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Abstract: The paper surveys mathematical models of thermo­
mechanical evolution of shape memory alloys and related mathemat­
ical results. The survey is confined to so-called diffused-interface or 
phase-field models based on Landau-Ginzburg free energy as a ther­
modynamic potential. It includes the well-known models due to 
Falk, Fr·emond and Fried-Curtin. The focus is on a three-dimen­
sional (3-D) generalization of Falk 's model based on the linearized 
strain tensor, absolute temperature and strain tensor gradient . For 
such model the thermodynamical basis and the recent mathematical 
results on its well-posedness are presented. 
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1. Introduction 

The ability of some metallic alloys to "remember" certain predefined shapes 
has been the focus of extensive studies since many years. Such alloys can be 
deformed to a particular shape at some temperature, but after heating they 
revert to their original shape. This phenomenon, known as shape memory 
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a high symmetry phase (austenite) to a lower symmetry phase (martensite) . 
The change of structure, act ivated by stress or temperature, reflects the phase 
transition in solid. 

The goal of this paper is to review mathematical models of thermomechanical 
evolution of shape memory alloys and related mathematical results. 

As it is well-known there are two main approaches to describe phase tran­
sitions in continuum mechanics: the sharp interface and the diffused-interface 
or phase-field theories, see e.g. Curtin and Struthers (1990), Fried and Curtin 
(1994, 1999), Fried and Crach (1997), Silhavy (1985). 

In the first one the interface separat ing the coexisting phases is considered 
as a two-dimensional surface of discontinuity of the first deformation gradi­
ent (strain), and in the second one the interface is treated as a thin three­
dimensional region where strain changes considerably but smoothly. 

The first approach corresponds to a potential of Landau form based on an 
order parameter, and the second one to a potential of Landau-Cinzburg form 
involving order parameter and its gradient. The order parameter is an internal 
quantity which characterizes the difference between the phases of the material. 

In the present paper we shall confine ourselves to diffused-interface approach 
based on Landau-Cinzburg free energy as a potential. Within this approach we 
present the following one- and three-dimensional (1- and 3-D) models which 
differ in the choice of the order parameter : 

(i) 1-D F:alk's model (Falk, 1980, 1982, 1983, 1990) based on free energy de­
pending on the scalar sheer strain, temperature and sheer strain gradient; 

(ii) 3-D generalization of Falk's model based on the linearized strain tensor, 
temperature and strain tensor gradient (see Pawlow, 2000b, for thermody­
namical derivation, and Pawlow and Zochowski, 2001 , 2002 , Pawlow and 
Zajl}czkowski, 2002a, 2000b, for mathematical results); 

(iii) 3-D Fremond's model (Fremond, 1987, 1990, 2002) based on the phase 
ratios, the linearized strain tensor, temperature and gradient of the strain 
tensor trace; 

(iv) 3-D isothermal Fried-Curtin model (Fried and Curtin, 1994) based on the 
deformation gradient, a multicomponent order parameter and its gradient. 

We focus our attention on the second class of models, for which we present 
the corresponding thermodynamical framework. In discussing other models we 
refer, whenever possible, to this framework. We mention that the Landau­
Cinzburg approach based on the strain tensor as an order parameter has been 
used in Barsch and Krumhansl (1984, 1988) where physically justified 2-D elastic 
and strain gradient energies have been proposed . 

Our thermomechanical model, which constitutes a 3-D counterpart of Falk 's 
model, is based on the elastic energy due to Falk and Konopka (1990). This 
P.nP.wv is a oolvnomial exoansion uo to sixth order with respect to the invariants, 
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dependent coefficients. We mention that there are other elastic energy models 
for shape memory materials, e.g., the model due to Ericksen (1986) is expressed 
in terms of the right Cauchy-Green strain tensor in the form of a fourth order 
polynomial with temperature-dependent coefficients. Such energy has been used 
by Kloucek and Luskin (1994) for numerical simulation of shape memory alloy 
dynamics in 3-D, with temperature treated as a parameter. 

For an account on modelling and mathematical aspects of shape memory 
alloys, apart from the papers cited in the text, we refer to the monographs 
by Brokate and Sprekels (1996) Chapter 4, 5, Fremond (2002) Chapter 13, 
Fremond and Miyazaki (1996), Zheng (1995) Chapter 4. For comprehensive 
references concerning the subject we refer to Sprekels (1990), Spies (1995), 
Roubicek (1999), Bonetti (2001), Mi.iller and Seelecke (2001), Bernardini (2001). 
We mention also that recently a hysteresis operator approach has been applied 
to model the dynamics of 1-D shape memory alloy, see Aiki and Kenmochi 
(2001). 

The plan of the paper is as follows: 
In Section 2 we outline the 1-D Falk's model and review briefly the results 

concerning its well-posedness. We point out the methods based on parabolic 
decomposition of the momentum balance which can be extended to the 3-D 
case. 

In Section 3 we outline the thermodynamically consistent constitutive equa­
tions for 3-D thermoelasticity models with free energy depending on strain ten­
sor, its gradient and absolute temperature. We derive the availability identity, 
which provides the energy estimates for such class of models, and discuss a Lya­
punov relation. 

In Section 4 we formulate a 3-D nonlinear thermoelasticity system repre­
senting a counterpart of 1-D Falk 's model. For such a system we present recent 
results on global in time existence and uniqueness of solutions and comment on 
difficulties in the mathematical treatment. 

In Section 5 we outline Fremond's model, show how it fits into our thermo­
dynamical framework, and review briefly the mathematical results. 

In Section 6 we present the basic equations of Fried-Gurtin model and their 
specific forms corresponding to some free energy models. 

We use the following notation: 

_ 8u(X,t) . _ 1 U,i - 8x .;. ' 'l - ' ... 'n, 
_ du(X,t) _ ( ) 

Ut- -d-t-. -, c - Eij i,j = l , .. ,n, 

F (c: e) = 8F(c:,e) = ( 8F(C: . •. e)) ,c: , ac: 8c 
'·1 ·i,j=l, .. ,n 

F,o(c:, e)= 8F~~,O) 

The symbol Ot denotes the material time derivative of the field (-). For simplic­
ity we use the same notation, u,i and Ut, for variables corresponding to the first 
order space and time derivatives. Whenever there is no danger of confusion, we 
omit the function arguments. The specification of the range of tensor indices is 
............... ! +.4- ..... ..J ....... ~~ • .-. 11 "'\T ...... .L. ... - ... ... _ .J J... ------ --- .J -·-- "- --11--- 1-- 1 -11 - LL ---- 'T'L _-
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tion convention over repeated indices is used. Moreover, for vectors a = (a;), 
ii =(a;) and tensors B = (B;j), iJ = (B;j), A= (Aijkl) we write 

Throughout the paper all derivatives are material (Lagrangian). The sym­
bols \1 and \1· denote the gradient and divergence with respect to the mate­
rial point x E !Rn : \la = (a,;), \la = (ai,j), \1 ·a = a;,i, \1 · B = (Bij,j), 
\1 ·A= (Aijkl,z). 

2. Review of 1-D Falk's model 

The 1-D model due to Falk (1980, 1982, 1983, 1990) describes martensitic phase 
transitions of the sheer type. The sheer strain E = Ux, where u denotes displace­
ment, is used as an order parameter distinguishing between different configura­
tions of the crystal lattice. 

The Helmholtz free energy density f = j(E,Ex,f)), depending on strain 
E, strain gradient Ex and absolute temperature e, is assumed in the Landau­
Ginzburg form 

(1) 

where 

with positive physical constants Be, a 1, a2, a3, :u, cv, B1, and some constant c 
immaterial from the point of view of differential equations. 

The terms in (1) denote: j.(B) - thermal energy with thermal specific heat 
cv, F(E, B) - elastic energy, :uc~/2- strain gradient energy. The elastic energy 
is nonconvex multiwell function of E with the shape strongly depending on e. 

The balance laws of linear momentum and energy in a wire of length 1 and 
constant density (} = 1 read 

Utt - IJx + J.lxx = b, (2) 

et + qox- !JEt - J.LExt = g in or= (0, 1) X (0, T), 

where T > 0 is final time, CJ - shear stress, J.L - couple stress, e - internal 
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In addition to (2) the fields arc required to comply with the second principle of 
thermodynamics in the form of the Clausius-Duhem inequality 

17t + (q;t ~ ~ (3) 

where 17 is the entropy density related to f and e by Gibbs relations 

f = e - Bry , 17 = - ! ,o. (4) 

It is straightforward to check (see Lemma 3.2) that in case of free energy f = 

j(E, Ex, B), the inequality (3) is satisfied for constitutive equations 

()" = J,c + O"v , O"v = VEt , f.1. = J,c,, 

Qo = -kBx , 

(5) 

where O"v denotes viscous stress, v ~ 0 - viscosity coefficient, k > 0 - heat 
conductivity. Using (5) in (2), and taking into account the particular form (1) 
of f , we arrive at the system 

1Ltt - 1J1Lxxt + Y-1Lxxxx = (F,c(c, B)) x + b, (6) 

co(E, B)Bt- kBxx = BF,co(E, fJ)Et + vEz + g in or, 
where E = ux, and 

co(E, e) = Cv- BF,oo(E, B) 

denotes the specific heat. Clearly, for F linearly dependent on e as in (1), 
co = Cv· 

The system (6) is subject to initial conditions 

ult=O = uo, 1Lt l t=O = 1Ll , Blt=O = Bo in n, 
and some boundary conditions. 

The boundary value problems for (6) have been investigated under various 
structural assumptions on F(E,B) in the cases u = 0, v > 0, or u > 0, v = 0, 
or u > 0, v > 0. In all cases the mathematical analysis required a considerable 
effort despite the 1-D setting. The positivity of one of the coefficinets v or u 
played a regularizing role. 

In case u = 0, v > 0 the global in time existence of solutions to (6) has been 
studied by Niezg6dka and Sprekels (1988) , Hoffman and Zheng (1988), Zheng 
and Sprekels (1988), Chen and Hoffmann (1994), Racke and Zheng (1997), Shen , 
Zheng and Zhu (1999). 

The last two references address also the question of asymptotic behaviour 
as time tends to infinity. We emphasise that in view of u = 0 (no interfacial 
structure) the framework of these papers allows the strain E to belong to L 00 . 

For recent results concerning general t hermovisco-elasticity systems related 
to (6), including, in particular shape memory alloys, we refer e.g. to Watson 
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In case of x > 0, v = 0 the system (6) has been studied by Sprekels (1989), 
Zheng (1989), Sprekels and Zheng (1989), Aiki (2000). We point out that the 
analysis in Sprekels (1989) required restrictive growth conditions on F(E, B) with 
respect to(), which excluded the physically relevant case in (1). This assumption 
has been removed in Zheng (1989) , where F(E, B) has been admitted in the 
standard form (1) but - f*(B) has been assumed to grow at least quadratically 
in B. Finally, the latter assumption has been removed in Sprekels and Zheng 
(1989) by means of deriving more delicate estimates. Then Aiki (2000) addresses 
the existence and uniqueness of weak solutions. 

In case of x > 0, v > 0 the system (6) has been studied by Zochowski (1992), 
Hoffmann and Zochowski (1992 a,b) in the 1-D and 2-D cases. In these refer­
ences the analysis has been based on the parabolic decomposition of momentum 
equation (6)1. 

The same type of decomposition has been applied for the 3-D model in 
Pawlow and Zochowski (2000, 2002) (see Section 4). In case of boundary con­
ditions 

u = 0, Uxx = 0 on S T = {0} X (O,T) U {1} X (O,T), 

it is easy to see that (6)1 splits into the following two systems: 

and 

'Wt -f3'Wxx = (F,e(E,B))x +b 
wlt=O = U1- auoxx 
'W = 0 

Ut- auxx = 'W 

ult=O = uo 
u=O 

in nr , 
in n, 
on sr, 

in nr, 
in n, 
on sr, 

where a, (3 are numbers satisfying a+ (3 = v , a(3 = x , 0 < 2/X::::; v. 

(7) 

(8) 

We point out that in the papers cited above a priori estimates on solutions 
depend on the time horizon T, therefore do not admit the asymptotic analysis 
as T-) oo. 

The study of system (6) in case x > 0, JJ > 0 has been continued in Sprekels, 
Zheng and Zhu (1998), Sprekels and Zheng (1998), where the global existence, 
uniqueness, the asymptotic behaviour of solution as time T -) oo, and the 
existence of a compact maximal attractor has been established. 

The analysis in these papers is based on different type of parabolic decompo­
sition of (6)1 by means of the transformation due to Pego (1987) and Andrews 
(1980): 

X 

p(x, t) = r Ut(Y, t)dy . (9) 
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In view of (9), 

Ct = Pxx in nT, 

and system ( 6) ( b = 0, g = 0) can be recast as 

Pt - VPxx = -XC:xx + F,f:(c:, e), 
caBt- kBxx = BF,c~J(c, B)Pxx + vp;x in nr. 

635 

(10) 

The transformation (9) has been also applied in the previously discussed case 
x = 0, v > 0 in Racke and Zheng (1997), Shen, Zheng and Zhu (1999). We point 
out that in all the papers, mentioned above, concerning asymptotic behaviour 
of solutions, the main tool was the basic lemma due to Shen and Zheng (1993). 

We mention that the transformation (9) has been generalized to many space 
dimensions by Rybka (1992, 1997) to study isothermal viscoelasticity system, 
see also Swart and Holmes (1992). 

System (6) with x > 0, v > 0, has been also investigated from the point of 
view of so-called state-space approach by means of expressing it as a semilinear 
Cauchy problem in an appropriate Hilbert space, see Speis (1994, 1995), Morin 
and Spies (1997). 

Finally, we mention that there exists an extensive literature concerning the 
control problems for 1-D Falk 's model where distributed or boundary inputs 
are used to control the system behaviour. We refer, e.g., to Hoffmann and 
Sprekels (1987), Sprekels (1989b), Brokate and Sprekels (1991), Sokolowski and 
Sprekels (1994), Bubner, Sokolowski and Sprekels (1998) . Control problems for 
a special 2-D model of a plate activated by shape memory reinforcements have 
been considered by Zochowski (1992), Hoffmann and Tiba (1997) , Hoffmann 
and Zochowski (1998). Recently, control problem for 3-D counterpart of Falk's 
model has been studied in Pawlow and Zochowski (2002b). 

3. Thermodynamical framework of diffused-interface mod-
els with strain tensor as an order parameter 

Let n c lRn, n = 2 or 3, be a bounded domain with a smooth boundary S, 
occupied by a body in a reference configuration. Let u = ( ui) denote the 
displacement vector, e > 0 - the absolute temperature, and 

1 
c: = c:(u) = 2('Vu + 'VuT) 

be the linearized strain tensor. 
We outline the field equations for thermodynamically consistent thermoelas­

t icity models governed by Landau-Ginzburg free energy 

f = f(c:(u), 'Vc:(u),e). (11) 

We confine our attention to small strain approximation , that is , the assumption 
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Assuming constant mass density (f2 = 1), the balance laws of linear momen­
tum and internal energy read: 

Utt- \7 · 8 = b, (12) 

et + \7. q- s: Ct = g in o.r = n X (0, T), 

where S denotes the referential (first Piola-Kirchhoff) stress tensor, e - internal 
energy, q - energy flux , and E:t = e:(ut) - the strain rate tensor, and b ­
external body force. 

The corresponding thermodynamically consistent constitutive relations for 
e, S and q have been established in Pawlow (2000b). In order to construct 
theory with first order strain gradient free energy f it is necessary to admit as 
constitutive variables not only the strain tensor e:, its higher gradients \lM e:, 
MEN, and absolute temperature 8 (or , by duality, entropy TJ or internal energy 
e) but also the strain rate tensor et · By assuming such constitutive dependence 
and exploiting the entropy inequality with multipliers it has been proved in the 
above mentioned reference that the constit utive dependence of f is restricted to 
the variables as in (11), e and TJ are linked by the Gibbs relations (4), and S, q 
are defined by 

S = ~~ + B(h- f :ve:)\7 ( ~) + sv, 
q = Qo + Ql, Ql = - e:th, 

where 0 f / Oe: denotes the first variation of f with respect to e: , given by 

of 
- = fe:-\l·f'Ve · Oe: ' ' 

(13) 

A third order tensor h = (hijk) is an arbitrary constit utive quantity. It is not 
constrained by the second principle but, as conventional, required to be frame 
indifferent. The presence of such quant ity is characteristic for phase transition 
models with first order gradient free energy (Alt and Pawlow, 1996). It con­
tributes to nonstationary energy and entropy fluxes associated with evolving 
non-zero width phase interfaces. 

In (13), q1 denotes a nonst ationary energy flux. Furhermore, sv is the 
viscous stress tensor and q0 is the heat flux which are subject to the dissipation 
inequality 

et: ( ~v ) + \7 (~) · q0 ~ 0 for all fields u,e. (14) 

The standard examples of constitutive equations for sv and q0 are Hooke's and 
Fourier's laws: 
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where 11 > 0 is the viscosity, k > 0 the heat conductivity, and A = (Aijkl) the 
fourth order elasticity tensor 

Ac(u) = >.trc(u) I + 2J-Lc(u), (16) 

with I = ( Dij) identity tensor and ).., J-L Lame constants. 
The thermodynamical compatibility of relations (13), (14) is assured by the 

following 

LEMMA 3.1 (Pawlow, 2000b) The solutions of system of balance laws (3.2) wdh 
constitutive relations (13), (14) satisfy the entropy inequality 

(sv) (1) g g . Tit+ \7. '1/J = €t : e + \7 e . Qo + e ?. e for all u , e, (17) 

where TJ is the entropy obeying Gibbs relations (4), and 'ljJ is the entropy flux 
given by 

For special selection 

h = f,vc, 

the constitutive equations for S, q and 'ljJ become 

S = ~~ + sv, q = q0 + q1 , q1 = - cd,vc, 

1 
'1/J = '1/Jo + 'I/J1, '1/Jo = gqo, 'I/J1 = 0. 

(18) 

(19) 

(20) 

Is is straightforward to check that for such constitutive equations, for sv, q0 
defined by (15) and f by (11) the system (12) in 1-D case is identical to Falk's 
model (2), (5) . We note also that the third order tensor f,vc = (f,c;; ,,) repre­
sents the couple stress. 

The mathematical results reported in Section 4 concern system (12) with h 
specified by (19). For discussion of other choices of h, for example h = 0, and 
the related field equations we refer to Paw low (2000b). Here, we present the 
general properties of the system (12) with the constitutive equations (20). First , 
for further convenience, we collect the equivalent forms of energy equation in 
this system. 

LEMMA 3.2 Consider system (12) with constitutive equations satisfying (20) 
and (14). Then the energy eq·uation (12)2 admits the following equivalent for­
mulations: 

et + \J. (q0 - cd,vc) - S: ct = g, 

BTJt + \7 · q0 - sv : ct = g, 

(21) 
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where 

co= -Bf,ee, 

and e, ry obey the Gibbs relations (4). 

Proof. The equivalence of (21)1 and (21)2 follows in view of the identity 

et- "V · (e:d,"Ve:) - S: E:t 

= (Bryt + f,e:: e:t + f ,"Ve:: "Ve:t) 

- (("V. f,"Ve:): f:t + f,\le:: "Ve:t) 

- U,e:- "\1. f,"VE: + sv) : E:t = Bryt- sv : E:t, 

where we have used that, by virtue of Gibbs relations, 

Bryt = et + f ,eBt- !,t = et- f ,<:: et- f,\1<:: "Vet· 

Clearly, the equivalance of (3.11)2 and (3.113 results from the identity 

Bryt = -Bf,e<:: et- Gf,e\lo:: "Vet+ coBt. 

(22) 

• 
Now we present the availability ident ity for the system (12) with constitutive 

equations satisfying (20), (14). In mathematical analysis such identity provides 
energy estimates. 

LEMMA 3.3 For solutions of system {12) with (20), 
is satisfied 

(14) the following identity 

dj'( 1 ~ - ) dt e + 2lut1-- Gry dx (23) 
S1 

+ l [-(Sn) · Ut- n · (e:tf,"Ve:) + (1- ~) n · q0] dS 
s 

+ l [ "\1 ( ~) · q0 + ~e:t : Sv ] dx 
S1 

= l[b·ut+(1 -~)g]dx for tE(O,T), 
S1 

where 8 = B(x) > 0 is a given function, and n denotes the unit outward normal 
to S . 

Proof. Multiplication of (21)2 by BjG (it is assumed that e > 0) and integration 
over n yields the identity for the entropy 

:t l Brydx -l "V ( ~) · q0 dx + l n · q0 ~dS (24) 
S1 S1 s 

re f·e 
- -;:C:t. : svdx = -;:qdx. 



On diffused-interface models of shape memory alloys 639 

Next, integration of (21)1 over n yields the identity for the internal energy 

:t j edx + j [n · q0 - n · (c:d,vc:)] dS- j S: Etdx = j gdx . (25) 

n s n n 

Furthermore, by multiplying (12) by Ut and integrating over n we get the iden­
tity for the kinetic energy 

:tJ~Iutl 2dx+ Js:c:tdx- J(Sn)·utdS= Jb·utdx . (26) 
n n s n 

By adding (25) and (26) we obtain the identity for the total energy 

:t j (e + ~lutl 2) dx + j[-(Sn) · Ut - n · (c:d,vc:) + n · q0]dS 
n s 

= J(b·ut+g)dx. (27) 

n 

Finally, subtracting (24) from (27) yields (23) . • 

In view of the dissipation inequality (14), if external sources vanish 

b = 0, g = 0, 

if boundary conditions on S imply that 

(Sn) · Ut = 0, n · (c:tf:vc:) = 0, n · q0 = 0, 

and if [J = const > 0, identity (23) implies the Lyapunov relation 

df( 1 ') - ) dt e + 2lut1-- BTJ dx ::; 0, 
n 

where the function under the integral is known as the equilibrium free energy. 

4 . 3-D counterpart of Falk's model and its well-p osedness 

Let A = (Aijkt) be the elasticity tensor given by (16), where Lame constants 
>.., J.L are specified below in assumption (A2). We recall that A satisfies the 
following symmetry conditions: 

Moreover, let Q stand for the second order differential operator of linearized 
elasticity, defined by 

· " -· \7 ( ,4 _ / A. \ \ .. J\ •. i/ \ i . \ \7 ( '\7 __ \ In n \ 
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Correspondingly, the operator Q2 = QQ is given by 

u f-t Q2u = JLf:::.(Qu) + (,\ + JL )\1(\1 · (Qu)). 

The Landau-Ginzburg free energy (11) is assumed in the form 

xo ? 
f(e:(u), \le:(u), B)= j.(B) + F(e:(u), B)+ siQul-, (29) 

with f*(B) as in (1). 
The special form of strain gradient term with constant x 0 > 0 is chosen for 

the sake of mathematical analysis. 
The meaning of the quantities in (29) is the same as in (1). The representa­

tive model of the elastic energy F(E, B) is due to Falk and Konopka (1990): 

3 5 2 

F(e:,B) = 'L,a7(B)Jl(e:) + 'L,af(B)J1
4 (e:) + 'L,a~(B)Ji6 (e:), (30) 

i=l i=l i=l 

where a~ (B) are experimentally determined material coefficients, and Jik ( e:) are 
crystal invariants in the form of k-th order polynomials in Eij· In particular, for 
CuAlNi alloy Falk and Konopka (1990) have proposed 

a~(e) =a~+ a~(e- Be), k = 2,4, 

a~(e) = a7, 
with constants 

(31) 

Here, in contrast to elastic energy F(c, G) in Falk's model (1), not only second 
order, aT, but also fourth order coefficient af are dependent on temperature. 

We consider the system of balance laws (12) governed by free energy (29), 
with constitutive equat ions for S, q given by (20), and for sv, q0 by (15). In 
such a case 

XQ XQ 
\1 · J,\1€ = 4(ApqriEri(Qu)) = 4Ae:(Qu), 

6j XQ 
be: = F,e:(e:, G)-

4
Ae:(Qu), 

XQ _ r ~ n .. \ 
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Inserting the above equations into (12) leads to the following system, which is 
a 3-D generalization of the Falk 's model (6): 

xo 2 
Utt - vQut + 4Q u = \1. F,e(E, e) + b, 

co(e-, e)et- kD.e = eF,oe(e-, e) : E"t + v(Ae-t) : E"t + g 

in o.r = 0. x (0, T), where 

co(e, e)= Cv- eF,oo(e- , e). 

(32) 

(33) 

(34) 

The above system is considered with the following initial and boundary condi­
tions 

u = 0, Qu = 0 on sT = s X (0, T), 

elt=O = Oo in 0., 

n · \1 B = 0 on ST, 

where n is the unit outward normal to S. 

(35) 

(36) 

(37) 

(38) 

The initial boundary value problem (32)-(38) has been studied under various 
structural assumptions in Pawlow and Zochowski (2000, 2002a, b), Pawlow and 
Zaj(_}czkowski (2002a, b). 

The main structural assumption has been concerned with the behaviour of 
the elastic energy F(e- , e) as a function of e. Namely, in all the above papers 
F(c. , B) has been assumed to satisfy growth condition 

IF( e, B) I :::; c + ces lei /( 1 

for large values of e and E;j, with exponents 0 < S < 1 and 0 < J(l < 00 linked 
by an appropriate relation. 

Under such condition the specific heat coefficient co( e- , e) , by definition, con­
tains the nonlinear contribution -eF,oo(e-, e). The presence of such nonlinearity 
causes essential difficulties in the mathematical analysis of the problem. They 
are related to the necessity of deriving Holder bounds on e and (} in application 
of the classical parabolic theory. 

In Pawlow and Zochowski (2002a) the problem (32)- (38) has been studied 
in the 3-D case, by means of the Leray-Schauder fixed point theorem, under 
structural simplification of energy equation (33) . The simplification consisted 
in neglecting the nonlinear term in Co ( c , (}), that is , by sett ing 

Co(e , e) = Cv = C011St > 0. 

The reference Pawlow and Zaj<}czkowski (2002a) generalizes Pawlow and 
7.nrhn,;\TQ.kl (?nO? !:~ l hu r(.)n"1rn rlno· t-h o o hrn rr.l n "\antl llnorl c lt"Y1't"'\ l;h ro" +-; rn ... U ,.... .... . ,... -.r ...-. .. · 
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the proof of existence result in that reference is intrinsically two-dimensional, 
based on Sobolev's imbeddings and interpolation inequalities in 2-D. 

The subsequent paper of Pawlow and Zajl}czkowski (2002b) offers a different 
proof of a priori estimates which, with the help of the Leray-Schauder fixed point 
theorem, allows for the establishment of existence of solutions in the 2-D and 
3-D cases. 

The proof of a priori estimates consists in recursive improvement of energy 
estimates with the help of Sobolev's imbedding theorems and the regularity 
theory of parabolic systems. The key estimates are L00 (f2T)-norm bound and 
Holder-norm bound for a solution of heat conduction equation (33) with non­
linear specific heat co(c, B). 

In all above mentioned references the idea of the existence proof is similar 
to that in Zochowski (1992) , where 1-D Falk's model has been considered. It 
is based on parabolic decomposition of (32) and the application of the Leray­
Schauder fixed point theorem. The elasticity system (32) admits the decom­
positon into two parabolic systems, for vector field w: 

Wt- (3Qw = V'. F,c(c,B) + b in nT, 

wlt=O = Wo := U1 - o:Qu0 in f2, 

w = 0 on sr, 

and for vector field u: 

Ut- o:Qu = W in f2T, 

u\t=O = Uo in f2, 

u = 0 on sr, 

where o:, (3 are numbers satisfying 

0: + (3 = v, 
xo 

o:(J = -. 
4 

(39) 

(40) 

Further on, we assume the condition 0 < Fo ~ v, which assures that o:, (3 E 

JR+. Systems (39), (40) are coupled with problem (33) ,(37) , (38) for B. 
We present now the existence and uniqueness results for the problem (32)­

(38) proved in Pawlow and Zajl}czkowski (2002b). First we list the assumptions: 

(Al) Domain 0 c lR11
, n = 2 or 3, with the boundary of class C4 . The C4-

regularity is needed in order to apply the classical regularity theory for parabolic 
systems. 

(A2) The coefficients of the operator Q satisfy 

J.L > 0, n>- + 2J.L > 0. 
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(i) Coercivity and boundedness of the algebraic operator A: 
cjcj 2

::; (Ac): c ::; cjcj 2
, 

where 
~ = min{n.A + 2J.L, 2J.L}, c = max{n.A + 2f.L, 2J.L} . 
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(ii) Strong ellipticity of the operator Q (see Pawlow and Zochowski, 2002a). 
Thanks to this property the following estimate holds true 

cJJ u ll w;(n)::; IJQu ii L
2
(n) for {u E W~(n) j uis = 0}. 

(iii) Parabolicity in the general (Solonnikov) sense of system (32) (see Pawlow 
and Zochowski (2002a) ). 

The subsequent assumption concerns the structure of elastic energy. 

(A3) Function F(c,e): 5 2 x [O ,oo) -7 IRis of class C 3 , where 5 2 denotes the 
set of symmetric second order tensors in !Rn. We assume the splitting 

where F1 and F2 are subject to the following conditions: 

( A3-l) Conditions on F1 ( c, e) 
(i) Concavity with respect to e 

- FuJO(c, e) 2 0 for (c, e) E 5 2 x [0, oo). 

(ii) Nonnegativity 
F1(c,e) 2 0 for (c,e) E 52 x [O ,oo) . 

(iii) Boundedness of the norm 

IJF1Jic3 (S2x[O,=)) < oo. 

( 41) 

(iv) Growth conditions. There exist a positive constant c and numbers 
s,K1 E (O,oo) such that 

IF1(c, e) j ::; c(l + eslciKI ), 

IF1,c(c ,e) j::; c(l +e5 jcjK1
-

1), 

IF1 ,cc(c, e)j ::; c(l + e8 jcJK1
-

2
), 

IF1,0c(c, e)j ::; c(l + es-1lciK1
-

1 ), 

JF1,00(c, e)j ::; c(l + es- 2 lciK1 
), 

jF1,011c(c , e)j ::; c(l + es- 2 jcjK1
-

1) 
for large values of e and Eij, where admissible ranges of s and K 1 are given 
by 

n+l { 3/4 
0 < s < ~ = 2/3 

qn r n + 2 n < K, < 1+ - 1-- + 

if n = 2 
if n = 3, 

1 l = J any finite number if n = 2 
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Moreover, in case of K 1 > 1 the numbers s and K1 are linked by the equality 

2sn 4n(K1 - 1) 2 
-- + = 1 + -,-----,---,-----,... 
n+1 qn(n+2) (n+1)(n+2) 

Here, qn is the Sobolev exponent for which the imbedding of W{(n) into Lq,. (n) 
is continuous, i.e., qn = 2nj(n- 2) for n ;::: 3 and qn is any finite number for 
n = 2. 

Concerning the part F2 ( c:) we impose: 

(A3-2) Conditions on F2(c:) 
(1) Nonnegativity 

F2 ( c:) ;::: 0 for c: E S2. 

(ii) Boundedness of the norm 

IIF2IIc2(s2J < oo. 
(iii) Growth conditions 

IF2(c:)l :S c(1 + leiK2 
) , 

IF2,e(e)l :S c(1 + leiK2
-

1), 

IF2,ee(e)l :S c(1 + leiK2
-

2) 
for large values of E:ij, where 

0 K < 1 qn(n + 4) = { any finite number if n = 2 
< 2 

- + 4n 9/2 if n = 3. 

We point out the consequences of assumption (A3), which are of importance 
in the proof of existence of solutions. In view of (A3-l) (i), the coefficient co ( e, B) 
is bounded from below 

0 < Cv::::; co(c:, B) for (e, e) E S2 
X [0, oo). 

Moreover, (A3-l) (iii) and (iv) imply that the bounds on the coefficient c0 (e, B) 
and its derivatives with respect toe and e are independent of e, more precisely, 

lco(e, B) I, lco,e(e, B) I ::::; c(1 + leiK1 
), 

lco,e(e,B)I::::; c(1 + lelmax{O,K!- 1}) for (c:,e) E S2 X [O,oo). 

From (A3-l) (i) and (ii) it follows that 

F1(e, e)- BF1,e(e, B) ;::: 0 for (e , B) E S2 
X [0, oo) 

what, according to Gibbs relations (4) , means that the internal energy corre­
sponding to F1 is nonnegative. Furthermore, owing to (A3-2) (i), 

(Fl(c:, e)- eFl,o(e, B))+ F2(e) ;::: 0 for (e, B) E S2 
X [0, oo), 

what means that the internal energy is nonnegative. This bound is of importance 
in derivation of energy estimates. 

We are looking for the solution in the Sobolev space 

V(p, q) = {(u, B) I u E W~·2 (nT), BE Wi·1(nT), n + 2 < p :S q < oo}. 
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(A4) Source terms satisfy 

bE Lp(07), n + 2 < p < oo, 

g E Lq(07), n+2 < q < oo, and g 2: 0 a.e . in nr . 
Initial data satisfy 

Uo E W~-2/P(rl), 

8o E w;-2/q(rl), 

UJ E w;-2/ P(rl), n + 2 < p < 00, 

n + 2 < q < oo, and 8* = min 8o > 0. 
0 
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Moreover, initial data are supposed to satisfy compatibility conditions for the 
classical solvability of parabolic problems. 

Before formulating the existence result we give an example of the function 
F 1 (£,8) which satisfies the structure assumptions (A3-1) (i) - (iv). This example 
is motivated by the Falk-Konopka energy model (30), (31). 

EXAMPLE 4 .1 Let 

N 

F1(€,8) = l::Pli(8)F2i(£) , 
i=l 

w'ithfunctions F1i E C3 ([0,oo)) given by 

for 0 :::; 8 ::; 81 
for 81 < 8 < 82 
for 82 ::; 8 < 00 . 

Here N E N , 0 < Si < s < 1, 81,82 are numbers satisfying 0 < 81 < 82 , 
si8~ ' - 1 < 1, and functions 'Pi are nondecreasing, concave such that Pli E 

C3 ([0, oo)) . Moreover, functions F2i E C3 (S2 ) are supposed to satisfy 

p2i(€) 2: 0, 

1P2i(£)1 ::; c(1 + 1£1](1 
) , 

IF2i,d£) 1::; c(1 + l£1max{0,/(1 -
1}), 

IF2i,£dE)I::; c(1 + IE imax{O,Kl - 2}) 

for all £ E 52 , where n·urnbers s and [( 1 are subject to conditions specifi ed in 
(A3-1) (iv) . 

Under the above formulated assumptions the following holds true: 

THEOREM 4 .1 (Pawlow and Zajg,czkowski, 2002b). Let assumptions (Al )- (A4) 
be satisfied and the coefficients xo , 11 fulfil the condition 
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Then, for any T > 0 there exists a solution (u, B) to problem (32}-(38} in the 
space V(p, q) , such that 

llullw:·2(W) :S: c(T), IIBIIw,;·~(W) :S: c(T), 

with a positive constant c(T) depending on the data of the problem and Ta , 
a E IR+. Moreover, there exists a positive finite number w, satisfying 

[g + v(Act) : ct] exp(wt) + [wco(c , B)+ F,ec(E, B) : Et]B* 2: 0 in szT, 

such that 

The second theorem concerns the uniqueness of solutions. 

THEOREM 4.2 (Pawfow and Zajg,czkowski, 2002a}. Let the assumptions of The­
orem 4.1 be satisfied and in addition suppose that 
(AS} 

F(c-,B): 8 2 x [O,oo) is of class C4
, and g E L00 (SlT). 

Then the solution (u, B) E V(p, q) to pmblem (32}-(38} is unique. 

We comment briefly on the main steps of the existence proof. 
In order to apply the Leray-Schauder fixed point theorem we make use of 

the parabolic decomposition (39), (40). We introduce a solution map T(T, ·) : 
V(p, q) -> V(p, q), with parameter T E [0 , 1], corresponding to decomposed 
elasticity system (39), (40), and problem (33), (37), (38) for B. In the subsequent 
steps we check the assumptions of the Leray-Schauder fixed point theorem, 
i.e., the following properties of the solution map: the complete continuity, the 
uniform equicontinuity with respect to the parameter, a priori bounds for a fixed 
point and the uniqueness property for the parameter T equal to zero. 

The central, most difficult part of the proof is constitute by a priori bounds 
for a fixed point. Their derivation requires a lot of technical work. Here the 
central steps concern: 

- proof of the positivity of temperature within the assumed class of solutions; 

- energy estimates; 

- procedure of recursive improvement of energy estimates; 

- proof of the crucial L 00 (f!T) - est imate on fJ; the idea consists in deriving 
a bound in Lr(SlT) - norm and passing to the limit with r -> oo; 

- proof of the Holder continuity of B; to this end, we apply the method pre­
sented in Ladyzhenskaya, Solonnikov and Ural'tseva (1967), which consists 
in showing that(} E B2(szr,M,"(,r,6,x); 
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The proof of Theorem 4.2 is based on direct comparison of two solutions to 
problem (32)- (38) corresponding to the same data. Thanks to the regularity of 
solutions it is possible to derive energy estimates for the difference of solutions 
and next, with the help of Gronwall's inequality, to conclude the uniqueness. 

5. 3-D Fremond's model 

The Fremond model (Fremond, 1987, 1990, 1996) is based on the Landau­
Ginzburg free energy of the form 

3 

J = }(c: , \lc:, B, /3) = L f3di(c: , \lc:, B)+ Bis(/3), ( 42) 
i =1 

where c: is the linearized strain tensor,() - absolute temperature, /3 = ((31, (32 , (33) 
- vector representing local ratios of two martensitic, (31 , (32, and the austenitic 
phase , (33. 

The density is assumed constant Q = 1. The free energies f i of the individual 
phases are given by 

1 :X ? 
h = h(c: , \lc:, B) = - c,B log()+ 2c:: (Ac:) + 

2
1\ltrc:l- - o:(B)trc: , (43) 

1 :X 
h = h(c:, \lc:, B) = - cvB IogB + 2c:: (Ac:) + 2 1Vtrc:l 2 + o:(B)trc: , 

1 :X 2 l * h = h(c:, \lc:,B) = -cvBiog() + 2c:: (A c:) + 21\ltrc:l - (} * (() - () ), 

where Cv denotes thermal specific heat, A - rigidity matrix defined by (16), 
:x - positive coefficient, ()* - critical temperature, l - latent heat of the 
austenite-martensite phase transition, a:( B) - function proportional to the ther­
mal expansion coefficient, nonnegative, nonincreasing and vanishing for temper­
atures above the Curie temperature Be > ()*. Furthermore, Bis(/3) represents 
a mixture energy, where 

if /3 E B, 
if /3 '/. B, 

is the indicator function of the closed convex set 

3 

B := {/3 E IR3
1 0::; f3i::; 1, i = 1, 2, 3, Lf3i = 1} . 

i=1 

We point out that free energy (42), in contrast to (29) , is convex inc:. The strain 
gradient term is a special case of that in (29) (viz., operator Q with f-L = 0). 

Upon elimination of (33 the free energy j takes the form 

f(c: , \lc: . B. f3) = fn(c: . \lc: . B. 8) + Bh(B) . ( 44) 
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where 

fo = fJ1(h - h)+ fJ2(h - h)+ h 

stands for a smooth part of f, (3 = ((31, (32), and h ( ·) denotes the indicator 
function of the triangle 

T = {(3 E 1R2
I fJ1 2: 0, fJ2 2: 0, fJ1 + fJ2:::; 1}. 

The field equations in terms of u , Band (3 = ((31, fJ2) are (Fremond, 1990, Colli, 
Fremond and Visintin, 1990, Fremond and Miyazaki, 1996): 

Utt- \1· (>.trcl + 2J..Le + a(B)((32- fJ1)I) + x\1 · (l:J.trcl) = b, (45) 

(cv- Ba,ee(B)tre(f32- f31))Bt- kl:J.B- Ba,e(B)tret(f32- fJ1) 

-l(f31 + f32)t +(a( B)- Ba,e(B ))tre( f32- f31)t = g, 

( 
fJ1) ( a(B)tre-l(B-B*)/B* ) 

- "(Ot fJ2 + -a(B)t7·e - l(B- B*)jB* E fJh(f3), 

where e = (\lu + \luT)/2, "( is a nonnegative viscosity constant, and ofT(-) 
denotes the subdifferential of h(-) . We note that BolT= ofT . 

Originally, the system ( 45) has been proposed on the basis of the principle 
of virtual power and a second gradient theory. It is worth to point out that 
it turns out to fall into a general setting presented in Section 3. In fact, it 
represents balance laws of linear momentum and energy (12), and a relaxation 
law for phase ratios in the form of differential inclusion 

-"(o{ ~~ ) - fo,f3(e, \le,B,{3) E oh(f3), ( 46) 

with constitutive equations for S and q defined by (20), sv = 0, and q0 given 
by Fourier law (15), i.e., 

S = f.e - \1 · f.ve, 

q = q0 + q 1 , q0 = -k\lB, q 1 = -ed,ve · 

Actually, for f defined by ( 44) we have 

!,e = Ae + a(B)((32- (31)1, 

J,ve = (f,E,J,,J = x(Epq,k6pq6ij) = x(tre ,k6ij), 

\1 · J,ve = ok(xtre,k6ij) = xl:J.trel, 

f,ve :\let = x(tre,k6ij)Etij,k = x\ltre · \ltre1, 

( 
h - h ) ( -a(B)tre + l(B- B*)/B* ) 

fo ,(3 = h - h = a(B)trt: + l(B- B*)/B* . 

( 47) 

( 48) 

Clearly, in view of (47), (48), the momentum balance (12)1 yields (45)1, and 
1-h o rol•:::n.r•::~t i r.n l o:~ ,-·H (!1h\ on n a tl n n flt .t;'\" 
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Furthermore, proceeding as in Lemma ~.2, it is straightforward to show that 
the energy balance (12)2 with S, q defined by ( 47) admits formally the following 
equivalent forms: 

et + \l · Qo- !,e: et- f:ve :"'Vet= g, (49) 

BTJt + \l · q0 + fo,f3 · f3t + B8h(f3) · f3t 3 g 

coBt + \l · q0 - Bf,ee : et- BJ,e\1e: \let+ Uo,f3- Bfo,ef3) · f3t = g, 

where co= -Bf,ee. 
We note that since the term Bh(f3) is proportional to temperature its con­

tribution in energy equation ( 49)3 drops out. Consequently, in view of equalities 

Co= Cv- Ba,eetre(f32- (31), (50) 

-Bf,ee: et = -Ba,etret(f32- (31), -Bf,e\1e: \let= 0, 

Uo,f3- Bfo,ef3). f3t =(a- ea,e)tre(f32- f31)t -l(f31 + f32)t, 

equation (49)3 yields (45)2. 
The system ( 45) is usually written in terms of the variables 

(51) 

It reads then 

uu- \l· (>.(\7· u)I + 2w:(u) + a(B)x2I) + x\l· (,6.(\l· u)I) = b, (52) 

where 

g + lxlt- (a(B)- Ba,e(B))(\7 · u)X2t 

+ CvBt- kL).B + ea,e(B)x2\l· Ut + ea,oo(B)x2(\l· u)et, 

if (x1, x2) E K = {(x1, :b) E IR2 IIx2l :::; x1 :::; 1}, 
if (X1, X2) '/. lC. 

The system is supplemented with appropriate initial and boundary conditions. 
The system (52) and various variants close to it have been studied in 1-D 

and 3-D cases . Most of the papers deal with quasistationary form of linear 
momentum equation (52)1, i.e., neglecting the inertial term Utt· 

For the study of 1-D quasistationary case we refer to Colli and Sprekels 
(1995), Colli , Lauren<;ot and Stefanelli (2000). The full 1-D system (52) has 
been investigated in Chemetov (1988), Shemetov (1998). 

The mathematical analysis of 3-D system (52) has faced the difficulties aris-
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the nonlinearities in (52)2 the existence results for quasistationary system (52) 
have been established , e.g., in Colli, Fremond and Visintin (1990), Colli and 
Sprekels (1992), Hoffmann, Niezg6dka and Zheng (1990) . 

In the latter reference a mollified version of the equation for phase ratios, 
accounting for diffusion effects, has been assumed. More precisely, a technically 
useful term involving Laplacian operator appears on the left-hand side of ( 45)3. 
The presence of such a term is associated with additional phase ratio gradient 
term in free energy (42). 

The existence result for the full system (52) in the quasistationary form has 
been established by Colli (1995). The maximum principle for Fremond's model, 
asserting that temperature is positive, has been proved in Colli and Sprekels 
(1993). 

Recently, Fremond's model accounting for diffusive effects and with Cattaneo­
Maxwell heat flux law has been studied by Bonetti (2001, 2002). 

The model is considered there in the simplified form neglecting nonlinear 
terms in energy equation and with quasistationary form of momentum equation. 
The results concerning well-posedness of such a model and the convergence 
as relaxation and diffusive parameters tend to zero are proved in the above 
mentioned references. 

Finally, we mention recent references of Pagano, Alart and Maisonneuve 
(1998), Balandraud, Ernst and So6s (2000), Timofte and Timofte (2001 a, b), 
where some variants of Fremond's model have been investigated . These variants 
neglect strain gradient term in free energy ( 42), i.e., do not account for interfacial 
structure of phase boundaries. 

6. 3-D Fried-Gurtin model 

Fried and Gurtin (1994) have proposed a general theory of solid-solid phase 
transitions, based on a microforce balance, which describes deformational effects 
neglecting heat and mass transport. In this theory the order parameter is not 
identified with the strain tensor but represents a new quantity which can have 
different physical status. 

In case of diffusive transitions it describes atomic arrangements within unit 
cells of crystal lattice. For pure martensit ic transitions, in which the lattice 
undergoes a mechanical strain but there are no rearrangements of atoms within 
cells, the order parameter might be viewed as an artifice that yields a regular­
ization of mechanical equations. 

As discussed in Fried and Gurtin (1994), Fried and Grach (1997), such regu­
larization models interfacial structure of phase boundaries. Namely, it has been 
shown there that, granted appropriate scaling, the governing equations of the 
order-parameter-based theory are asymptotic to governing equations that arise 
in sharp-interface theory by Gurtin and Struthers (1990). 

The approach based on an order parameter has been applied also for diffusive 
_ ___ , _ ___ , _ __ ! ____ __ L ___ .~... _____ _ ~.~...: _ __ _ ~ - - __ , : .J _ tn ___ .... : __ 1nnD\ ___ .J -~ l:..J 1: - . . :...J - L.. --~ 
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transitions in the presence of heat conduction (Fried and Gurt in , 1993). 
We mention that the field equations generated by the Fried-Gurtin theory 

based on a microforce balance can be recovered by exploiting the entropy in­
equality with multipliers, see Pawlow (2000a) for examples and discussion. 

The Fried-Gurtin theory is based on the first order gradient free energy 

f = f(F, <p , \l<p) , (53) 

where 

F =I+ \lu 

is the deformation gradient, and <p = ( 'Pl , . .. , cpA) denotes vector-order param­
eter subject to constraint, for example, 

A 

'Pa E [0 , 1], L 'Pa = 1. (54) 
a=l 

The underlying laws of the theory are: linear momentum balance, angular mo­
mentum balance, microforce balance and the second principle of thermodynam­
ics in the form of a dissipation inequality. Assuming constitutive functions 
depending on (F, cp , \lcp , 'Pt) it is shown that the field equations compatible 
with the dissipation inequality have the form: 

QUtt = \1· f,p(F,<p, \lcp) + b, 

5j 
B(F, cp, \l<p, 'Pt)'Pt =- b<p (F, cp, \l<p) + 1 

=-J,"'(F, cp, \lcp) + \1 · f :vcp(F, <p, \lcp) + 1, 

(55) 

where b, 1 are external forces , and B is a matrix of kinetic coefficients Bij , 
consistent with the inequality 

(56) 

When order parameter has two components <p = ( cp1, 'P2) constrained via 'P l + 
'P2 = 1 then, writing cp = 'P2 = 1 - 'Pl and expressing free energy as a function 
ofF, cp, \l cp through 

](F, cp, \lcp) = f(F , cp1, 'P2, \lcp1, \lcp2), 

the system (55)2 can be reduced to one equation for cp with scalar kinetic co­
efficient /3 = /3(F,cp, \lcp,cpt) 2 0, provided that Bn = B22· In such a case 
/3 = B22 - B12· 

As a special case the Fried-Gurtin theory includes also the sit uation of 
small displacement gradient where the constitut ive functions depend on F only 
through the linearized strain e(u). We cite now some examples corresponding 
to such a case. A typical form of the free energy is 
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where the three terms on the right-hand side denote the strain energy, the 
exchange energy and the gradient energy. A standard exchange energy for 
system constrained by (54)2 is 

1 A 
g(cp) = 21/ II (1- 'Pa)2, 1/ > 0. 

a=l 

(58) 

A standard isotropic version of gradient energy is 

(59) 

where x is a positive coefficient. A relevant expression for the strain energy is 

A 

W(c, cp) = L 'Pa Wa(c), 
a=l 

where Wa(c) stands for the individual energy of phase a, given by 

1 
Wa(c) = Wa + 2(c- ca): (Aa(c- ca)). 

(60) 

(61) 

Here ca denotes the natural strain of phase a, Aa - the elasticity tensor of 
phase a, and Wa = Wa(Ea) -the minimal energy value. 

We quote also an alternate example of strain energy, originally proposed by 
Libman and R.oitburd (1987) for ordering transitions: 

1 
W(c, cp) = w(cp) + 

2
(c - e(cp)): (A(cp)(c- e(cp))), (62) 

where €( cp) is the natural strain corresponding to the order parameter cp, and 
w( cp) is the energy of homogeneous stress free phase. 

We present now the field equations corresponding to the free energy defined 
by (57)-(61) in case of two-component order parameter. Setting cp = 'P2 = 
1- cp1 , that is, identifying phase 1 with cp = 0 and phase 2 with cp = 1, we have 

Utt- \J. (1- cp)A1(c(u) - c1) + cpA2(c(u)- c2)) = b, (63) 

fJ(c(u),cp, \lcp,cpt)cpt - 2xf::.cp + Y,cp('P) + W2(c(u))- W1(c(u)) = "(, 

where wi, i = 1, 2, are given by (61), and 

Aic(u) = Ai(V· u)I + 2f..Lic(u), (64) 
1 ? 2 

g(cp) = 2vcp-(1- cp) . 

According to our knowledge the well-posedness of systems directly related to 
the Fried-Curtin model has not been studied mathematically. 

A snec:ific: one-dimensional version of the model with strain energy of the 
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point of view of numerical simulation and the analysis of equilibrium solutions. 
The free energy has been assumed there in the form: 

1 ') 
f(c:, rp, \lrp) = W(c, rp) + g(rp) + 2xl\lrpl-, (65) 

with g(rp) as in (64)2, and 

1 
W(c: ,rp) = 2J.L(c- krp) 2 , 

where x, v, J.L are positive material parameters, and k = 1//2 is a constant. In 
such a case the field equations read (b = 0, 'Y = 0) : 

Utt- J.L(Ux- krp)x = 0, (66) 

f3rpt- X'Pxx + vg,cp(rp)- J.Lk(ux- krp) = 0, 

where j3 is a positive constant, and g,cp(rp) = vrp(1 - rp)(1 - 2rp). 
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