Control and Cybernetics

vol. **32** (2003) No. 3

On σ -porous and Φ -angle-small sets in metric spaces

by

Stefan Rolewicz

Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland.

Abstract: It is shown that in metric spaces each (α, ϕ) -meagre set A is uniformly very porous and its index of uniform v-porosity is not smaller than $\frac{k-\alpha}{3k+\alpha}$, provided that ϕ is a strictly k-monotone family of Lipschitz functions and $\alpha < k$. The paper contains also conditions implying that a k-monotone family of Lipschitz functions is strictly k-monotone.

Keywords: prous set, k-monotone family of Lipschitz functions.

Let (X, d) be a metric space and let A be a set contained in $X, A \subset X$. For fixed $x \in X$ and R > 0 we denote by $\gamma(x, R, A)$ supremum of those r > 0 for which there is $z \in X$, such that

$$B(z,r) \subset B(x,R) \setminus A,\tag{1}$$

where $B(y, \varrho) = \{z \in A : d(z, y) \le \varrho\}$ is the closed ball with the center at y and with the radius ϱ . We say that the set A is porous, if for all $x \in A$

$$\limsup_{R\downarrow 0} \frac{\gamma(x, R, A)}{R} > 0.$$
⁽²⁾

We say that it is very porous, if for all $x \in A$

$$\liminf_{R\downarrow 0} \frac{\gamma(x, R, A)}{R} > 0, \tag{3}$$

(Zajiček, 1976, Argonsky and Brückner, 1985/6). If

$$p(A) = \inf_{x \in A} \limsup_{R \downarrow 0} \frac{\gamma(x, R, A)}{R} > 0, \qquad (2^u)$$

$$vp(A) = \inf_{x \in A} \liminf_{R \downarrow 0} \frac{\gamma(x, R, A)}{R} > 0.$$

$$(3^u)$$

we say that the set A is uniformly very porous. We shall call p(A) (resp. vp(A)) the index of uniform porosity (resp. uniform v-porosity) of the set A.

A set $A \subset X$ is called σ -porous, if it can be represented as a countable union of porous sets.

Porous and σ -porous sets in \mathbb{R}^n were considered earlier by several authors (see the survey paper of Zajiček, 1987/8).

Let \mathcal{L} be the space of all Lipschitzian functions defined on X. We define on \mathcal{L} a quasinorm

$$\|\phi\|_{L} = \sup_{\substack{x_{1}, x_{2} \in X, \\ x_{1} \neq x_{2}}} \frac{|\phi(x_{1}) - \phi(x_{2})|}{d(x_{1}, x_{2})}.$$
(4)

Observe that, if $\|\phi_1 - \phi_2\|_L = 0$, then the difference of ϕ_1 and ϕ_2 is a constant function, i.e., $\phi_1(x) = \phi_2(x) + c$. Thus, we consider the quotient space $\tilde{\mathcal{L}} = {}^{\mathcal{L}}_{/\mathbb{R}}$. The quasinorm $\|\phi\|_L$ induces the norm in the space $\tilde{\mathcal{L}}$. Since this will not lead to any misunderstanding, we shall also denote this norm by $\|\phi\|_L$.

Let Φ be a family of Lipschitz functions defined on X. The quotient space $\Phi^{+\mathbb{W}}_{\mathbb{R}}$ is a subset of the space $\tilde{\mathcal{L}}$. We shall denote it briefly $\frac{\Psi}{\mathbb{R}}$. It is a metric space with the distance $d_L(\phi, \psi) = \|\phi - \psi\|_L$.

We say that a Lipschitz function ϕ is k-monotone, $0 < k \leq 1$, if for all $x \in X$ and all t > 0, there is a $y \in X$ such that $0 < d_X(x, y) < t$ and

$$\phi(y) - \phi(x) \ge k \|\phi\|_L d_X(y, x). \tag{5}$$

If a family Φ consists of k-monotone functions we say that the family Φ is k-monotone.

By replacing in (5) the left-hand side of the inequality $\phi(y) - \phi(x)$ by its absolute value we obtain a notion of weak k-monotonicity. Namely, we say that a Lipschitz function ϕ is weakly k-monotone, $0 < k \leq 1$, if for all $x \in X$ and all t > 0, there is a $y \in X$ such that $0 < d_X(x, y) < t$ and

$$|\phi(y) - \phi(x)| \ge k \|\phi\|_L d_X(y, x).$$
^(5w)

If a family Φ consists of weakly k-monotone functions we say that the family Φ is weakly k-monotone. Of course, if a function ϕ is k-monotone, then it is also weakly k-monotone. The converse is not true. For example, if X is compact and ϕ is a continuous function, then it is never k-monotone. But it may happen that ϕ is weakly k-monotone.

It is obvious that the linear continuous functionals over a Banach space X are k-monotone for every 0 < k < 1. If the space X is reflexive they are

Write for any $\phi \in \Phi$, $0 < \alpha < 1$, $x \in X$ (Rolewicz, 1994, 1995, see also Preiss and Zajiček, 1984, for linear continuous functionals ϕ)

$$K(\phi, \alpha, x) = \{ y \in X : \phi(y) - \phi(x) \ge \alpha \|\phi\|_L d(y, x) \}.$$
(6)

The set $K(\phi, \alpha, x)$ will be called an α -cone with the vertex at x and the direction ϕ . Of course, it may happen that $K(\phi, \alpha, x) = \{x\}$. However, if the family Φ is k-monotone and $\alpha < k$, then it is obvious that the set $K(\phi, \alpha, x)$ has the nonempty interior and, even more,

$$x \in \overline{\mathrm{Int}K(\phi,\alpha,x)}.\tag{7}$$

A set $M \subset X$ is said to be (α, Φ) -meagre if for every $x \in M$ and arbitrary $\varepsilon > 0$ there are $z \in X$, $d(x, z) < \varepsilon$ and $\phi \in \Phi$ such that

$$M \cap \text{Int } K(\phi, \alpha, z) = \emptyset.$$
(8)

The arbitrariness of ε and (2) imply that an (α, Φ) -meagre set M is nowhere dense.

A set $M \subset X$ is called Φ -angle-small if there is α , $0 < \alpha < 1$, such that the set M is a union of a countable number of (α, Φ) -meagre sets $M_n, M = \bigcup_{n=1}^{\infty} M_n$. Of course, every Φ -angle-small set M is of the first Baire category.

 π course, every φ -angle-sman set m is of the first barre category.

We recall that a real valued function f defined on X is called Φ -convex if

$$f(x) = \sup\{\phi(x) + c : \phi \in \Phi, c \in \mathbb{R}, \phi(\cdot) + c \le f(\cdot)\},\tag{9}$$

where $\phi(\cdot) + c \leq f(\cdot)$ means that $\phi(y) + c \leq f(y)$ for all $y \in X$. A function $\phi \in \Phi$ will be called a Φ -subgradient of the function f at a point x_0 if

$$f(x) - f(x_0) \ge \phi(x) - \phi(x_0)$$
(10)

for all $x \in X$.

We shall say that a real-valued function f defined on a metric space (X, d) is Fréchet Φ -differentiable at a point x_0 if there are a function $\gamma(t)$ mapping the interval $[0, +\infty)$ into the interval $[0, +\infty]$ such that

$$\lim_{t\downarrow 0}\frac{\gamma(t)}{t}=0$$

and a function $\phi_{x_0} \in \Phi$ such that

$$|[f(x) - f(x_0)] - [\phi(x) - \phi(x_0)]| \le \gamma(d(x, x_0)).$$
(11)

The function ϕ will be called a *Fréchet* Φ -gradient of the function f at the point x_0 .

THEOREM 1 (Rolewicz, 2002). Let X be a metric space of the second Baire category (in particular, let X be a complete metric space). Let a family Φ be weakly k-monotone and let it be an additive group. Assume that $\frac{\Psi}{R}$ is separable in the Lipschitz norm $\|\phi\|_{L}$.

If f is a Φ -convex function having at each point a Φ -subgradient, then there is a Φ -angle-small set A such that the function f is Fréchet Φ -differentiable outside the set A. Moreover, the Fréchet Φ -subgradient is unique and it is continuous in the metric d_L on the set $X \setminus A$.

Let (X, d) be a metric space. Let Φ be a family of real-valued functions defined on X. Let $\alpha(t)$ be a function mapping the interval $[0, +\infty)$ into the interval $[0, +\infty]$ such that $\alpha(0) = 0$ and

$$\lim_{t \downarrow 0} \frac{\alpha(t)}{t} = 0. \tag{12}$$

A function $\phi(x) \in \Phi$ is called an $\alpha(\cdot)$ - Φ -subgradient of the function f at a point x_0 if

$$f(x) - f(x_0) \ge \phi(x) - \phi(x_0) - \alpha(d(x, x_0)).$$
(13)

If a real-valued function f has a nonempty $\alpha(\cdot)$ - Φ -subdifferential $\partial_{\Phi}^{\alpha} f|_{x}$ for all $x \in X$ we say that the function f is $\alpha(\cdot)$ - Φ -subdifferentiable.

Now we shall extend the definition of α -cone with the vertex at x and the direction ϕ . Namely the set

$$K(\phi, \alpha, x, \varrho) = K(\phi, \alpha, x) \cap \{y : d(x, y) < \varrho\}$$
(14)

will be called an (α, ϱ) -cone with the vertex at x and the direction ϕ .

A set $M \subset X$ is said to be (α, ϱ, Φ) -meagre if for every $x \in M$ and arbitrary $\varepsilon > 0$ there are $z \in X$, $d(x, z) < \varepsilon$ and $\phi \in \Phi$ such that

$$M \cap \text{Int } K(\phi, \alpha, z, \varrho) = \emptyset.$$
(15)

The arbitrariness of ε and (15) imply that an (α, ϱ, Φ) -meagre set M is nowhere dense. We say that $M \subset X$ is weakly Φ -angle-small if there are α , $0 < \alpha < 1$, and a sequence $\{\varrho_n\}$ of positive numbers such that M can be represented as a union of a countable number of $(\alpha, \varrho_n, \Phi)$ -meagre sets M_n ,

$$M = \bigcup_{n=1}^{\infty} M_n.$$
(16)

THEOREM 2 (Rolewicz, 2002). Let X be a metric space of the second Baire category (in particular, let X be a complete metric space). Let Φ be weakly k-monotone and let it be an additive group. Assume that $\frac{\Phi}{R}$ is separable in the

Let f be a continuous $\alpha(\cdot)$ - Φ -subdifferentiable function. Then there is a weakly Φ -angle-small set A such that outside of A the function f is Fréchet Φ -differentiable.

Moreover, the Fréchet Φ -subgradient is unique and it is continuous on $X \setminus A$ in the metric d_L .

Thus, we have a natural question of relations between porous sets, Φ -anglesmall sets and weakly Φ -angle-small sets. It is obvious that each (α, Φ) -meagre set is simultaneously (α, ϱ, Φ) -meagre for all $\varrho > 0$. As a consequence we obtain that each Φ -angle-small set is also a weakly Φ -angle-small set. Rolewicz (1999) provided an example of an (α, ϱ, Φ) -meagre set, which is not (α_0, Φ) -meagre for any $\alpha_0 > 0$. But then, Rolewicz (2002) shows the following result:

PROPOSITION 1 Let X be a separable metric space. Let Φ be a fixed family of functions. Then each weakly Φ -angle-small set M is Φ -angle-small.

It is easy to give an example of a very porous set which is not Φ -angle-small.

EXAMPLE 1

Let X = [0, 1]. Then the classical Cantor set $C \subset X$ is obviously very porous since in this case

$$\liminf_{R \downarrow 0} \frac{\gamma(x, R, C)}{R} = \frac{1}{6} .$$
 (17)

On the other hand it is not Φ -angle-small for any k-monotone family Φ . Indeed, suppose that it is Φ -angle-small. It means that $C = \bigcup_{n=1}^{\infty} C_n$, where C_n are (α, Φ) -meagre. Since the set C is uncountable, at least one among the sets C_n , say C_{n_0} , is uncountable, too. Let there be three points $a, b, c \in C_{n_0}, a < b < c$. For any k-monotone family Φ the (α, Φ) -cone with the vertex z is either of the form [0, z) or (z, 1]. Thus for $\varepsilon < \min[(c - b), (b - a)]$ there is no cone with a vertex at $z \in C_{n_0}$ such that $|z - b| < \varepsilon$ disjoint with C_{n_0} and we obtain a contradiction.

It is not clear if in general every Φ -angle-small set is porous. We can prove it only under certain assumptions.

We say that a Lipschitz function ϕ is strictly k-monotone if for all $x_0 \in X$, there are $\varepsilon_0 > 0$ and $R_{\phi,x_0,\varepsilon_0}$ such that for all $t, 0 < t < R_{\phi,x_0,\varepsilon_0}$, and for all $x \in X$ such that $d_X(x,x_0) < \varepsilon_0$ there is a $y \in X$ such that $d_X(x,y) = t$ and

$$\phi(y) - \phi(x) \ge k \|\phi\|_L d(y, x). \tag{5}$$

If a family Φ consists of strictly k-monotone Lipschitz functions we say that the family Φ is strictly k-monotone.

It is obvious that the linear continuous functionals over a Banach space X are strictly k-monotone for every 0 < k < 1. If the space X is reflexive they are

PROPOSITION 2 Let X be a metric space. Let Φ be a strictly k-monotone family of Lipschitz functions. Let $\alpha < k$. Then each (α, Φ) -meagre set A is uniformly very porous and its index of uniform v-porosity is not smaller than $\frac{k-\alpha}{3k+\alpha}$.

Proof. Let $\varepsilon_0 \ge \varepsilon > 0$. Since A is (α, Φ) -meagre set for every $x \in A$ there are $z \in X$, $d(x, z) < \varepsilon$ and $\phi \in \Phi$ such that

$$M \cap \text{Int } K(\phi, \alpha, z) = \emptyset.$$
(15)

The function ϕ is strictly k-monotone. Thus, there is $x_{\varepsilon} \in X$ such that $d(x_{\varepsilon}, z) = \varepsilon$ and

$$\phi(x_{\varepsilon}) - \phi(z) \ge k \|\phi\|_{L} \varepsilon.$$
(5')

Let $r = \varepsilon \frac{k-\alpha}{k+\alpha}$ and let $y \in B(x_{\varepsilon}, r) = \{y \in X : d(y, x_{\varepsilon}) \le r\}$. Then

 $\phi(y) \ge \phi(x_{\varepsilon}) - r \|\phi\|_L.$

Thus

$$\phi(y) - \phi(z) \ge \phi(x_{\varepsilon}) - \phi(z) - r \|\phi\|_{L} \ge \|\phi\|_{L} (k\varepsilon - r).$$

On the other hand

 $d(y,z) \le d(x_{\varepsilon},z) + r = \varepsilon + r.$

By the definition of y, y belongs to $K(\phi, \alpha, z)$, provided

$$\|\phi\|_{L}(k\varepsilon - r) \ge \alpha \|\phi\|_{L}(\varepsilon + r).$$
(18)

Dividing by $\|\phi\|_L$ we get that (18) is equivalent to

$$(k\varepsilon - r) \ge \alpha(\varepsilon + r),$$
 (19)

which holds because of the definition of r. Thus, $B(x_{\varepsilon}, r) \subset K(\phi, \alpha, z)$.

Since $K(\phi, \alpha, z)$ is disjoint with A, the ball $B(x_{\varepsilon}, r)$ is also disjoint with A. Observe that this ball is contained in the ball B(x, R), where $R = 2\varepsilon + r$. Therefore

$$\liminf_{R\downarrow 0} \frac{\gamma(x, R, M)}{R} \ge \frac{r}{R} \ge \frac{\varepsilon \frac{k-\alpha}{k+\alpha}}{2\varepsilon + \varepsilon \frac{k-\alpha}{k+\alpha}} = \frac{k-\alpha}{3(k+\alpha)}.$$
 (20)

It is obvious that if a function ϕ is strictly k-monotone, then it is also k - monotone.

PROBLEM 1 Suppose that a function ϕ is k-monotone. Is ϕ also strictly k-

We know the positive answer to this question in a very specific cases.

PROPOSITION 3 Each k-monotone function ϕ on $(a, b) \subset \mathbb{R}$ is strictly k-monotone.

Proof. Since ϕ is a Lipschitz function, it is differentiable almost everywhere. The fact that Φ is k-monotone implies that the function ϕ has at most one local minimum. Thus, we have the following three possibilities

- (i) $\phi'(x) \ge k$ at each point of differentiability of the function ϕ
- (ii) $\phi'(x) \leq -k$ at each point of differentiability of the function ϕ
- (iii) there is a point c, a < c < b such that at each point x of differentiability of the $\phi(x)$ function

$$\phi'(x) \begin{cases} \leq -k \text{ if } a < x < c \\ \geq k \text{ if } c < x < b \end{cases}.$$

It is not difficult to check that in each of those cases $\phi(x)$ is strictly k-monotone.

PROPOSITION 4 Let X be an open set in \mathbb{R}^n . Each k-monotone continuously differentiable function ϕ defined on X is strictly $(k - \varepsilon)$ -monotone for arbitrary $\varepsilon > 0$.

Proof. Let K be an arbitrary compact subset of X. Let $S = \{x : \|x\| = 1\}$ be the unit sphere in X and let $r < \inf\{d(x, y) : x \in K, y \notin X\}$. We consider on the set $\mathcal{K}_0 = K \times S \times (0, r]$ the following function $F_{\phi}(x, h, t) = \frac{\phi(x+th)-\phi(x)}{t}$. Since ϕ is continuously differentiable, the function F_{ϕ} can be extended in a continuous way on \mathcal{K} being the completion of the set \mathcal{K}_0 . The set \mathcal{K} is compact. Thus, the function F_{ϕ} is uniformly continuous on \mathcal{K} . Since ϕ is continuously differentiable and k-monotone, for every $x \in K$ there is h_x such that $F(x, h_x, 0) \ge k \|\phi\|_L$. The function F_{ϕ} is uniformly continuous on \mathcal{K} , thus there is $r_{\phi} > 0$ such that for $0 < t < r_{\phi} F_{\phi}(x, h_x, t) \ge (k - \varepsilon) \|\phi\|_L$. Then for arbitrary $\varepsilon > 0$ ϕ is strictly $(k - \varepsilon)$ -monotone.

Proposition 4 can be extended to infinite dimensional Banach spaces, under stronger assumptions about differentiability.

For this purpose we shall introduce a notion of uniform Fréchet differentiable functions. We shall say that a real-valued function f defined on a metric space (X, d) is uniformly Fréchet Φ -differentiable if there is a function $\gamma(t)$ mapping the interval $[0, +\infty)$ into the interval $[0, +\infty]$ such that

$$\lim \frac{\gamma(t)}{t} = 0$$

and for arbitrary $x_0 \in X$ there is a function $\phi_{x_0} \in \Phi$ such that

$$|[f(x) - f(x_0)] - [\phi(x) - \phi(x_0)]| \le \gamma(d(x, x_0)).$$

PROPOSITION 5 Let X be an open set in a Banach space E. Each k-monotone uniformly Fréchet differentiable function ϕ defined on X is strictly $(k - \varepsilon)$ -

1

Proof. Let K be an arbitrary closed set in X such that $d = \inf\{d(x,y) : x \in K, y \notin X\} > 0$. Let $S = \{x : ||x|| = 1\}$ be the unit sphere in X and let r < d. We consider on the set $\mathcal{K}_0 = K \times S \times (0, r]$ the following function $F_{\phi}(x, h, t) = \frac{\phi(x+th)-\phi(x)}{t}$. Since ϕ is continuously differentiable and k-monotone, for every $x \in K$ there is h_x such that $F(x, h_x, 0) \ge k \|\phi\|_L$. Since the function ϕ is uniformly Fréchet differentiable, there is $r_{\phi} > 0$ such that for $0 < t < r_{\phi}$ $F_{\phi}(x, h_x, t) \ge (k - \varepsilon) \|\phi\|_L$. Then, for arbitrary $\varepsilon > 0$ ϕ is strictly $(k - \varepsilon)$ -monotone.

Propositions 4 and 5 can be extended to weakly k-monotone functions. This is the consequence of the following obvious

PROPOSITION 6 Let X be an open set in a Banach space E. Let ϕ be a weakly k-monotone Gateaux differentiable function. Then for arbitrary $\varepsilon > 0 \phi$ is $(k - \varepsilon)$ -monotone.

Proof. Since ϕ is weakly k-monotone Gateaux differentiable function, then for each $x \in X$ and each $\varepsilon > 0$ there is h_x such that

$$|\partial^G \phi|_x(h_x)| \ge (k - \frac{\varepsilon}{2}) ||h_x||, \tag{21}$$

where $\partial^G \phi|_x$ denote the Gateaux differential of function ϕ at point x. Thus either

$$\partial^G \phi|_x(h_x) \ge (k - \frac{\varepsilon}{2}) \|h_x\|,\tag{21}$$

or

$$\partial^G \phi|_x(h_x) \le -(k - \frac{\varepsilon}{2}) \|h_x\|.$$
(22)

In the second case, by replacing h_x by $-h_x$ we obtain

$$\partial^G \phi|_x(-h_x) \ge (k - \frac{\varepsilon}{2}) \| - h_x \|.$$
⁽²³⁾

Then, by the definition of the Gateaux differential for each $x \in X$ there is $\delta_x > 0$ and $y \in X$ such that $||x - y|| < \delta_x$ and

$$\phi(y) - \phi(x) \ge (k - \varepsilon) \|y - x\|.$$
(24)

As an obvious consequence of Propositions 4, 5, 6 we get

PROPOSITION 4^w Let X be an open set in \mathbb{R}^n . Each weakly k-monotone continuously differentiable function defined on X for every ε , $0 < \varepsilon < \frac{k}{2}$, is strictly $(k - 2\varepsilon)$ -monotone.

PROPOSITION 5^w Let X be an open set in a Banach space E. Each weakly k-monotone uniformly Fréchet differentiable function defined on X for every

We can generalize strict k-monotonicity to the case of weak k-monotonicity. Namely, we say a Lipschitz function ϕ is strict weakly k-monotone if for all $x_0 \in X$, there are $\varepsilon_0 > 0$ and $R_{\phi,x_0,\varepsilon}$ such that for all $t, 0 < t < R_{\phi,x_0}$, all $x \in X$ such that $d(x,x_0) < \varepsilon_0$, there is a $y \in X$ such that d(x,y) = t and

$$|\phi(y) - \phi(x)| \ge k \|\phi\|_L d(y, x).$$
(21)

Propositions 4^w and 5^w give us a partial positive answer of following problem

PROBLEM 1^w Suppose that a Lipschitz function ϕ is weakly k-monotone. Is ϕ also strict weakly k-monotone?

In general the answer is negative as follows from

EXAMPLE 2

Let X = [0, 1]. Let

$$\phi(x) = \inf_n 4|x - \frac{1}{2^n}|.$$

It is easy to see that ϕ is a Lipschitz function with constant 4. Take x = 0. By simple calculation we obtain that ϕ is weakly $\frac{1}{3}$ -monotone, but it is not strict weakly k-monotone for any k > 0. Of course, on the set $X' = (0, 1] \phi$ is strict weakly k-monotone for arbitrary k, $0 < k \leq 1$.

The notion of strict k-monotonicity is similar to the notion of κ -super-metric coupling introduced by Penot (2003). We recall the notion of coupling. Let (X, d_X) and (Y, d_Y) be two metric spaces. By coupling we shall understand a function $c(x, y) : X \times Y \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$.

Let $\kappa > 0$. We say that a coupling c(x, y) is κ -super-metric at $(x_0, y_0) \in X \times Y$ if $c(x_0, y_0) \in \mathbb{R}$ and for any r > 0

$$\sup_{\{y:d_{Y}(y,y_{0})\leq r\}} \left(c(x,y) - c(x_{0},y) \right)$$

$$\geq c(x,y_{0}) - c(x_{0},y_{0}) + \kappa r d_{X}(x,x_{0}) d_{Y}(y,y_{0}).$$
(25)

We say that c(x, y) is κ -super-metric coupling if it is κ -super-metric coupling at (x_0, y_0) for all $(x_0, y_0) \in X \times Y$. By denoting $\phi_1(y) = c(x, y)$ and $\phi_0(y) = c(x_0, y)$ we obtain that c(x, y) is κ -super-metric coupling if and only if the difference $\phi(y) = \phi_1(y) - \phi_0(y)$ for any r > 0 satisfies the following inequality

$$\sup_{\{y:d_Y(y,y_0) \le r\}} \phi(y) \ge \phi(y_0) + \kappa r d_X(x,x_0) d_Y(y,y_0).$$
(26)

Now we shall suppose that $\Phi = \{c(x, \cdot) : x \in X\}$ is an additive group consisting of Lipschitz functions and $d_X(x, x_0) = \|\phi_1 - \phi_0\|_L$. Then for every $\varepsilon > 0$ and

$$\phi(y) - \phi(y_0) \ge (\kappa - \varepsilon) \|\phi\|_L d_Y(y, y_0). \tag{5}_c$$

In other words Φ is $(\kappa - \varepsilon)$ -monotone.

In the considered case the essential difference between κ -super-metric coupling and $(\kappa - \varepsilon)$ -monotonicity is as follous. In the definition of κ -super-metric coupling inequality (25) holds for all r > 0 and in the definition of $(\kappa - \varepsilon)$ -monotone functions it holds only for sufficiently small t, depending on ϕ and x. Indeed, κ -super-metric coupling implies that the function $\phi_1(y) - \phi_0(y)$, where $\phi_1(y) = c(x, y)$ and $\phi_0(y) = c(x_0, y)$, is unbounded. Thus, in the case when it is Lipschitz the metric space Y is unbounded, too. Observe, that if in the definition of the κ -super-metric coupling we replace the condition that (5) holds, for all r > 0 by the condition that there is R, which does not depend on x such that for $0 < r \le R$ (5) holds then by triangle inequality we obtain also that (5) holds for arbitrary r > 0.

The author wants to express his thanks to the reviewer. His valuable remarks essentially helped to improve the presentation of the paper.

References

- ARGONSKY, S., and BRÜCKNER, A. (1985/6)Local compactness and porosity in metric spaces. *Real Exchange Analysis* 11, 365 - 379.
- PALLASCHKE, D., and ROLEWICZ, S. (1997) Foundation of Mathematical Optimization. Mathematics and its Applications 388. Kluwer Academic Publishers, Dordrecht/Boston/London.
- PENOT, J-P. (2003) Rotundity, smoothness and duality. Control and Cybernetics, 32, 4.
- PREISS, D., and ZAJÍČEK, L. (1984a) Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions. Proc. 11-th Winter School, Suppl. Rend. Circ. Mat di Palermo. ser II, 3, 219 - 223.
- PREISS, D., and ZAJÍČEK, L. (1984b) Fréchet differentiation of convex functions in a Banach space with a separable dual. Proc. Amer. Math. Soc. 91, 202 - 204.
- ROLEWICZ, S. (1994) On Mazur Theorem for Lipschitz functions. Arch. der Math., 63, 535 - 540.
- ROLEWICZ, S. (1995) On Φ-differentiability of functions over metric spaces. Topological Methods of Non-linear Analysis 5, 229 - 236.
- ROLEWICZ, S. (1999) On $\alpha(\cdot)$ -monotone multifunction and differentiability of γ -paraconvex functions. *Stud. Math.* 133, 29 37.
- ROLEWICZ, S. (2002) On $\alpha(\cdot)$ -monotone multifunctions and differentiability of strongly $\alpha(\cdot)$ -paraconvex functions. Control and Cybernetics **31**, 3, 1-19.
- ROLEWICZ, S. (2003) On uniform Φ -subdifferentials (in preparation).
- ZAJÍČEK, L. (1976) Sets of σ -porosity and sets of σ -porosity (q). Casopis Pešt

- ZAJÍČEK, L. (1983) Differentiability of distance functions and points of multivaluedness of the metric projection in Banach spaces. *Čechoslovak Math.* Jour. 33(108), 292 - 308.
- ZAJÍČEK, L. (1984) A generalization of an Ekeland-Lebourg theorem and differentiability of distance functions. Proc. 11-th Winter School, Suppl. Rend. Circ. Mat di Palermo ser II, 3, 403 - 410.
- ZAJIČEK, L. (1987/8) Porosity and σ -porosity. Real Exchange Analysis 13, 314 350.