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Abstract: This paper studies a general optimal control problem 
for nonconvex delay-differential inclusions with endpoint constraints. 
In contrast to previous publications on this topic, we incorporate 
time-dependent set constraints on the initial interval, which are spe
cific for systems with delays and provide an additional source for op
timization. Our variational analysis is based on well-posed discrete 
approximations of constrained delay-differential inclusions by a fam
ily of time-delayed systems with discrete dynamics and perturbed 
constraints . Using convergence results for discrete approximations 
and advanced tools of nonsmooth variational analysis, we derive 
necessary optimality conditions for constrained delay-differential in
clusions in both Euler-Lagrange and Hamiltonian forms involving 
nonconvex generalized differential constructions for nonsmooth func
tions, sets, and set-valued mappings. 
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1. Introduction 

The primary object of this paper is the following generalized Bolza problem 
(P) for delay-differential inclusions with general initial conditions and endpoint 
constraints: 

minimize J[x] := <p(x(a),x(b)) + .lb f(x(t),x(t - D.),x(t),t)dt (1) 

1This research was partly supported by the National Science Foundation under grants 
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over arcs x : [a - b., b] -t IR.n with b. 2: 0, that are absolutely continuous on 
[a, b] and U)() functions on [a - b., a], subject to 

x(t) E F(x(t), x(t- b.), t) a.e. t E [a, bJ, 

x(t) E C(t) a.e. t E [a- b., a), 

(x(a), x(b)) E f2 C 1R.2n. 

(2) 

(3) 

(4) 

For the nondelayed systems (b.= 0) this problem was studied in a number 
of publications mainly devoted to necessary optimality conditions; see Clarke 
(1983), Ioffe (1997), Loewen and Rockafellar (1997), Mordukhovich (1995), Suss
mann (2000), Vinter (2000), Zhu (1996), and the references therein. To the 
best of our knowledge, there are just a few papers devoted to the study of opti
mization problems for delay-differential inclusions (mostly with the Mayer-type 
cost functional); see Clarke and ·watkins (1986), Clarke and Wolenski (1996), 
Minchenko (1999), and Mordukhovich and Trubnik (2001). These papers (ex
cept Clarke and Watkins, 1986, for a free-endpoint Mayer problem) concern 
delay-differential inclusions with the initial condition (3) given by a single-valued 
mapping C(t) = {c(t)} that closely relates delayed systems to their nondelayed 
counterparts. 

The present paper deals with the generalized Bolza problem (P) involving a 
set-valued mapping C(t) in the initial condition (3), which is specific for delay
differential systems and essentially distinguishes them from nondelayed ones. A 
choice of the initial function x(t) from the set C(t) on [a- b., a) provides an 
additional source for optimizing the cost functional (1) subject to the constraints 
(2)- (4). 

We employ the method of discrete approximations for the study of problem 
(P). This method is based on the finite-difference replacement of the derivative 

x(t) ~ [x(t +h)- x(t)]/h, h -t 0, (5) 

in (2) with appropriate approximations of the cost functional and endpoint con
straints. The method of discrete approximations is well-developed in the case of 
ordinary control systems (one of the pioneering work was done by Malanowski, 
1979, see also a more recent survey by Dontchev, 1996) . In contrast to the 
vast majority of publications on discrete approximations, we mostly focus not 
on numerical aspects of this method (particularly involving estimates of conver
gence rates in various finite-difference schemes) but rather on qualitative aspects 
allowing us to use discrete approximations as a vehicle for deriving necessary op
timality conditions in continuous-time systems. Such an approach to optimiza
tion of nondelayed differential inclusions was developed by Mordukhovich (1988, 
1995) (see also the recent book by Smirnov, 2002, and the references therein); 
related developments for delay-differential problems with single-valued initial 
conditions were given in Mordukhovich and Trubnik (2001) in an essentially 
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The method of discrete approximations applied to the problem (1)-(4) under 
consideration allows us to build a well-posed sequence of finite-dimensional opti
mization problems for time-delayed discrete inclusions with a strong convergence 
of optimal solutions; see below. The obtained finite-dimensional problems are in
trinsically nonsmooth (containing in fact an increasing number of set constraints 
with possibly empty interiors), but they fortunately can be handled by general
ized differential tools of modern variational analysis involving nonconvex-valued 
normal cones, subdifferentials, and coderivatives that enjoy full calculi . Using 
these tools, we first derive necessary optimality conditions in delay-difference 
counterparts of the original problem (P). Then, by passing to the limit from 
discrete approximations, we obtain necessary optimality conditions for problem 
(P) in the extended Euler-Lagrange form, which is equivalent to the enhanced 
Hamiltonian form under additional assumptions. 

In this paper we relax, in the case of nonautonomous systems, some as
sumptions previously made in the method of discrete approximations even for 
nondelayed differential inclusions. To furnish this, we employ, along with the ba
sic/limiting normal cone, subdifferential, and coderivative as in Mordukhovich 
(1995), their extended counterparts for t ime-dependent sets, functions, and set
valued mappings discussed in Section 3. 

The rest of the paper is organized as follows. In Section 2 we construct well
posed discrete approximations of the original problem ( 1 )- ( 4), which ensure the 
required strong convergence of optimal solutions under minimal assumptions. 
Section 3 presents basic constructions and necessary background of generalized 
differentiation that are needed for the variational analysis of discrete-time and 
continuous-time systems performed in this paper. In Section 4 we obtain nec
essary optimality conditions for nonconvex delay-difference inclusions arising in 
discrete approximations of the above problem (P). The concluding Section 5 
contains necessary optimality conditions in the Euler-Lagrange and Hamilto
nian forms for problem (P) derived via its discrete approximations under the 
assumption on relaxation stability discussed in Section 2. 

Our notation is basically standard, see Mordukhovich (1995) and Rockafellar 
and Wets (1998). 

2. Well-posed discrete approximations 

The main goal of this section is to construct well-posed discrete approxima
tions of the original problem (P) that ensure the strong convergence of optimal 
trajectories in the norm topologies of W 1•2 [a, b] and L2[a- !:::.., a], respectively. 
Such a strong convergence plays a crucial role in the study of delay-differential 
inclusions via discrete approximations. 

Let x(-) be a feasible trajectory for (2) with the initial condition (3). We im
pose the following assumptions, where IB stands for the closed unit ball in IRn. 
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that x(t) E U for any t E [a - ~ ' b], the sets F(x, y, t) are closed for all 
(x, y, t) E U x U x [a, b], and one has 

F(x, y, t) C MFIB for all (x, y, t) E U x U x [a, b], (6) 

F(x1, Yl, t) C F(x2, y2, t ) + Lp(lxl- x2l + IY1- Y2I)JB (7) 

whenever (x1, Yl), (x2 , Y2) E U x U and t E [a, b]. 

(H2) F(x, y, ·) is Hausdorff continuous for a.e. t E [a, b] uniformly in (x, y) E 
U x U. 

(H3) The multifunction C: [a-~, a] :::4 IRn is closed-valued, uniformly bounded, 
and Hausdorff continuous for a .e. t E [a-~. a]. 

Following Dontchev and Farkhi (1989), we consider the so-called averaged 
modulus of continuity for the multifunction F(x, y, t) in t E [a, b] when (x, y) E 

U x U defined by: 

T[F; h] := 1b a-(F; t, h) dt, 

where u(F; t, h) :=sup { w(F; x, y, t, h)j (x, y) E U x U} with 

w(F; x, y, t, h) :=sup { haus(F(x, y, t1) ; F(x, y, t2)) lt1, t2 E [t- ~' t+~]n[a, b]}, 

and where haus(·,; ·) stands for the Hausdorff distance between two compact 
sets. It is proved in the mentioned paper that if F(x, y, ·)is Hausdorff continuous 
for a.e. t E [a, b] uniformly in (x, y) E U x U, then T[F ; h] -4 0 as h -4 0. Of 
course, a simplified version of the above definition applies to the average modulus 
of continuity T[C; h] of the multifunction C(-) on [a-~. a]. 

Let us construct a discrete approximation of (2) based on the Euler finite
difference replacement of the derivative (5). For any N E IN := {1, 2, ... } we 
take tj := a+jhN for j = -N, . .. , 0, 1, ... , k and tk+l := b, where hN :=~and 
k E IN is defined by a+khN :S b < a+(k+1)hN. Note that LN =a-~, to= a, 
and hN -4 0 as N -4 oo. Then, the sequence of delay-difference inclusions 
approximating (2) is constructed as follows: 

{ 
XN(t;+l) E XN(tj) + ~rv_~(XN(tj~, XN (tj- ~) , tj) for j = 0, ... ,k, (S) 
XN(t1 ) E C(t1 ) for J - N, .. . , 1. 

A collection of vectors {xN(t j)l j = -N, ... ,k + 1} satisfying (8) is called a 
discrete trajectory. The corresponding collection 

,J 
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is called a discrete velocity. We also consider the extended discrete velocities 

and the corresponding extended discrete trajectories defined by 

XN(t) := XN(a) + 1t VN(s) ds, t E [a, bj, 

on the main interval [a, b] and by 

on the initial interval [a- .0., a). Observe that 

XN(t) = VN(t) a.e. t E [a, bj. 

Let W 1
>
2 [a, b] be the space of absolutely continuous functions X : [a, b] -7 mn 

with the norm 

( 

b ) 1/2 

llx(·)llw'·2 := max lx(t)l + jlx(tW dt 
iE[a,b] a 

The next theorem ensures the strong approximation of x(-) by feasible trajecto
ries of delay-difference inclusions (8) . 

THEOREM 2.1 Let x(·) be a feasible trajectory to (2) and (3) under assump
tions (H1) - (H3). Then there exists a sequence {zN(tj)l j = -N, ... ,k+ 1} of 
solutions to the delay-difference inclusions (8) with 

ZN(to) := ZN(a) = x(a) 

such that the extended discrete trajectories ZN(t), a- .0. :::; t :::; b, converge to 
x(-) in the L2 -norm on [a- .0., a] and in the W 1,2 -norm on [a, b] as N -too. 

Proof. Due to (6) and the uniform boundedness of C(-) in (H3), it is sufficient 
to establish the required convergence in the norm topologies of L1 [a - .0., a] 
and W 1

'
1 [a,b]. Let {wN(·)}, N E IN, be a sequence of functions on [a- .0.,b], 

with WN(a) := x(a), that are constant on the interval [t1, tJ+l), j = -N, ... , k, 
and converge to x(-) on [a - .0., a] and to x(-) on [a, b], respectively, in the 
norm topology of £1. Such a sequence always exists because of the density of 
step-functions in L1[a- .0., b]. In the estimates below we use the sequence 

~ " ·- r (0 \ 
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Observe that due to the uniform boundedness assumptions in (H1) and (H3), 
there is M > 0 with 

JwN(t)l ~ M for all t E [a-~' b] and N E IN. 

Denote WN1 := WN(tj) for j = -N, . .. , k+1 and define the discrete functions 
{uN(tj)J j = -N, ... , k + 1} by 

{ 
UN(tj) := WN1 for j = -N, ... , 0, 

UN(tj+l) := UN(tj) + hNWNj for j = 0, ... , k. 
(10) 

The extensions of these functions on the continuous intervals [a - ~.a) and 
[a, b], respectively, are given by 

{ 
UN(t) := WN(t) for t E [tj, tj+l), j = N, ... , -1, 

UN(t) := x(a) +I: WN(s) ds, t E [a, b]. 

Let dist(w; r:l) be the Euclidean distance between the point wand the closed 
set n. Then the Lipschitz condition (7) can be written as 

and one obviously has 

dist(w; F(x, ti)) ~ dist(w; F(x, t2)) + haus(F(x, tl); F(x, t2)), w, x E JR". 

Using this and the average modulus of continuity, we get 

- 1 k 

O:N : = hN 2.::.: dist(wN1 ; C(tj)) + hN 2.::.: dist(wNj; F(uN(tj), tj) 
j=-N .i=O 

f lti+' dist(wNj; C(tj))dt + t lti+, dist(wNj; F(uN(tj), tj))dt 
j=- N ti j=O tJ 

< f lti+' dist(wNj; C(t))dt + t 1ti+
1 

dist(wN
1

; F(uN(tj), t))dt 
j=-N tJ j=O tJ 

+ T[C; hN] + T[F; hN]· 

Taking into account the facts that (~N,T[C;hN],T[F;hNl)-+ 0 as N-+ oo due 
to (9) and assumptions (H2) and (H3), that x(t) E C(t) for a.e. t E [a - ~.a), 
and that 

dist(wN(t); F(uN(t), t)) ~ dist(wN(t); F(x(t), t)) + LpJuN(t)- x(t)l 
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one has the estimate 

Note that the discrete functions defined in (10) may not satisfy (8), since 
one does not generally have 'WN:; E C(tj) for j = - N, ... , -1 and 'WN

1 
E 

F(uN(tj) ,uN(tj - !::J.),tj) for j = l, ... ,k. Let us construct the desired tra
jectories { z N ( tj) I j = - N, ... , k + 1} by the following proximal algorithm: 

{ 

ZN(tj) =~Ni with JvN1 -~N1 J =dist(wN1 ;.C(tj)) ~r j = ~N, ... ,-1, 
ZN(to) - x(a), ZN(tj+l) - ZN(tj) + hNVN, for J - 0, .. . , k, (

11
) 

with VN1 E F(zN(tj), ZN(tj- t:J.), tj), JvN1 - 'WN1 I= 
dist(wN1 ; F(zN(tj), ZN(tjt:J.), tj)). 

One can see that all ZN(·) in (11) are feasible trajectories for (8). Now, following 
the scheme in the proof of Theorem 2.1 in Mordukhovich (1995) and adapting 
it to the case of delayed systems with set-valued initial conditions under consid
eration, we show that the extensions ZN(t) , t E [a - t:J. , b], of the above discrete 
trajectories converge to x(t) in the £ 2-norm on [a- t:J. , a.] and in the W 1•2-norm 
on [a, b]. Moreover, we can get efficient estimates of the convergence rate that 
involve ~N in (9), the modulus T[C; hN] and T[F; hN], and the constants defined 
in (H1). • 

Our next goal is to construct a well-posed discrete approximation of the 
whole dynamic optimization problem (1)- (4) (not only of the 
delay-differentialinclusion) such that optimal solutions to discrete approxima
tion problems strongly converge to a given optimal solution x(-) to the original 
problem (P). The following construction explicitly involves the optimal solution 
x(-) to problem (P) under consideration. 

Given x(t), a- tJ. :::; t :::; b, take its approximation zN(t) from Theorem 2.1 
and denote TJN := JzN(b) - x(b) J. For any N E IN we consider the dynamic 
optimization problem (PN) for constrained delay-difference inclusions: 
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subject to the constraints 

XN(tj+l) E XN(tj) + hNF(xN(tj) ,xN(tj - ~),tj) , j = 0, ... ,k, (13) 

XN(tj) E C(tj), j = -N, ... , - 1, (14) 

(xN(a), XN(b)) E fi.N := fl.+ T]NJB , (15) 

ixN(tj)- i(tj)l:::; c, j = 1, . .. , k + 1, (16) 

where E is a given positive number. In addition to (H1)- (H3) with some neigh
borhood U of i (t) , we impose the following hypotheses on the behavior of r.p, j, 
and 0. around the optimal trajectory: 

(H4) r.p is continuous on U x U, f(x, y , v, ·) is continuous for a.e. t E [a, b] and 
bounded uniformly in (x, y, v) E U x U x MplB, and 0. is locally closed 
around (i(a), i(b)). 

(H5) There exists f..l > 0 such that f(-, ·, ·, t) is continuous on the set 

Al-'(t) := {(x,y,v) E UxUx(Mp+J.L)IBI v E F(x,y,s)for somes E (t-J.L,tl} 

uniformly in t E [a, b]. 

In what follows we select E > 0 in (16) such that i(t) + clB C U for all 
t E [a-~, b] and take sufficiently large N satisfying TJN <E. Note that problems 
(PN) have feasible solutions, since the trajectories ZN from Theorem 2.1 satisfy 
all the constraints (13)- (16) for large N. Moreover, the sets of feasible solutions 
to (PN) are bounded for all N due to (14) and (16). Hence, each (PN) admits an 
optimal solution iN(·) by the classical Weierstrass theorem in finite dimensions. 

We are going to justify the strong convergence of iN(-) --> i(-) in t he sense 
of Theorem 2.1. To proceed, we need to involve an important intrinsic property 
of the original problem (P) called relaxation stability. Let us consider, along 
with (2) , the convexified delay-differential inclusion 

x(t) E co F(x(t), x(t - ~), t) a.e. t E [a, b], (17) 

where "co" stands for the convex hull of a set. Further, given the integrand f 
in (1), we consider its extension 

fp(x, y, v , t) := f(x , y, v, t) + 8(v; F(:~:, y, t)) 

with respect to the set-valued mapping F of (2), where 8(-; F) stands for the 
indicator function of a set. Denote by fp(x, y, v, t) the convexification of fp in 
the v variable and define the relaxed generalized Bolza problem (R) as follows: 

(HI) 
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over functions x: [a-~' b] --+ IRn, which are absolutely continuous on [a, b] and 
continuous on [a- ~,a), subject to (3) and the endpoint constraints (4). It 

follows from the structure of (18) that the condition J [x( ·)] < oo implies that 
x( ·) is a trajectory for the convexified delay-differentiStl inclusion ( 17) called a 
relaxed trajectory foi: (2). 

One clearly has inf(R) ~ inf(P) for the optimal values of the cost functionals 
in the relaxed and original problems. We say that the original problem (P) is 
stable with respect to relaxation if 

inf(P) = inf(R). 

This property, which obviously holds under the convexity assumptions , turns 
out also to be natural for nonconvex continuous-time problems governed by dif
ferential and delay-differential inclusions due to the inherent "hidden convexity" 
of such systems (related to the convexity of integrals for set-valued mappings 
over nonatomic measures). In particular, the following fundamental approxi
mation property holds under the assumed Lipschitz continuity of F in (x, y): 
Every relaxed trajectory x( ·) can be uniformly on [a, b] approximated by orig
inal trajectories .Tm(-) with the same initial history Xrn(t) = x(t) on [a - ~' a] 
and 

l~~i~l.ib f(xm(t), Xm(t- ~), Xm(t), t) dt ~ 1b jF(x(t), x(t- ~), x(t), t) dt. 

This result , which ensures the relaxation stability of problems (P) for delay
differential inclusions with no endpoint constraints at t = b, can be proved 
similarly to the one for nondelayed differential inclusions; see Aubin and Cellina 
(1984). The reader can find in Mordukhovich (1995), more discussions and 
references on the validity of this property for nonconvex constrained systems 
governed by differential inclusions. Similar results and discussions also hold for 
the delay-differential inclusions under consideration, sec also the book of Warga 
(1972) for various classes of functional differential control systems . 

To be able to establish the desired strong convergence of discrete approxima
tions, we have to impose the following additional assumptions that are specific 
for delay-differential inclusions with set-valued initial conditions as in (3). 

(H6) C(t) is convex for a.e. t E [a- ~'a]; F(x , y , t) is linear in y for a.e. 
t E [a, a+~]; f(x, y, v, t) is convex in (y, v) for a.e. t E [a, a+~] . 

Now we are ready to establish the strong convergence theorem that makes a 
bridge between optimization problems for delay-differential and delay-difference 
inclusions. 

THEOREM 2.2 Let x(-) be an optimal solution to pmblem (P) , wh·ich is assumed 
+,.. ]..,,., ,..., ./- ,... J-. 1.., ~ .• .: .J.l.. ......................... ..L .J. ,.. -- ' --- .1. ~· --~ A -------



594 B. S. MORDUKHOVICH, L. WANG 

hold. Then, any sequence { x N (-)}, N E IN, of optimal solutions to ( PN), 
extended to the continuous interval [a - 6., b], converges to x( ·) in the L2 -norm 
on [a- 6., a] and in the W 1•2 -norm on [a, b] as N--+ oo. 

Proof. We know from the above discussion that (PN) has an optimal solution 
x N ( ·) for all N sufficiently large; suppose that it happens for all N E IN with
out loss of generality. Given x(-), we consider the sequence {zN(·)} strongly 
approximating x(-) by Theorem 2.1. Since each ZN is feasible to (PN ), one has 

Similarly to the proof of Theorem 3.3 in Mordukhovich (1995) for the case of 
nondelayed differential inclusions, we can show that 

The above two relationships yield 

lim sup JN[xN] :S J [x]. 
N-+oo 

To justify the required convergence XN(-)--+ x( ·), we need to prove that 

PN := t lxN(t) - x(t)i 2dt 
la-l!. 

+ ixN(a)- x(aW + 1b ixN(t)- x(t)i 2dt--+ 0 as N--+ oo. 

(19) 

Suppose it is not true. Then, we can find a constant c > 0 and a subsequence 
{ Nm} C IN such that PN= --+ c. Without loss of generality assume that PN --+ c 
as N--+ oo. Since the sequences {xN(-)} and {xN(-)} are uniformly bounded on 
[a - 6., a] and [a, b], respectively, under the assumptions made there is a function 
x: [a- 6. , b] --+ IRn belonging to L2 on [a- 6., a] and to W1•2 on [a, b] such that 

XN(·)--+ x(·) weakly in L2[a- 6.,aj 

and XN(-)--+ :i; weakly in L2 [a, b] 

(20) 

along a subsequence of N E IN, which is supposed to be equal to the whole IN. 
Invoking now the classical Mazur theorem, we conclude that there are convex 
combinations of the sequences in (20) converging pointwisely to x(t ) and to :i:(t) 
for a.e. t E [a - 6., a] and [a, b], respectively. 

It follows from (H3) and the convexity of C(t) that x(t) E C(t) for a.e. 
t E [a - 6. , a] . Taking into account the assumptions on Fin (H2) and (H6) and 
that XN (t) --+ x(t) uniformly on [a, b] , we arrive at the convexified inclusion 

, .- r 1. 1 



Optimal control of constrained delay-differential inclusions 595 

Due to the corresponding assumptions on f and by 

h ~ f(x (t) X (t -b.) XN(ti+I)- XN(tj) t ·) 
N~ NJ,NJ , h >J 

j=O N 

k tj+l 
= L l~ J(xN (tj) , xN(t1 - b.), xN(t), tj)dt 

j=O ti 
one has the inequality 

1b fp(x(t), x(t- b.) , :i(t), t)dt 

. . ~ _ _ XN(tj+l) - XN(tj) 
:::;; hm mf hN ~ j(xN(tj), XN(tj- b.), h , t j), 

N~oo N 
j=O 

since JF :::;; fp. Observe further that the integral functionals 

hlvl := ja lv(t) - x(t)l2dt and h[vJ := jb lv(t) - x(tWdt 
a-ll. a 

are lower semicontinuous in the weak topology of L2 [a - b., a] and L2 [a, b], 
respectively, due to the convexity of the integrands in v. Since 

;~N J.:H' I< N(t;) - X(t) l2dt ~ [, I<N(t) - X(t )I' dt and 

t, J.:"' I XN (t;+l~: X N ( t;) - X(t) I' db [IXN( t) - f(t)l2 dt, 

the latter implies that 

1a lx(t)- x(t)l 2dt:::;; liminf ~ J.ti+l lxN(tj) - x(t)l 2dt and 
A N~oo ~ t 

a-u j=-N j 

1b li(t) - x(tWdt :::;; lim inf t J.ti+l I XN(tj+l) - XN(tj) - x(t) 1
2 
dt. 

a N_,oo . t · hN 
)=0 1 

Now passing to the limit in (12), we arrive at 

J[X] + c :s; liminf JN [XN ], 
N~oo 

where x is a feasible trajectory to the relaxed problem (R) due to the above 
discussion. So if 

c = lim [ja lxN(t)- x(tWdt 
N-+oo a-ll. 

I 1 - I \ .!... { . \ , ., • • l 
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we get ][x] < J[x] = J[x] due to (19), which contradicts the optimality of x(-) 
in the relaxed problem and completes the proof of theorem. • 

3. Tools of generalized differentiation 

The results of the previous section allow us to make a bridge between the original 
infinite-dimensional optimization problem (P) for delay-differential inclusions 
and the sequence of finite-dimensional dynamic optimization problems (PN) 
for delay-difference inclusions. Our strategy is to obtain first the necessary 
optimality conditions for each of the latter finite-dimensional problems and then 
derive necessary optimality conditions for the original problem (P) by passing 
to the limit from the ones for (PN) as N-? oo. 

Observe that problems (PN) are essentially nonsmooth, even in the case 
of smooth functions r.p and f in the cost functional and unconstrained delay
difference inclusions. The main source of nonsmoothness comes from the (in
creasing number of) geometric constraints (13) and (14) as N -? oo, which 
may have empty interiors. To deal with such problems, we use appropriate 
tools of generalized differentiation introduced by Mordukhovich (1976, 1988) 
and then developed and applied in many publications; see, in particular, the 
book of Rockafellar and Wets (1998) for detailed treatments and the extensive 
bibliography. 

Recall the the basic/ limiting normal cone to the set S1 c IRn at the point 
x E Sl is 

N( x; Sl) :=Lim sup N(x; r!), 
n _ 

X-+X 

(21) 

where x _s X means that X -? x with X E Sl, where "Limsup" stands for the 
the Painleve-Kuratowski upper (outer) limit 

LimsupF(x) := {y E Yj3xk-? x, 3yk-? y with Yk E F(xk), k E IN} 
x ....... x 

for a multifunction F: X =l Y , and where 

N(x; Sl) := { x* E IRn llim~:~P (x
1

*; ~ ~~x) ::; 0} 
X--+X 

is the cone of Frechet (or regular) normals to S1 at x. Note that for convex sets 
none has 

N(x;Sl) = N(x;Sl) = {x* E IRnl (x*,x- x)::; 0 for all X En}. (22) 

Given an extended-real-valued function r.p: IRn-? IR := [-oo,oo] finite at x, 
the subdifferential of r.p at x is 
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where epicp := {(x,f.L) E JRn+ll f.L ~ cp(x)}. Then, the coderivative D*F(x,fi): 
lRm =l lRn of a set-valued mapping F: lRn =l lRm at a point (x, fi) E gph F is 
defined by 

D* F(x, fi)(y *) := { x* E lRn J (x*, -y*) E N( (x, fi); gph F)}. (24) 

Note the useful relationships 

8cp(x) = D* Ecp(x, cp(x))(1) and D* f(x)(y*) = 8(y*, f)(x), y* E JRm, 

between the subdifferential and coderivative, where Ecp(x) := {f.L E IRI J.L > 
cp(x)} is the epigraphical multifunction associated with cp: lR"-> lR and where 
(y*,f)(x) := (y*,f(x)) is the scalarizcd function associated with a locally Lip
schitz mapping f: IRn -> JRm. 

For applications in this paper we need to consider proper extensions of the 
basic constructions (21), (23), and (24) to the case of sets, functions, and set
valued mappings depending on parameters. The following extended construc
tions fit our requirements. 

DEFINITION 3.1 LetT be a topological space. 
( i) Given a moving set D: T =l JRn and x E D( [) , we define the extended 

normal cone to D([) at x by 

N(x; D([)) := Lim sup N(x ; D(t)). 
(t,x)g~n(t, x) 

(25) 

D(·) is said to be normally semicontinuous at (x, [) ifN(x; D(f)) = N(x; D(f)). 

(ii) Given cp: JRn x T -> lR finite at (x, [), the extended subdifferential 
of cp at (x, [) with respect to x is 

Dxcp(x,[) := {x* E IRnJ (x*,-1) E N((x,cp(x,f));epicp(-,[))}. (26) 

The function cp is subdifferentially semicontinuous at (x, [) wdh respect to 
t if 

Dxcp(x , [) = 8xcp(x , [), 

where Oxcp(x, [) stands for the subdifferential {23) of cp(-, f) at x, i.e. , for the 
partial subdifferential of cp with respect to x. (iii) Given F: JRn x T =l lRm and 

'[} E F(x, [) , we define the extended coderivative ofF at (x , fj , [) E gph F 
with Tespect to x by 

D~F(x,y,f)(y * ) := {x* E IRnJ (x*,-y*) E N((x,y);gphF(-,f))}, (27) 

y* E JRm. 

The mapping F is coderivatively semicontinuous at (x, y, f) with respect tot 
if 

D~F(x , y, [)(y*) = D~F(x, y, [)(y*) for all y* E Rrn, 
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It follows from (21) that the extended normal cone does not change if 

N(x; O(t)) is replaced by N(x; O(t) in the limiting procedure (25). Thus the 
normal semicontinuity of 0( ·) from Definition 3.1 agrees with the N-(normal) 
semicontinuity introduced by Mordukhovich (1984, 1988) in connection with 
covering/metric regularity results, see also Zhu (2000), where this property was 
used under the name of "regularity." The subdifferential and coderivative semi
continuity assumptions were directly imposed on functions and mappings in 
Mordukhovich (1995) and Mordukhovich and Trubnik (2001) for deriving nec
essary optimality conditions in optimal control problems governed by differential 
and delay-differential inclusions. The extended normal cone (25) was recently 
used by Bellaassali and Jourani (2002) and by Mordukhovich, Treiman and Zhu 
(2002) in applications to multiobjective optimization problems without any nor
mal semicontinuity assumptions. 

Let us discuss some conditions ensuring the fulfilment of the normal semi
continuity for moving sets; they automatically generate the corresponding con
ditions for the subdifferential semicontinuity of extended-real-valued functions 
and for the coderivative semicontinuity of set-valued mappings due to the above 
definitions. 

First, observe that these properties always hold for sets, functions , and set
valued mappings not depending on the parameter t, which corresponds to op
timal control problems for autonomous systems. Also, it is easily implied by 
the definitions that 0(-) is normally semicontinuous at (x, f) if O(t) - f(t) is 
a constant set near l for some single-valued continuous mapping f. The next 
useful sufficient conditions for the normal semicontinuity of moving sets were 
given in Mordukhovich (1984, 1988); see also Proposition 4.4 in Mordukhovich, 
Treiman and Zhu (2002) . 

PROPOSITION 3.1 0(-) is normally semicontinuous at (x, f) if it is convex
valued near land inner/lower semicontinuous at this point, i.e., 

O(f) C {X E lRn I 'Vtk ----> l 3xk ----> X with Xk E O(tk), k E .DV}. 

Recently Lionel Thibault (personal communication) obtained more general 
sufficient conditions for the normal semicontinuity of moving sets. In partic
ular, he proved this property for inner semicontinuous 0(-) whose images are 
uniformly prox-regular near reference points in the sense of Poliquin, Rockafellar 
and Thibault (2000). 

Observe that the extended normal subdifferential, and coderivative construc
tions from Definition 3.1 satisfy the the following robustness property important 
for performing limiting procedures. For brevity, we present this property only 
in the case of moving sets. 

PROPOSITION 3.2 Let 0 : T =t lRn with x E O(f). Then one has 

N(x; O(f)) = Lim sup N(x; O(t)). (28) 
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Proof. It is sufficient to prove the inclusion "::::>" in (28), since the opposite 
one is obvious. Taking x* from the' right-hand side of (28), we find sequences 
(tk, Xk, xjJ satisfying 

tk -+ t, Xk -+ x, xj. -+ x* 

as k-+ oo with Xk E D(tk) and x'k E N(xk; D(tk)), k E IN. 

By the construction of N in (25), for each k E IN the~;e are sequences 
(hm, Xkm, x'km) such that 

tkm-+ tk, Xkm -+ Xk, Xkm-+ Xk 

as m-+ oo with Xkm E D(tkm) and x'km E N(Xkm; D(tkm)) 

for all m E IN. Employing the diagonal process, we construct sequences 
(tm, Xm, x;',) satisfying 

tm -+ t, Xm -+ x, x;,. -+ x* 

as m-+ oo with Xm E D(tm) and x;,. E N(xm; D(tm)), mE IN. 

The latter yields x* E N(x; D(t)) and completes the proof of the proposition. • 

Note that the extended constructions from Definition 3.1 enjoy a full gener
alized differential calculus similar to the basic constructions (21), (23), and (24). 
This can be derived similarly to the latter ones, e.g., by using a fuzzy calculus 
for Frechet-like preliminary objects. We are not going to use such a calculus in 
the present paper. 

4 . Necessary opt imality conditions for delay-difference in
clusions 

The objective of this section is to obtain necessary conditions for optimal solu
tions to discrete approximations problems (PN) governed by delay-difference in
clusions. We derive new necessary optimality conditions in the extended Euler
Lagrange form employing the basic generalized differential constructions (21), 
(23), and (24). The results obtained do not require any restrictive assumptions 
on the initial data. In particular, we do not impose either convexity assumptions 
like in (H6) or the Lipschitz continuity ofF like in (Hl). 

Our approach is based on reducing the dynamic optimization problems (PN) 
for each N E IN to a static mathematical programming problem (M P) with 
many geometric constraints given by sets with possibly empty interiors, the 
number of which tends to infinity together with the approximating parameter 
N -+ oo. This makes problems (M P) to be intrinsically nonsmooth, even in the 



600 B. S. MORDUKHOVICH, L. WANG 

The general structure of problems (M P) is as follows: 

{

minimize ¢o(z)_ subjec~ to 

¢1 (z)::;O, J - 1, ... , r, 

gj(z) = 0, j = o, ... ,m, 

zE AJ, j=O, ... , l , 

where ¢j: JRd --+ IR, 9J: JRd --+ IRn, and Aj c JRd . For our applications in this 
paper we need the following version of the generalized Lagrange m·ultiplier rule 
t aken from Corollary 7.5.1 in Mordukhovich (1988) : 

PROPOSITION 4.1 Let z be an optimal solution to (M P). Assume that all ¢; 
are Lipschitz continuous, that 9J are contin·uously differentiable, and that Aj are 
locally closed near z. Then there exist real numbers {P.j I j = 0, . .. , r} as well 
as vectors {1/;j E IRnl j = 0, . . . ,m} and {zj E IRdJ j = 0, . .. , l} , not all zero, 
such that 

f.LJ;:::o for j=O , ... ,r, 
f.Lj ¢j (z) = o fo1· j = 1, .. . , r, 

zj E N(z; Aj) for j = 0, ... , l , 

l r m 

-I>; E a(I>J¢J)(z) + L'lgj(z)*'l/Jj · 
j =O j =O j=O 

(29) 

(30) 

(31) 

(32) 

Now we employ Proposition 4.1 and calculus rules for the generalized differ
ential constructions used therein to derive the necessary optimality conditions 
for discrete approximation problems (PN ). Fix N E IN and consider the "long" 
vector z defined by 

( N N N N) 
Z X_N, . .. ,xk+l • Yo , ... , y k 

(xN (t_ N ), . . . , XN (tk+l ), YN (to),···, YN (tk)). 

Then the discrete approximation problem (PN) can be reduced to the above 
problem (M P) with 

¢o(z) := 

(33) 

¢J(z) := Jxf- x(tj) l- c:, j = 1, ... ' k + 1, (34) 

N N /(') ~ \ 
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(36) 

(38) 

Let :zN = (xl!_N, ... , xf:+ 1 , y{j, ... , yf:) be an optimal solution to problem 
(M P) with the data (33)-(38), for each fixed N E IN. Employing Propo
sition 4.1, we find real numbers {p,fl j = 0, ... , k + 1} as well as vectors 

{,,,N E JRnl . - 0 k} d { * JRn(2k+N+3)1 . - - N !· + 1} t '~"i J - , ... , an zi E . J - , ... , , , no 
all zero, such that conditions (29)-(32) are satisfied. 
T·l" * - ( ·* * * * ) 1\T(-N. A ) c . - N 1 aong zj - x-N,j, ... ,xk+l,j•Yo,j,· · ·,Yk,j Eiv z, j wrJ-- , .. . ,-, 
we observe from the structure of Aj that all but one components of zj are zero 
with the remaining one satisfying 

xj,J E N(xf; C(tj)), j = -N, . . . , - 1. (39) 

Similarly, the conditions zj E N ( :zN; A1) for j = 0, ... , k and z,(:+ 1 E N ( :zN; Ak+ 1 ) 

are equivalent, respectively, to 

(xj,j, xj-N,J• yj) E N((xf, xf- N, yf); gph FJ), j = 0, ... , k, and (40) 

(x;,k+l• xk+l,k+1 ) E N((x{/,xf:+ 1 );D.N) (41) 

with all the other components of zj, j = 0, ... , k + 1, equal to zero . 
By Theorem 2.2 on the convergence of discrete approximations, we conclude 

that ¢j(:zN) < 0 for j = 1, .. . , k + 1 when N is sufficiently large. Thus, p,f = 0 
for these indexes j due to the complementary slackness conditions (30) . De
note by >.N 2: 0 the remaining multiplier J.Lbv from Proposition 4.1. Further, 
employing the subdifferential sum ru le for 1Jo in (33), one obtains 

( 42) 

where 8 f stands in ( 42) and in what follows for the basic subdifferential of f 
with respect to the first three variables. 

One can easily see that 

k 

L \lgJ(:zN)*l/JJ ( 43) 
j=O 

-h .r 'lh!"l 
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Combining (32) with (39)-(43), we have the following relationships: 

-xj,j - xj,j+N 

-x;,j - xj,i+N 

-xj,j 

-yj,j 

- xk+l,k+1 

-xa,o - xa,k+1 

with the notation 

>._NhNK.f +A.NCJf, j = - N, ... ,-1, 

AN hNK.f +AN hNvf + 'l/Jf- 1 - 'l/Jf, 

j = 1, ... , k - N, 

>..NhNvf + 'l/Jf- 1 - 'l/Jf, j = k - N + 1, ... , k, 

A.NhNwf +A.Nef -hN'l/Jf, j=O, .. . ,k, 

>..Nuf:+1 +'1/JJ:, 

ANU~ +A.NhNK.~ +2A.N(i:~ -i:(a)) 

+ A.NhNvt- 'l/Jo 

( N N ) ~ ( -N - N ) Uo , uk+1 E ur.p Xo , xk+1 , 

l
tj+l 

ef := 2 . (fjf - x(t))dt, 
tJ 

(44) 

( 45) 

( 46) 

( 47) 

( 48) 

( 49) 

The next theorem gives necessary optimality conditions for discrete approxima
tion problems (PN) governed by constrained delay-difference inclusions. 

THEOREM 4.1 Let zN be an optimal solution to problem (PN), where Fj := 

F(-, ·,tj)· Assume that the sets gphFj are closed and the functions r.p and fj 
are Lipschitz continuous around (xti' , xf:+1) and (xf , xf-N, yf), respectively, 
for all j = 0, .. . , k. Then there exist >._N 2 0, pf (j = 0, ... , k + 1), and 
qf (j = -N, ... , k + 1), not all zero, such that 

pN pN qN qN >._NeN 
( 

j+l - j j-N+1 - j-N j + N + N ) 
I , h , --h- Pj+1 qi+1 
lN N N 

E >._N af(xf, xf-N, yf, tj) + N( (x f, x f- N, yf); gph Fj ), j = 0, .. . , k, 

N N N 
qj+l - qj N(Jj (- N. C( ·)) . -hN - >.. hN EN xj , tJ , J- -N, . .. , -1, 

qf = 0, j = k - N + 1, . . . , k + 1, 

(Pti' + qti', -pf:+1 ) E >..N or.p(xti', xf:+1) + N ( (x~, xf:+l ); nN ). 

(50) 

(51) 

(52) 

(53) 

Proof. Consider first iif := 'l/Jf- 1 for j = 1, ... , k + 1, qf := >._N K.f +xj,j+N/hN 
for j = -N, ... , k - N, and qf := 0 for j = k- N + 1, ... , k + 1. Then let 

qf:+1 := 0 and define qf := qf+ 1 - iif hN for j = - N, ... , k + 1. It is easy to 

check that qf = 0 for j = k- N + 1, .. . , k + 1. Finally, we define 
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Then (50) follows from (46)- (47), (51) comes frqm (44), and (53) follows from 
(48) and (50). This completes the proof of the theorem. • 

COROLLARY 4.1 In addition to the assumptions of Theorem 4.1, s·uppose that 
the mapping Fj is bounded and Lipschitz continuous around (xf, xf-N) for each 
j = 0, ... , k . Then conditions (50)-(53) and >..N 2 0 hold with (>.. N ,p{:+1 ) =1- 0, 
i.e., one can set 

(54) 

Proof. If >..N = 0, then (50) implies that 

N N N N 

(
Pj+l - Pj qj-N+I - qj-N) 

hN ' hN 
(55) 

D*F (- N -N -N)( N N ) · 0 k E j Xj ,xj-N>Yj -pj+I - qj+I , ] = , ... , ·, 

by the coderivative definition (24). Set j = k. If we assume that pf:+1 = 0, then 
(52) and (55) give the inclusion 

N N 

( -pk -qk-N) D *F ( - N -N -N) (0) 
hN '~ E k xk ,xk-N>Yk . 

The latter yields pf: = qf:_N = 0 due to the coderivative characterization of 
the local Lipschitzian property from Theorem 5.11 in Mordukhovich (1993). 
By repeating the above procedure along (55), we conclude that pf = 0 for all 
j = 0, ... , k + 1 and qf = 0 for all j = -N, . . . , k + 1. This contradicts the non
triviality assertion of Theorem 4.1 and completes the proof of this corollary. • 

5. Optimality conditions for delay-differential inclusions 

Now we come back to the original Bolza problem (P) for delay-differential inclu
sions and establish the necessary optimality conditions for (P) in the extended 
Euler-Lagrange form involving the generalized differential constructions of Sec
tion 3. Let us keep the assumptions (Hl)- (H3), but instead of (H4) and (H5) 
we impose their following modifications: 

(H4' ) <p is Lipschitz continuous on U x U, f( x, y, v , ·) is continuous for a.e. 
t E [a,b] and bounded uniformly in (x,y,v) E U x U x mplB, and n is 
locally closed around (x(a),x(b)). 

(H5') There are positive numbers J.L and l1 such that J(· , ·, ·, t) is Lipschitz 
continuous on the set AJ.L(t) from (H5) with the constant l1. 

In the results of this section the subdifferential. normal. and coderivativP. 
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THEOREM 5.1 Let x(-) be an optimal sol·ution to the Baiza problem (P) under 
hypotheses (H1) - (H3), (H4 '), (H5 '), and (H6). Assume also that problem (P) 
is stable with respect to relaxation. Then there ex·ist a n·umber .A 2: 0 as well as 
absolutely continnov.s fun ctions p : [a, b] - · mn and q: [a-ll, b] __... mn satisfying 
the conditions: 

(p( t) ' q( t - [:,)) E co { ( tl , w) I ( u, w ' p( t) + q( t)) 

E .ABJ(x(t ), x(t- ll) , x(t), t) (56) 

+N((x(t) , x(t - ll), x(t)) ; gphF(- , ·, t))} a. e. t E [a, b], 

(q(t), x (t) ) = min (q(t) , c) a.e. t E [a- ll , a) , 
cEC(l) 

(57) 

(p(a) + q(a), -p(b)) E /\a<p(x(a) , x(b)) + N((x(a), x(b)); ~), (58) 

q(t) = 0, t E [b - ll , b], 

.A+ lp(b)l > 0. 

(59) 

(60) 

Proof. We are going to prove this theorem by the method of discrete approxima
tions and first const ruct a sequence of fini te-dimensional problems (PN) whose 
solutions xN = (x:!.N, . . . , x~+l) strongly approximate x(-) in the sense of The
orem 2.1. By employing Corollary 4.1 to xN , we find _AN 2: 0 and plj, qlj 
satisfying relationships (50)- ( 54). 

\Vithout loss of generality we suppose that .AN ---. .A as N ---. oo for some 
..\ 2: 0. As usual, the symbols xN (t) , pN (t) , and qN (t - ll) stand for the 
piecewise linear extensions of the corresponding discrete functions on [a , b] with 
their piecewise constant derivatives j;N (t) , pN (t), and qN (t - ll) . 

Define eN(t) := Blj/hN for tE [tj,tj+l), j = o, ... ,k and conclude by 
Theorem 2.1 that 

b k 

j1eN (t) idt =I: IBfl 
a j = O 

Similarly, by letting aN(t ) := af / hN for tE [tj, tj+1), j = - N, . .. , - 1, one 
obtains 

a -1 1 iaN (t)idt = L IO"f l 
a - 6. j = - N 

- 1 ft.;+ ! fa 
< '"> "'"'""' l;;;f+\ _ ;;;N irl+- 'J 1-r(+\ - ;;;N (+\ Ir!+ __, n 
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Since the convergence in L 1 (T) of a sequence of functions defined on some 
interval T implies the convergence of its subsequence almost everywhere on T, 
we suppose with no restriction that XN (t) ---> x(t), eN (t) ---> 0, and IJN (t) ---> Q 
as N ---> oo a .e. on the corresponding intervals. Such a pointwise convergence is 
important in what follows . 

Let us estimate (pN(t) , qN(t - 6)) for large N . It follows from (50) that for 
all j = 0, ... , k one has the inclusions 

N N N N 

(
Pj+1- PJ - \ N N qj -N+1 - qj-N - , N N 

hN /\ VJ ' hN /\ r;,j - N> 

AN Of N N N N) N N N ----,;-;;- + PJ+l + qJ+1 - A wj E N((xj , x]-N' Yj ); gph Fj) 

"th ( N N N) ~j( - N -N -N t ) w1 some vj '"')-N,wj E u xj ,xj-N,Yj, j. 

This implies by (24) that 

Using again Theorem 5.1 from Mordukhovich (1993) providing coderivative 
characterizations of the Lipschitz continuity for Fj, we get the estimate 

N N N N 

I 
(
Pj+l - Pj -AN VN' qj-N+l - (jj-N - AN "'N-N) I 

hN J hN J I 

'NON 

I

NN /\j N N l :S Lp /\ wj +---,;-;;- - Pj+l- qj+l · 

Since l(vf, r;,f-N,wf) l :S lJ clue to the Lipschitz continuity off with modulus 
l f, one derives from the above that 

l(pf, qf_N )I :S LpiAN Of I+ Lp>.N hNiwf l 

+ LphNIPf-t-l + qf-+_11 + I(Pf-+_1, qf-N+I)I +AN hNI(vJ', Kf-_N )I :S LpjOJ'I 

+ (LFhN + hN )lJ + LphNIPJ'+l + qf+11 + I(PJ'+l, qf-_N+I) I, j = 0, ... , k, 

and taking (52) into account, that 

l(pf, qf_N )I :S LpiOfl + (LF + 1)hNlf + (LFhN + 1) l(pf+l , qf-_N+I)I 
:S Lpl0fl + (LFhN + 1)Lpl0f+ll + (Lp + 1)hNlJ 

+ (LFhN + 1)(Lp + 1)hNlj + (LFhN + 1)2I(Pf+2' qf-_N+2)1 :S · · · 
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where LIN := J: lx(t) - J:N (t) ldt --+ 0 as N --+ oo. This implies the uniform 
boundedness of {pf,q~N} and hence of {(pN(t),qN(t- .6.))} on [a,b]. 

To estimate (pN(t),qN(t- .6.)), we have 

N N N N 
I('PN(t),qN(t-.6.))1 = I(Pj+~:Pj 'qj-N+~:qj-N)I 

L 
I 

, N N >-N ef . N N 1 , N 
1 

( N N ) 
1 :S F /\ wj + ---,;;;--- - PJ+I - qJ+l +A vi , vj-N 

:S Lplf + lJ + Lp(leN (t)l + 1Pf+1 1 + lqf+ 1 1), t E [tj, tj+I), 

which implies the (essential) uniform boundedness of {pN (t), qN (t-.6.)} on [a, b]. 
By standard compactness results of real analysis we find absolutely continuous 
functions p(-) and q(- - .6.) with 

PN (t)--+ p(t), 

PN (t) --+ p(t), 

qN (t- .6.) --+ q(t- .6.) uniformly on [a, b], 

qN (t- .6.)--+ q(t- .6.) weakly in L2 [a, b] as N--+ oo. 

It is easy to observe that the discrete Euler-Lagrange inclusion (50) can be 
rewritten as 

N N { 1 ( N N >..N ef) (p (t),q (t - .6.))E (u,v) u,v,p (tj+I)+q (tJ+I)----,;;;-

E >-Naf(x(tj),x(tj- .6.),xN(tj), tj) + N((xN(tj),xN(tj- .6.),xN(tj)); (61 ) 

gphF( ·, ·, ti)} 

for all t E [tj, tJ+1 ) and all j = 0, ... , k. 
By the classical Mazur theorem there is a sequence of convex combinations 

of the functions (pN(t),qN(t- .6.)) that converges to (p(t),q(t - .6.)) for a.e. 
t E [a, b]. Passing to the limit in (61) as N--+ oo and taking into account the 
construction of the extended normal cone and subdifferential in Definition 3.1 as 
well as their robustness property from Proposition 3.2, we arrive at the extended 
Euler-Lagrange inclusion (56). To justify the tail condition (57), we pass to the 
limit in (51) with the use of t he specific form of the normal cone to convex 
sets (22) as well as Proposition 3.1 whose assumptions are satisfied for C(-) due 
to (H3) and (H6). Finally, conditions (58)- (60) follow directly from (52)- (54), 
which completes the proof of the theorem. • 

For the Mayer problem (PM), that is, (1)-(4) with f = 0, the extended Euler
Lagrange condition (56) is equivalently expressed via the extended coderivative 
(27) with respect to the first two variables of the multifunction F = F(x, y, t), 
i.e., 

(p(t), q(t- .6.)) E co i5;,_,F(x(t), x(t - .6.), x(t), t)(- p(t) - q(t)) (62) 



Optimal control of constrained delay-differential inclusions 607 

One can replace i5;,y by the basic coderivative (24) with respect to (x , y) ifF is 
coderivatively semicontinuous at (x(t), x(t- 6), x (t) , t) with respect tot almost 
everywhere on [a, b]. 

It happens that the extended Euler-Lagrange condition obtained above im
plies, under the relaxation stability of the original problems, two principal op
timality conditions expressed in terms of the classical Hamiltonian. In the fol
lowing corollary we consider for simplicity the case of the Mayer problem (PM) 

for autonomous delay-differential inclusions. Then, the Hamiltonian function 
for (2) is given by 

H(x, y , p) :=sup { (p, v) l v E F(x, y) }. (63) 

COROLLARY 5.1 Let x(-) be an optimal solution to the Mayer problem (PM) 

for the autonomous delay-differential inclusion (2) under assumptions (Hl) , 
(H3), (H4 ') , and (H6). Suppos e that the problem (PM) is stable with respect 
to relaxation. Then there exist a number >. :?: 0 and the absolutely continuous 
functions p: [a, b] ~ mn and q: [a - 6, b] ~ mn satisfying conditions (57) - (60) 
as well as the Hamiltonian inclusion 

(p( t)' q ( t - 6)) ( 64) 

E co { (u , w) l ( - u , -w, x(t)) E 8H(x(t) , x(t - 6) ,p(t) + q(t))} 

and the maximum condition 

(p(t) + q(t)), x(t)) = max { (p(t) + q(t), v) l v E F( x(t), x (t- 6))} (65) 

for almost all t E [a, b]. If, moreover, F is convex-valued aro'und (i(t), x (t- 6) ), 
then (64) is equivalent to the Euler-Lagrange inclusion 

(p(t),q(t-6)) E co D*F(x(t) ,x(t-6), x(t))( - p(t) - q(t)) (66) 

a. e. t E [a, b], 

which automatically implies the maximum condition (65) in this case. 

Proof Since (PM) is stable with respect to relaxation, x ( ·) is an optimal solution 
to the relaxed problem (RM ), whose only difference with respect to (PM) is that 
the delay-differential inclusion (2) is replaced by its convexification (17). Due 
to Theorem 5.1 the optimal solution x(-) satisfies conditions (57)- (60) and the 
relaxed counterpart of (62), that is the same as (66) in this case, with F replaced 
by co F. According to Theorem 3.3 in Rockafellar (1996), one has 

co{(u,v) l (u , w , p) E N((x,y,v);gph(coF)} 

= co { (u,w) l (-u , -w,v) E 8HR(x,y,p) } , 

where HR stands for the Hamiltonian (63) of the relaxed system, i.e. , with F 
rPnl~rPrl hv ('() p Tt 1~ ("l ~<;:u t n. C.t:lO th !l t T-T ..... - T-T 'r'h ll C' f-h o l:;' , , Jrn• T 1"\ri 'Y" .-. 1"'\ n'r\ 
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inclusion for the relaxed system implies the Hamiltonian inclusion (64), which 
surely yields the maximum condition (65) . When F is convex-valued, (64) and 
( 66) are equivalent due to the mentioned result of Rockafellar (1996). This 
completes the proof of the corollary. • 

Note that the Hamiltonian inclusion (64) obviously improves over following 
one 

( - p(t), - q(t- 6.),x(t)) E cooH(x(t),x(t- 6.) , p(t) + q(t)) a.e. t E [a,b] (67) 

obtained by Clarke and Watkins (1986) for the Mayer problem (PM) with convex 
velocities in (2) and no endpoint constraints ( 4) ,but without imposing the 
convexity hypothesis (H6). 
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