0 
(if (3 = 0, then 'l/;(tl) = 0 and hence 'l/;(t) = 0 and '1/Jo(t) = 0 in [to, h]) we see 
that the equality ('l/;y)(h) = 0 implies the equality Kx 1 (x(h)y(t1) = 0. 

Observe now that the cone K is a one-dimensional subspace on which the 
quadratic form has the representation [2 = pe, where 

tl 

p := D 1(H)- [~F[±] 1 + l(y(t))* R xx (t)y(t) dt + (y(h))*((3K)x 1x1Y(tl)· (39) 
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This gives the following result. 

PROPOSITION 3. 7 Suppose that we have found an extremal for the time-optimal 
control problem (35) that has one switching point and satisfies o:o > 0 and 
Kx 1 (x(t1)y(t1) = 0. Then the inequality p > 0 with p defined in {39) is equiva­
lent to the positive definiteness of n on K. 

4. Sufficient conditions for positive definiteness of the 
quadratic form D on the critical cone K 

Assume that the following conditions are fulfilled for the trajectory T: 
(i) u(t) is a bang-bang control with s 2: 1 switching points; 

(ii) there exists A E M0 such that Dk(H) > 0, k = 1, .. . , s. 

Let A E Mo be a fixed element (possibly, different from that in the as­
sumption (ii)) and let n = Sl(A, ·) be the quadratic form (36) for this element. 
According to Theorem 3.2, the positive definiteness of n on the critical cone K 
is a sufficient condition for a strict strong minimum of the trajectory. Recall 
that K is defined by (25) and the condition p E Ko where p = (to, io, f1, xi), 
io = x(to) + to:i:(to), i1 = x(t1) +t1 x(t1). The cone Ko is defined by (28) in the 
case o:0 > 0 and by (24) in the general case. 

Now our aim is to find sufficient conditions for the positive definiteness of 
the quadratic form n on the cone K. In what follows we shall use some ideas 
and results presented in Maurer, Osmolovskii (2001) and in Osmolovskii, Lem­
pio (2002), who have extended the Riccati approach from Maurer, Pickenhain 
(1995), Zeidan (1994) to broken extremals. 

4.1. Q-transformation of non K 

Let Q(t) be a symmetric matrix on [to, t1] with piecewise continuous entries 
which are absolutely continuous on each interval of the set [t0 , t1] \e. Therefore, 
Q may have a jump at each point Tk E e. For z E K we obviously have 

where [(Qx,x)]k is the jump of the function (Qx,x) at the point Tk E e. Using 
the equation x = fxx with fx = fx(t,x(t),u(t)), we obtain 

s tl 

L [(Qx, x)]k + ( ((Q + f;Q + Qfx)x , x) dt- (Qx, x) (t1) + (Q.f, x)(to) = 0, 
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where the asterisk denotes transposition. Adding this zero-form to r2 and using 
the equality [Hx]k = -[-J;]k we get 

r2 = (Ap,p)- (Qx,x)(t1) + (Qx,x)(to) 
s 

+ L ( Dk(H)~~- 2[-J;]kx~v~k + [(Qx, x)]k) 
k=l 
tl 

+ J ((Hxx + Q + J;Q + Qfx)x, x) dt. 
to 

We shall call this formula the Q-tmnsformation of r2 on JC. 

(40) 

In order to eliminate the integral term in r2 we assume that Q(t) satisfies 
the following linear matrix differential equation, 

Q + f;Q + Qfx + Hxx = 0 on [to, t1] \e. ( 41) 

It is interesting to note that the same equation is obtained from the modified 
Riccati equation in Maurer , Pickenhain (1995), equation (47), when all con­
trol variables are on the boundary of the control constraints. Using ( 41) the 
quadratic form ( 40) reduces to 

s 

n = Wo + L Wk' 
k=l 

. Dk(H)c2 [" i,]k - k c [(Q- -)]k Wk .= l,k - 2 lf' X3 v<.,k + X, X , 

wo := (AfJ,fJ) - (Qx,x)(tl) + (Qx,x)(to). 

Thus, we have proved the following statement: 

k = 1, .. . ,s, 

(42) 

( 43) 

( 44) 

PROPOSITION 4.1 Let Q(t) satisfy the linear differential equation (41) on [to, t1]\ 
e. Then for each z E J( the representation (42) holds. 

Now our goal is to derive conditions such that Wk > 0, k = 0, ... , s, holds on 
J( \ {0}. To this end we shall express wk via the vector (~k, x;k-). We use the 
formula 

-k+ _ -k- + [ ·]kc X -X X <.,k, (45) 

which implies 

(Qk+ x;k+, x;k+) = (Qk+ x;k-' x;k-) + 2(Qk+ [±]k, x;k-)~k + (Qk+ [±]k' [±]k)~~· 

Consequently, 

[(Qx, x)]k = ([Q]kx;k-, x;k-) + 2(Qk+[±]k, x;k-)~k + (Qk+ [±t' [±]k)a. 

Using this relation together with 
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in the definition (43) of wk, we obtain 

Wk = {Dk(H) + ( ([i:Jk)*Qk+- [?j;Jk) [i:Jk} a 
+2 ( ([i:]k)*Qk+ _ [?j;]k) xk- ~k + (xk- )* [Q]k xk-. 

( 46) 

Here [i:Jk and :rk- are column vectors, while ([i:Jk)*, (xk-)* and [?j;]k are row 
vectors. By putting 

( 47) 

we get 

(b )c2+ 2( )-k-c +( -k-)*[Q]k -k-Wk = k+ '>k Qk+ X <,k X X . (48) 

Note that wk is a quadratic form in the variables (~k,xk-) with the matrix 

( 49) 

where Qk+ is a row vector and (qk+)* is a column vector. 
Similarly, using the relation 

we obtain 

This formula, together with the relation 

leads to the representation 

(50) 

where 

(51) 

We consider (50) as a quadratic form in the variables (~k, xk+) with the matrix 

(52) 

Since the right hand sides of equalities (48) and (50) are connected by the 



572 H. MAURER, N. P. OSMOLOVSKII 

PROPOSITION 4.2 For each k = 1, ... , s, the positive (semi)definiteness of the 
matrix Mk- is equivalent to the positive (semi)definiteness of the matrix Mk+. 

Now we can prove two theorems. 

THEOREM 4.1 Assume that s = 1. Let Q(t) be a solution of the linear differ­
ential equation (41) on [to, h] \ e which satisfies two conditions: 
(i) the matrix Ml+ is positive semidefinite and 
(ii) the quadratic form wo is positive on the cone Ko \ { 0}. 
Then n is positive on K \ { 0}. 

Proof. Take an arbitrary element z E K. Conditions (i) and (ii) imply that 
Wk 2: 0 for k = 0, 1, and hence n = Wo + Wl 2: 0 for this element. Assume now 
that n = 0. Then, Wk = 0 for k = 0, 1. In virtue of (ii) the equality wo = 0 
implies that to = t1 = 0 and x(to) = x(ti) = 0. The last two equalities together 
with equation x = fxx show that x(t) = 0 in [to, T1)U(T1, t1]. Now using formula 
(43) for w1 = 0, as well as the conditions D1(H) > 0 and x1- = xl+ = 0 we 
obtain that 6 = 0. Consequently, we have z = 0 which means that n is positive 
on K \ {0}. • 

THEOREM 4.2 Assume that s 2: 2. Let Q(t) be a solution of the linear differ­
ential equation (41) on [to, t1] \ e, which satisfies the following conditions: 
(a) the matrix Mk+ is positive semidefinite for each k = 1, ... ,s; 
(b) bk+ := Dk(H) + (qk+)[::i;]k > 0 for each k = 1, ... , s- 1; 
(c) the quadratic form wo is positive on the cone Ko \ { 0}. 
Then n is positive on K \ { 0}. 

Proof. Take an arbitrary element z E K. Conditions (a) and (c) imply that 
Wk 2: 0 for k = 0, 1, ... , S and hence f1 2: 0 for this element. 

Assume that n = 0. Then Wk = 0 for k = 0, 1, ... , s. In virtue of (c) the 
equality wo = 0 implies that to = t1 = 0 and x(to) = x(tl) = 0. The last two 
equalities together with equation x = fxx show that x(t) = 0 in [to, T1) U (T8 , t1] 
and hence x1- = xs+ = 0. The conditions w1 = 0, x1- = 0 and bl+ > 0 by 
formula (48) (with k = 1) yield 6 = 0. Then [xjl = 0 and hence :rl+ = 0. 
The last equality together with equat ion x = fxx show that x(t) = 0 in (t1 , t 2 ) 

and hence x2- = 0. Similarly, the conditions w2 = 0, x2- = 0 and b2+ > 0 by 
formula (48) (with k = 2) imply that 6 = 0 and x(t) = 0 in (t2, t3). There­
fore, :r3- = 0, etc. Continuing this process we get that x = 0 and ~k = 0 for 
k = 1, ... , s- 1. Now, using formula (43) for w8 = 0, as well as the conditions 
D 8 (H) > 0 and x = 0 we obtain that ~s = 0. Consequently, we have z = 0 
which means that n is positive on K \ {0}. • 

Similarly, using representation (50) for Wk we can prove the following state-
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THEOREM 4.3 Let Q(t) be a solution of the linear differential equation (41) on 
[to, h] \ e which satisfies the following conditions: 
(a') the matrix M k- is positive semidefinite for each k = 1, ... , s; 
(b') bk- := Dk(H)- (qk-)[x]k > 0 for each k = 2, ... ,s (ifs = 1, then this 
condition is not required); 
(c) the quadratic form wo is positive on the cone Ko \ { 0} . 
Then 0 is positive on K \ { 0} . 

4.2. The case of fixed initial values t0 and .x(to) 

Consider the problem (1)-(3) with additional constraints to = io and x(to) = io. 
In this case we have additional equalities in the definition of the critical cone K: 
to= 0 and io := x(t0 )+t0x(to) = 0 whence x(t0 ) = 0. The last equality together 
with the equation x = fxx shows that x(t) = 0 in [t0 , TI) whence :r1- = 0. From 
definitions (44) and (37) of wo and (Ap,J)), respectively, it follows that for each 
z E K we have 

(53) 

where 

(54) 

The equalities to = 0 and io = 0 hold also for each element p of the finite 
dimensional and finite- faced cone Ko given by (28) for a0 > 0 and by (24) 
in the general case. Rewriting the terms w0 we get a quadratic form in the 
variables (t1 , xi) generated by the matrix 

B := ( ~;~ ~~~ ) , 

where 

Bn = lt 1 t1 + -J;(tl)±(h) - ·~o(tl)- ±(tl)*Q(tl)±(h), 
B12 = lt1X1 - -J;(tl) + ±(tl)*Q(h), 
B22 = lx 1 x1 - Q(tl)· 

(55) 

The property x(t) = 0 in [to , TI) for z E K allows to refine Theorems 4.1 and 
4.2. 

THEOREM 4.4 Assume that the initial values to = io and x(to) = io are fi:ced 
in the problem (1)-(3), and let s=1. Let Q(t) be a continuous solution of the 
linear differential equation (41) on [T1, tJ] which satisfies two conditions: 

(i) b1 := D1(H) + (([xjl)*Q(TI)- [-J;Jl) [±jl 2: 0; 
(ii) the quadratic form wo is positive on the cone Ko \ {0} . 

- - . 
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Proof. Continue Q(t) arbitrarily as a solution of differential equation (41) to 
the whole interval [to , t 1 ] with possible jump at the point T1 . Note that the 
value b1 in condition (i) is the same as the value bl+ for the continued solution, 
and hence bl+ 2: 0. Let z E K and hence :i:1

- = 0. Then by ( 48) with k = 1 
the condition bl+ 2: 0 implies the inequality w1 2: 0. Condition (ii) implies the 
inequality Wo 2: 0. Consequently n = wo + w1 2: 0. Further arguments are the 
same as in the proof of Theorem 4.1. • 

THEOREM 4.5 Assume that the initial values to = io and x(to) = Xo are fixed 
in the problem {1)-{3) and s 2: 2. Let Q(t) be a solution of the linear differential 
equation {41) on (71, t1] \ e which satisfies the following conditions: 
(a) the matrix M k+ is positive semidefinite for each k = 2, ... , s; 
{b) bk+ := Dk(H) + (qk+)[:t]k > 0 for each k = 1, ... , s- 1; 
(c) the quadratic forrn wo is positive on the cone Ko \ { 0} . 
Then n is positive on K \ { 0}. 

Proof. Again , without loss of generality we can consider Q(t) as a discontinuous 
solution of equation (41) on the whole interval [to, t1]. Let z E K. Then by (48) 
with k = 1 the conditions bl+ > 0 and x 1- = 0 imply the inequality w1 2: 0. 
Further arguments are the same as in the proof of Theorem 4.2. • 

4.3. Q-transformation of n to perfect squares 

We shall formulate special jump conditions for the matrix Qat each point Tk E e. 
This will make it possible to transform n to perfect squares and thus to prove 
its positive definiteness on K. 

PROPOSITION 4.3 (0SMOLOVSKII, LEMPIO, 2002) Suppose that 

bk+ := Dk(H) + (qk+)[x]k > 0 

and that Q satisfies the jump condition at Tk 

bk+[Q]k = (qk+)*(qk+), 

(56) 

(57) 

where ( qk+) * is a column vector while qk+ is a row vector. Then Wk can be 
written as the perfect square 

(bk+)- 1 ((bk+)~k + (qk+)(.xk-))
2 

(bk+)- 1 (Dk(H)~k + (qk+)(:rk+))
2

. 

Proof. Using (48), (56), and (57), we obtain 

Wk (bk+)~~ + 2(qk+)xk- ~k + (xk-)*[Q]kxk-

= (bk+)-1 ((bk+)2~~ +2(qk+ ):rk-~bk+)~k + ((qk+):rk-)2) 

(58) 
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Since 

(bk+)~k + (qk+)xk- = (Dk(H) + (qk+) [:i;]k) ~k + (qk+) xk-

= Dk(H)~k + (qk+)[x]k + (qk+)xk- = Dk(H)~k + (qk+)xk+, 

we see that equality (58) holds. • 
THEOREM 4.6 Let Q(t) satisfy the linear differential equation {41) on [to, h] \ B 
and let conditions {56) and {57) hold' for each k = 1, ... , s. Let wo be positive 
on Ko \ { 0} . Then 0 is positive on K \ { 0} . 

Proof. By Proposition 4.3 and formulae (48), (49) the matrix Mk+ is positive 
semidefinite for each k = 1, ... , n . Now using Theorem 4.1 for s = 1 and 
Theorem 4.2 for s 2 2 we obtain that 0 is positive on K \ {0}. 

Similar assertions hold for the jump conditions that use left hand values of Q 
at each point Tk E e. • 

PROPOSITION 4.4 (0SMOLOVSKII, LEMPIO , 2002) Suppose that 

bk- := Dk(H)- (qk_)[x]k > 0 

and that Q satisfies the jump condition at Tk 

Then 

(bk _ )- 1 ((bk-)~k + (qk - )(xk+))
2 

(bk _)- 1 (Dk(H)~k + (qk_)( xk- ))
2

. 

(59) 

(60) 

(61) 

THEOREM 4.7 LetQ(t) satisfy the linear different·ial equation (41) on [to , h]\B , 
and let conditions (59} and {60) hold for each k = 1, ... , s . Let wo be positive 
on K0 \ {0} . Then 0 is positive on K \ {0}. 

5. Numerical examples 

5.1. Minimal fuel consumption of a car 

The following optimal control problem has been treated by Oberle, Pesch (2000) 
as an exercise of applying the minimum principle. Consider a car whose dynam­
ics (position x 1 and velocity x2) are subject to friction and gravitational forces. 
The acceleration u(t) is proportional to the fuel consumption. Thus the control 
problem is to minimize the total fuel consumption 

rtl 

.'T = n(t.) rlt. {(;')\ 
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in a time interval [0, h] subject to the dynamic constraints, boundary conditions 
and the control constraints 

. u c 2 
±1 = x2, x2 = --- ag- -x2, 

mx2 m 
X1(0) = 0, X2(0) = 1, xl(tl) = 10, X2(h) = 3, 

Umin:::; u(t):::; Umax, 0:::; t:::; t1 . 

(63) 

(64) 

(65) 

The final time t 1 is unspecified. The following values of the constants will be 
used in computations below: 

m = 4, Ci = 1, g = 10, C = 0.4, Umin = 100, Umax = 140. 

In view of the integral cost criter ion (62) we consider the Pontryagin function 
(Hamiltonian) (19) where we can put ao = 1, 

The adjoint equations (8) are 

7}1 = 0, 7}2 = - 'lPI + 'l/J2 (~ + 2c x2) . 
mx2 m 

(66) 

(67) 

The condition (11) evaluated for the free final time h yields the additional 
boundary condition 

u(h) + 37/Jl (h)+ ·1/;2(h) --- o:g-- = 0. (
u(h) 9c) 
3m m 

(68) 

The switching function 

determines the control law as 

u(t) = { Umin, ~ff CJ((t)) > 0
0 

} . 
Umax, l (J t < 

Computations give evidence to the fact that the optimal control is bang- bang 
with one switching point T1 , 

u(t) = { Umin, 0 :::; t :::; T1 } . 
Umax, TJ :::; t :::; t1 

We have used both the code BNDSCO of Oberle, Grimm (1989) and the package 
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Figure 1. Optimal fuel consumption for a car: optimal state x2 (left) and adjoint 
variable 'lj;2 (right) on the normalized time interval [0, 1] 

time t1 and the adjoint variables 'lj;(t). The following numerical results allow to 
reconstruct the complete solution that is displayed in Fig. 1: 

TI 

1/J1 (0) 
X1 ( TI) 

1/J1 (h) 

3.924283925 
- 42.24169870 
9.08646352 
-42.24169870 

h 
1/J2(0) 

X2(TI) 
1/J2(h) 

4.25407390 
-3.87639606 
2.36732904 
-17.31509202 

vVe will show that this trajectory satisfies the assumptions of Proposition 
3.5 which yields the critical cone K = {0}. It can be verified immediately that 
the computed vectors 

~X (h) = ( -0.6326710, -0.7666666)*, ::i:(h) = (3.0, 0. 7666666) * 
VTI 

are linearly independent. Moreover, we find, in view of (14), 

D 1 (H) = -6-h) [u] 1 = 0.472397 · 40 > 0, 

Theorem 3.2 shows that the computed bang-bang control is indeed a strong 
minimum. 

5. 2. T ime- optimal control of the van der P ol oscillator with a non-
linear boundary condition 

In Maurer, Osmolovskii (2001), the time- optimal control of a van der Pol os­
cillator with a fixed initial and terminal state was studied. Here, we consider 
the same problem but replace the two terminal conditions by one nonlinear ter­
minal condition. This allows us to demonstrate the evaluation of the quadratic 
boundary conditions (53)-(55) for the matrix Q(h). The control problem is to 
minimize the endtime t1 subject to the constraints 
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.TI(O) = 1.0, X2(0) = 1.0 1 XI(h )2 + X2(ti) 2 = r 2, T = 0.2, (70) 

lu(t) IS 1 fortE [O,ti]· (71) 

The Pontryagin (or Hamiltonian) function (5) is given by 

H(.T, u, 'lj;) = 'lj;1x2 + I/J2 ( -.1:1 + x2(1 - xi)+ u). 

The adjoint equations (8) and boundary conditions (9) are 

,PI = 'lj;2(1 + 2x1 x2 ), 'lj;I (t i) = 2,8xi (h), 
,P2 = - 'lj;l- 'lj;2(1 - xi), ·I/J2(h) = 2,8x2(h). 

The boundary condition (11) associated with the free final time it leads to 

(72) 

(73) 

1 + 4;1(ti)x2(t1) + I/J2(tl) ( -Xl (tl ) + X2(t1)(1- XI(tl) 2) + u(t1)) = 0, (74) 

where we have taken ao = 1. The switching function is (J(t) = Hu(t) = 4;2(t) . 
The structure of the optimal solution in Maurer, Osmolovskii (2001) for fixed 
terminal conditions x1 (ti) = x2 ( ti) = 0 suggests that the optimal control for 
the boundary condition xi(ti)2 + x2 (tt)2 = r 2, r = 0.2, is bang-bang with one 
switching point TI, 

u(t) = - - . 
{ 

-1 for 0 < t < T1 } 

1 for T1 S t S it 
(75) 

In particular, we get the switching condition 

(76) 

Using either the boundary value solver BNDSCO of Oberle, Grimm (1989) or 
the direct optimization routine NUDOCCCS of Buskens (1998) we obtain the 
following set of selected values for the switching point, final time and state and 
adjoint variables: 

TI 0.7139356 it 2.864192 
'lj;I (0) 0.9890682 'lj;2(0) 0.9945782 

XI ( TI) 1.143759 X2(TJ) -0.5687884 
I/J1 ( TI) 1.758128 'lj;2h) 0.0 (77) 
XI ( ti) 0.06985245 x2(t1) -0.1874050 
'lj;l ( tl) 0.4581826 'lj;2 ( tl) -1.229244 

,8 3.279646 

We have two alternatives to check sufficient conditions. One way is to use 
Theorem 4.4 by solving the linear equation ( 41). Another possibility is offered 
by the direct evaluation of the quadratic form as given in Proposition 3.7. Let us 
begin with testing the assumptions of T heorem 4.4 and consider the symmetric 
2 x 2-matrix 



Second order condit ions for bang-bang control 579 

Figure 20 Time-optimal control of the van der Pol oscillator: state variables (left 
column) and adjoint variables (right column) on the normalized time interval 
[0, 1]0 

The linear equations Q = -Qfx - f;Q- Hxx in (41) yield the following ODEs: 

Qn = 2 Q12(1 + 2x1x2) + 2·¢2°1:2, 

Q12 = - (Qn + Ql2(1- oTi) + Q22(1 + 2x1x2) + 21/;2x1, (78) 

Q22 = -2 (Q12 + Q22(1 - xi)). 

In view of Theorem 404 we need to determine a solution Q ( t) only in the interval 
h, h] such that 

holds and the quadratic form wo in (53)- (55) is positive definite on the cone JC0 

defined in (28)0 Since 1/J2(T1) = 0 we get from (14) 

D 1(H) = -&(T1)[u]1 = 2 °1/;1 (71) = 2 ° 1.758128 > 0 0 

Furthermore, in view of [·0]1 = 0 we obtain the condition 

T'\ 1 I TT \ f r • 11 \. r"\ I \ r o 11 .-.. • - - ..-. - ..-. .-. , ..-.. ' ' 
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i.e., we have to choose an initial value Q22 ( T1) > -0.879064 . By Proposition 
3.6, we have f1 = 0 for every element z = (f1, ~, x) E K. Therefore, by (55) 
we must check that the matrix B22 = 2(3h- Q(ti) is positive definite on the 
critical cone Ko defined in (28), i.e., on the cone 

Thus, the variations (vi, v2) are related by v2 =-VI XI(h)/x2(ti). Evaluating 
the quadratic form ((2(3 h - Q(h))(vi, v2), (vi, v2)) with v2 =-vi xi(ti)/x2(h), 
we arrive at the test 

A straightforward integration of the ODEs (78) using the solution data (77) and 
the initial values Qn(TI) = QI2(TJ) = Q22(TI) = 0 gives the numerical results 

Qu(ti) = 0.241897, Qdti) = - 0.706142, Q22(ti) = 1.163448, 

which yield the positive value c = 7.593456 > 0. Thus, Theorem 4.4 asserts that 
the bang- bang control characterized by (77) provides a strict strong minimum. 

The alternative test for SSC is based on Proposition 3.7. The variational 
system y(t) = fx(t)y(t), y(TI) = [::i:]l, for the variation y = (yi, y2) leads to the 
variational system 

YI = Y2, YI(TI) = 0, 
iJ2 = -(1 + 2xi2x2 )YI + (1- :x:i)y2, Y2(TI) = 2, 

for which we compute 

YI(h) = 4.929925, Y2(ti) = 1.837486. 

Note that the relation Kx 1 (x(ti))y(h) = 2(xi(ti)YI(h)+x2(ti)Y2(ti) = 0 holds. 
By Proposition 3.7 we have to show that the quantity pin (39) is positive, 

tl 

p = DI(H)- [~jl[:i:F + J (y(t))* Hxx(t)y(t) dt + (y(h))*((3K)x 1x1 Y(h) > 0. 

Using [~]I = 0 and (y(h))*((3K)x 1x1 y(ti) = 2(3(yi(ti) 2 + Y2(ti) 2
), we finally 

obtain 

.,......., I..,....,..\ o .. n • __ ,... 
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6. Conclusion 

We have studied second order sufficient conditions for optimal bang-bang con­
trols. The original form of these conditions as given in Osmolovskii (1995) and 
Milyutin, Osmolovskii (1998) required that an associated quadratic form be 
positive definite on the critical cone. A direct numerical verification of this test 
can be carried out only in rather special cases . Therefore, the main objective of 
this paper was to study several representations of the critical cone and transfor­
mations of the quadratic form such as to obtain a more practical second order 
test. In particular, it was useful to compute elements of the critical cone as 
variations of the state trajectory with respect to the switching points and initial 
conditions. Moreover, by means of the solution to a linear matrix ODE, the 
quadratic form could be converted to perfect squares. The second order test 
has been successfully applied to three numerical examples representing differ­
ent types of control problems. More examples with applications of bang- bang 
controls to nonlinear optics may be found in Kim (2002) and Kim et al. (2003). 

After finishing this paper, we became interested in exploring the relations 
between the SSC in Theorem 3.2 and in Agrachev, Stefani, Zezza (2001, 2002). 
A careful study of the second order variations of state trajectories w.r.t. switch­
ing points reveals that the conditions in Theorem 3.2 and in Agrachev et al. 
(2002) are indeed equivalent under the assumption a 0 > 0. These results will 
be reported in a future paper. The theoretical studies also showed that the 
SSC in Agrachev et al. (2002) can be checked numerically by a suitable im­
plementation of the program NUDOCCCS of Bi.iskens (1998). Together with 
the methods in this article we have thus found several possibilities of testing 
SSC. Another promising aspect is that the results of this study can be used in 
the development of a theoretical and numerical sensitivity analysis for optimal 
bang- bang controls. 
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