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Abstract: It is shown that in metric spaces each (a, ¢)-meagre 
set A is uniformly very porous and its index of uniform v-porosity 
is not smaller than 3kk+C:,, provided that ¢ is a strictly k-monotone 
family of Lipschitz functions and a < k. The paper contains also 
conditions implying that a k-monotone family of Lipschitz functions 
is strictly k-monotone. 
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Let (X, d) be a metric space and let A be a set contained in X, A C X. For 
fixed x E X and R > 0 we denote by ')'(x, R, A) supremum of those r > 0 for 
which there is z E X, such that 

B(z, r) c B(x, R) \A, (1) 

where B(y, Q) = {z E A: d(z, y) :S Q} is the closed ball with the center at y and 
with the radius [!. We say that the set A is porous, if for all x E A 

. f'(x, R, A) 
l!msup > 0. 

RlO R 

We say that it is very porous, if for all x E A 

l. . f f'(X, R, A) O 
1mm R > , 

RlO 

(Zajicek, 1976, Argonsky and Bruckner, 1985/6). If 

(A) . f 
1
. f'(x, R, A) 

p = m unsup · > 0, 
xEA RlO R 

(2) 

(3) 

(2") 
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(A) . f I. . f 'Y(x, R, A) vp = m unm > 0. 
xEA RlO R 

we say that the set A is uniformly very porous. We shall call p (A) (resp. 
vp (A)) the index of uniform porosity (resp. uniform v-porosity) of the set A. 

A set A C X is called O"-porous, if it can be represented as a countable union 
of porous sets. 

Porous and O"-porous sets in JRn were considered earlier by several authors 
(see the survey paper of Zajicek, 1987 /8). 

Let £ be the space of all Lipschitzian functions defined on X. We define on 
£a quasinorm 

11¢11£ = sup 
x1 ,:~: 2E..-\'", 

:1:1 =;ex2 

l¢(xl) - ¢(x2)l 

d(x1,x2) 
(4) 

Observe that, if ll</>1 - ¢2IIL = 0, then the difference of ¢1 and ¢2 is a constant 
function, i.e., ¢1 ( x) = ¢2 ( x) + c. Thus, we consider the quotient space .C =.c k. 
The quasinorm II<PIIL induces the norm in the space .C. Since this will not lead 
to any misunderstanding, we shall also denote this norm by II<PIIL· 

Let <I> be a family of Lipschitz functions defined on X. The quotient space 
'l>+~ is a subset of the space .C. We shall denote it briefly\· It is a metric space 
with the distance dL(¢, ·ljJ) = II¢ - ·1/J IIL· 

We say that a Lipschitz function ¢is k-monotone, 0 < k :::; 1, if for all x E X 
and all t > 0, there is ayE X such that 0 < dx(x,y) < t and 

¢(y)- ¢(x) 2:: kii¢11Ldx(y, x) . (5) 

If a family <I> consists of k-monotone functions we say that the family <I> is 
k-monotone. 

By replacing in (5) the left-hand side of the inequality ¢(y) - ¢(x) by its 
absolute value we obtain a notion of weak k-monotonicity. Namely, we say that 
a Lipschitz function ¢ is weakly k-monotone, 0 < k :::; 1, if for all x E X and 
all t > 0, there is ayE X such that 0 < dx(x,y) < t and 

l¢(y)- ¢(x)l 2:: kii<PII Ldx(y,x). 

If a family <I> consists of weakly k-monotone functions we say that the family 
<I> is weakly k-monotone. Of course, if a function ¢ is k-monotone, then it is also 
weakly k-monotone. The converse is not true. For example, if X is compact 
and ¢ is a continuous function, then it is never k-monotone. But it may happen 
that ¢ is weakly k-monotone. 

It is obvious that the linear continuous functionals over a Banach space X 
are k-monotone for every 0 < k < 1. If the space X is reflexive they are 
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Write for any ¢ E <I>, 0 < a < 1, x E X (Rolewicz, 1994, 1995, see also 
Preiss and Zajicek, 1984, for linear continuous functionals ¢) 

K(¢, a, x) = {y EX: ¢(y)- ¢(x) 2': aii¢11Ld(y, x)}. (6) 

The set K(¢, a, x) will be called an a-cone with the vertex a.t x a.nd the direction 
¢.Of course, it may happen that K(¢,a,x) = {x}. However, if the family <I> 
is k-monotone and a < k, then it is obvious that the set K(¢, a, x) has the 
nonempty interior and, even more, 

x E Inti<(¢, a, x). (7) 

A set M C X is said to be (a, <I>)-mea.gre if for every x E M and arbitrary 
E > 0 there are z EX, d(x, z) < E and ¢ E <I> such that 

M nlnt K(¢,a, z ) = 0. (8) 

The arbitrariness of E and (2) imply that an (a, <I>)-meagre set M is nowhere 
dense. 

A set M C X is called <I>-a.ngle-small if there is a, 0 < a < 1, such that the 
00 

set M is a union of a countable number of (a, <I>)-meagre sets Mn, M = U Mn· 
n = l 

Of course, every <I>-angle-small set M is of the first Baire category. 
We recall that a real valued function f defined on X is called <I>-convex if 

f(x) = sup{¢(x) + c: ¢ E <I>, c E ~, ¢(-) + c ~ f(-)}, (9) 

where¢(-)+ c ~ f(-) means that ¢(y) + c ~ f(y) for all y E X. A function 
¢ E <I> will be called a <I>-subgra.dient of the function f at a point xo if 

f(x)- f(xo) 2': ¢(x)- ¢(xo) (10) 

for all x EX. 
We shall say that a real-valued function f defined on a metric space (X , d) 

is Fn§chet <I>-differentiable at a point x0 if there are a function 1( t) mapping the 
interval [0, +oo) into the interval [0, + oo] such that 

lim r(t) = 0 
tlO t 

and a function cf>xo E <I> such that 

l[f(x)- f(xo)]- [¢(x)- ¢(xo)]l ~ r(d(x,xo)). (ll) 

The function ¢ will be called a Frechet <I>-gradient of the function f at the point 
xo. 
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THEOREM 1 (Rolewicz, 2002). Let X be a metric space of the second Baire 
category (in particular, let X be a complete metric space). Let a family <I> be 
weakly k-monotone and let it be an additive group. Assume that % is separable 
in the Lipschitz norm 11¢11£ · 

Iff is a <I>-convex function having at each point a <I>-subgradient, then there is 
a if>-angle-small set A such that the func tion f is Frechet if>-differentiable outside 
the set A. Moreover, the Frechet <I>-subgradient is unique and it is contin·uous 
in the metric dL on the set X\ A. 

Let (X, d) be a metric space. Let <I> be a family of real-valued functions 
defined on X. Let o:(t) be a function mapping the interval [0, +oo) into the 
interval [0, +oo] such that o:(O) = 0 and 

lim o:(t) = 0. 
t10 t 

(12) 

A function ¢(x) E if> is called an o: (-)-if>-subgradient of the function fat a point 
x 0 if 

f(x)- f(xo) 2:: ¢ (x)- ¢(xo)- o:(d(x, xo)) . (13) 

If a real-valued function f has a nonempty o:(·)-<I>-subdifferential ogflx for all 
x E X we say that the function f is o:( · )-<I>-subdifferentiable. 

Now we shall extend the definition of o:-cone with the vertex at x and the 
direction ¢. Namely the set 

K(¢, o:, x, Q) = K(¢, o:, x) n {y: d(x, y) < Q} (14) 

will be called an ( o:, Q )-cone with the vertex at x and the direction ¢ . 
A set M C X is said to be ( o:, Q, <I> )-meagre if for every x E M and arbitrary 

c: > 0 there are z EX, d(x, z) < c: and ¢ E if> such that 

M n Int K(¢, o:, z, Q) = 0. (15) 

The arbitrariness of c: and (15) imply that an (o:, Q, <I>)-meagre set M is 
nowhere dense. We say that M C X is weakly if>-angle-small if there are o:, 
0 < o: < 1, and a sequence {f2n} of positive numbers such that M can be 
represented as a union of a countable number of (o:, f2n, if>)-meagre sets Mn, 

00 

M= UMn. (16) 
n=l 

THEOREM 2 (Rolewicz, 2002). Let X be a metric space of the second Baire 
category (in particular, let X be a complete metric space). Let <I> be weakly k
monotone and l~t it be an additive group. Assume that % is separable in the 
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Let f be a continuous o{)-CI!-s·ubdifferentiable function . Then there is a 
weakly CI!-angle-small set A such that outside of A the function f is Frechet 
ii! -differentiable. 

Moreover, the Frechet CI!-subgmdient is unique and it is continuous on X\ A 
in the metric dL. 

Thus, we have a natural question of relations between porous sets, CI!-angle
small sets and weakly CI!-angle-small sets. It is obvious that each (a, ii! )-meagre 
set is simultaneously (a,(! , ii! )-meagre for all (! > 0. As a consequence we obtain 
that each CI!-angle-small set is also a weakly CI!-angle-small set. Rolewicz (1999) 
provided an example of an (a ,(!, CI!)-meagre set, which is not (a0 , CI!)-meagre for 
any ao > 0. But then, Rolewicz (2002) shows the following result: 

PROPOSITION 1 Let X be a separable metric space. Let ii! be a fixed family of 
functions. Then each weakly CI!-angle-small set M is CI!-angle-small. 

It is easy to give an example of a very porous set which is not CI!-angle-small. 

EXAMPLE 1 

Let X = [0, 1]. Then the classical Cantor set C C X is obviously very porous 
since in this case 

l 
. . f'Y(x,R,C) 1 
IIJNcP R = 6 . (17) 

On the other hand it is not CJ!-angle-small for any k-monotone family ii! . 
Indeed, suppose that it is CI!-angle-small. It means that C = U~= 1 Cn, where 
Cn are (a, ii! )-meagre. Since the set C is uncountable, at least one among the 
sets Cn , say Cno, is uncountable, too. Let there be three points a, b, c E Cno, a < 
b < c. For any k-monotone family ii! the (a, ii! )-cone with the vertex z is either 
of the form [0, z) or (z , 1]. Thus for c < min[(c- b), (b - a)] there is no cone 
with a vertex at z E Cn0 such that lz - bl < c disjoint with Cno and we obtain 
a contradiction. 

It is not clear if in general every CI!-angle-small set is porous. We can prove 
it only under certain assumptions. 

We say that a Lipschitz function ¢ is strictly k-monotone if for all x0 E X, 
there are co > 0 and R¢,xo,co such that for all t, 0 < t < R¢,xo ,co , and for all 
x EX such that dx(x,xo) <co there is ayE X such that dx(x,y) = t and 

¢(y)- ¢(x);::: kii¢11Ld(y,x). (5) 

If a family ii! consists of strictly k-monotone Lipschitz functions we say that the 
family ii! is strictly k-monotone. 

It is obvious that the linear continuous functionals over a Banach space X 
are strictly k-monotone for every 0 < k < 1. If the space X is reflexive they are 

- . 
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PROPOSITION 2 Let X be a metric space. Let 1> be a strictly k-monotone family 
of Lipschitz functions. Let a < k. Then each (a, 1>) -meagre set A is uniformly 
very porous and its index of ·uniform v-porosity is not smaller than 3~+:. 

Proof. Let co 2: c: > 0. Since A is (a, <D)-meagre set for every x E A t here are 
z E X, d(x,z) < c: and¢ E <I> such that 

M n Int K(¢, a, z) = 0. (15) 

The function ¢ is strictly k-monotone. Thus, there is x" E X such that 
d(x", z ) = c and 

Let r = c:~+~ and let y E B(xo:, r) = {y EX : d(y, xo:)::; r}. Then 

¢(y) 2: ¢(xo:)- rll¢11£· 

Thus 

¢(y)- ¢(z) 2: ¢(x")- ¢(z) - rll¢11£ 2: II¢11L(kc:- r). 

On the other hand 

d(y, z) :S d(xo:, z) + r = c + r. 

By the definition of y, y belongs to K(¢, a, z ), provided 

II¢11L(kc:- r) 2: aii¢11L(c: + T). 

Dividing by 11¢11£ we get that (18) is equivalent to 

(kc:- r) 2: a(c: + r), 

which holds because of the definition of T. Thus, B(xo;, T) C K(¢, a, z). 

(18) 

(19) 

Since K(¢, a, z) is disjoint with A, the ball B(xo:, r) is also disjoint with 
A. Observe that this ball is contained in the ball B(x, R), where R = 2c: + r. 
Therefore 

k-o; 

l .. f'Y(x,R,M) > r· > Ek+a Imm -
RLO R - R - 2c: + c: kk·-a 

·+a 

k-a 
3(k +a)' 

(20) 

• 
It is obvious that if a function ¢ is strictly k-monotone, then it is also k -

monotone. 

PROBLEM 1 Suppose that a function ¢ is k-monotone. Is ¢ also strictly k-
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V\Te know the positive answer to this question in a very specific cases. 

PROPOSITION 3 Each k-monotone function¢ on (a, b) C JR. is strictly k-monotone. 

Proof. Since ¢ is a Lipschitz function, it is differentiable almost everywhere. 
The fact that <I? is k-monotone implies that the function¢ has at most one local 
minimum. Thus, we have the following three possibilities 

(i) ¢'(x) 2: kat each point of differentiability of the function¢ 

(ii) ¢'(x) ::; -k at each point of differentiability of the function¢ 

(iii) there is a point c, a < c < b such that at each point x of differentiability 
of the ¢( x) function 

¢' (X) { ::; - k i j a < X < C . 
2: k zf c < x < b 

It is not difficult to check that in each of those cases ¢(x) is strictly k-monoto

ne. • 

PROPOSITION 4 Let X be an open set in JR.". Each k-monotone continuously 
differentiable function¢ deflned on X is strictly (k- c)-monotone for arbitrary 
c > 0. 

Proof. Let K be an arbitrary compact subset of X. LetS= {x: llxll = 1} be 
the unit sphere in X and let r < inf { d( x, y) : x E K, y tf. X} . We consider on the 

set Ko = K x S x (0, r] the following function F¢(x, h, t) = </>(x+t~) - </>(x). Since¢ 

is continuously differentiable, the function F¢ can be extended in a continuous 
way on K being the completion of the set Ko. The set K is compact. Thus, the 
function F¢ is uniformly continuous on K. Since ¢ is continuously differentiable 
and /;:-monotone, for every x E K there is hx such that F(x, hx, 0) 2: kii¢11L· 
The function F</> is uniformly continuous on K, thus there is T¢ > 0 such that 
for 0 < t < rei> F¢(X, hx, t) 2: (k - c)I I¢11L· Then for arbitrary c > 0 ¢is strictly 
(k- c)-monotone. • 

Proposition 4 can be extended to infinite dimensional Banach spaces, under 
stronger assumptions about differentiability. 

For this purpose we shall introduce a notion of uniform Frechet differentiable 
functions. We shall say that a real-valued function f defined on a metric space 
(X, d) is uniformly Fnkhet <I?-differentiable if there is a function 1(t) mapping 
the interval [0 , +oo) into the interval [0, +oo] such that 

lim i(t) = 0 
t 

and for arbitrary xo E X there is a function ¢xo E <I> such that 

l[f(x)- f(xo)]- [¢(.1:)- ¢(;ro)]l::; !(d(x,xo)). 

PROPOSITION 5 Let X be an open set in a Banach space E. Each k-rn.onotone 
uniformly Frechet differentiable function ¢ defined on X is strictly (k - c)-
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Proof. Let K be an arbitrary closed set in X such that d = inf{d(x, y) : x E 

K, y 'f. X} > 0. LetS= {x: llxll = 1} be the unit sphere in X and let r <d. 
We consider on the set Ko = K x S x (0, r] the following function F<J>(x, h, t) = 
<f>(x+t~)-</>(x). Since ¢ is continuously differentiable and k-monotone, for every 
x E K there is hx such that F(x, hx, 0) 2: kll¢11£· Since the function ¢ is 
uniformly Frechet differentiable, there is r <I> > 0 such that for 0 < t < r <I> 

F¢(X,hx,t) 2: (k- E)ll¢11£. Then, for arbitrary E > 0 ¢is strictly (k- E)
monotone. • 

Propositions 4 and 5 can be extended to weakly k-monotone functions. This 
is the consequence of the following obvious 

PROPOSITION 6 Let X be an open set in a Banach space E. Let¢ be a weakly 
k-monotone Gateaux differentiable function . Then for arbitrary E > 0 ¢ is 
( k - E) -monotone. 

Proof. Since ¢ is weakly k-monotone Gateaux differentiable function, then for 
each x E X and each E > 0 there is hx such that 

l8°¢lx(hx)l 2: (k - ~)llhxll, 

where 8° ¢1x denote the Gateaux differential of function ¢ at point X. 

Thus either 

or 

In the second case, by replacing hx by -hx we obtain 

G E 
0 ¢1x(-hx) 2: (k- 2)11- hxll· 

(21) 

(21) 

(22) 

(23) 

Then, by the definition of t he Gateaux differential for each x E X there is bx > 0 
andy EX such that llx- Yll < bx and 

¢(y)- ¢(x) 2: (k- E)IIY- xll· 

As an obvious consequence of Propositions 4, 5, 6 we get 

(24) 

• 
PROPOSITION 4w Let X be an open set in JRn. Each weakly k-monotone con
tinuously differentiable function defined on X for every E, 0 < E < ~' is strictly 
( k - 2E) -monotone. 

PROPOSITION 5w Let X be an open set in a Banach space E. Each weakly 
k-monotone. uniformly Frechet differentiable function defined on X for every 



On a-porous and <I>-angle-small sets in met ric spaces 679 

We can generalize strict k-monotonicity to the case of weak k-monotonicity. 
Namely, we say a Lipschitz function ¢ is strict weakly k-monotone if for all 
xo E X, there are Eo > 0 and R¢,xo,ro such that for all t, 0 < t < R</> ,xu, all 
x EX such that d(x, xo) <Eo, there is ayE X such that d(x, y) = t and 

i¢(y)- ¢(x)! ;:: kii¢11Ld(y, x). (21) 

Propositions 4w and 5w give us a partial positive answer of following problem 

PROBLEM 1 w Suppose that a Lipschitz function ¢ is weakly k-monotone. Is ¢ 
also strict weakly k -monotone ? 

In general the answer is negative as follows from 

EXAMPLE 2 

Let X = [0, 1] . Let 

1 
¢(x) = inf 4\x - -

2 
I· 

n n 

It is easy to see that ¢ is a Lipschitz function with constant 4. Take x = 0. By 
simple calculation we obtain that ¢ is weakly ~-monotone, but it is not strict 
weakly k-monotone for any k > 0. Of course, on the set X' = (0, 1] ¢ is strict 
weakly k-monotone for arbitrary k, 0 < k :::; 1. 

The notion of strict k-monotonicity is similar to the notion of 11:-super-metric 
coupling introduced by Penot (2003) . We recall the notion of coupling. Let 
(X, dx) and (Y, dy) be two metric spaces. By coupling we shall understand a 
function c(x, y) :X x Y----> i = lR U { +oo} U { -oo }. 

Let 11: > 0. We say that a coupling c(x, y) is 11:-super-metric at (xo, Yo) E 
X x Y if c( xo, Yo) E lR and for any r > 0 

sup (c(x, y)- c(xo, y)) 
{y:dy(y,yo)::;r} 

(25) 

;:: c(x, Yo)- c(xo, Yo)+ K:rdx(x, xo)dy(y, Yo). 

We say that c(x, y) is 11:-super-metric coupling if it is K:-super-metric coupling 
at (xo,Yo) for all (xo,yo) EX x Y . By denoting ¢1(y) = c(x,y) and ¢o(y) = 
c(xo, y) we obtain that c(x, y) is K:-super-metric coupling if and only if the dif
ference ¢(y) = ¢1 (y) - ¢o (y) for any r > 0 satisfies the following inequality 

sup ¢(y);:: ¢(yo)+ K:rdx(x,xo)dy(y,yo). 
{y:dy (y,yo) ::; r} 

(26) 

Now we shall suppose that <J? = {c(x, ·) : x EX} is an additive group consisting 
of Lipschitz functions and dx(x, xo) = 1!¢1 - ¢oliL· Then for every E > 0 and 
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¢(y)- ¢(yo) 2 (K- c)li¢ii£dy(y, Yo) . 

In other words <I? is (K- c)-monotone. 
In the considered case the essential difference between K-super-metric cou

pling and (K - c)-monotonicity is as follous. In the definition of K-super-metric 
coupling inequality (25) holds for all r > 0 and in the definition of (K -c)
monotone functions it holds only for sufficiently small t, depending on ¢ and x . 
Indeed, K-super-metric coupling implies that the function ¢1 (y)- ¢o(y), where 
¢I(Y) = c(x,y) and ¢o(y) = c(xo,y), is unbounded. Thus, in the case when it 
is Lipschitz the metric space Y is unbounded, too. Observe, that if in the def
inition of the K-super-metric coupling we replace the condition that (5) holds, 
for all r > 0 by the condition that there is R, which does not depend on x such 
that for 0 < r ::; R (5) holds then by triangle inequality we obtain also that (5) 
holds for arbitrary r > 0. 

The author wants to express his thanks to the reviewer. His valuable remarks 
essentially helped to improve the presentation of the paper. 
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