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Abstract: An optimal control problem with quadratic cost 
functional for the steady-state Navier-Stokes equations with no-slip 
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1. Introduction 

Optimization of incompressible viscous Newtonian fluid flows governed by the 
Navier-Stokes system enjoys recently significant attention within the mathemat
ical community and has important engineering applications. In this paper, we 
confine ourselves to steady-state problems. The optimal control problem of this 
sort was already studied in Bilic (1985), Bubak (2002), Burkardt and Peter
son (1995), Casas 1995, Desai and Ito (1994), Gunzburger (1995), Gunzburger, 
Hou and Svobodny (1991,1992), Lions (1983), Malek and Roubicek (1999) and 
Roubicek (2002), but the relevant literature is much more extensive. Moreover, 
the optimal control of the evolutionary Navier-Stokes system was treated, e.g., 
in Chebotarev (1993), Fattorini (1995,1999), Fattorini and Sritharan (1994), 
Fursikov (2000) , Gunzburger and Manservisi (1999) , Hinze (1999) , Hinze and 
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Our main goal is to investigate the stability of the optimal control prob
lem under perturbations of both the cost functional and the state equation. In 
noncc•nvex smooth optimization, t~is stability can only be expected if the solu
tion satisfies a second-order suffici{mt optimality condition. Roughly speaking, 
second-order sufficient conditions are necessarily satisfied at the optimal solu
tion, if stability holds. For optimal control of ordinary differential equations, this 
was addressed by Dontchev and Malanowski (1995), while the case of semilinear 
elliptic and parabolic PDEs has been discussed by Malanowski and Tri:iltzsch 
(1999,2000). In a more general setting, the problem of sensitivity analysis is 
extensively studied in the book by Bmm ans and Shapiro (2000), where second 
order sufficient conditions are important as well. 

To solve our problem, we perform a second-order analysis in two different 
ways. In the first part of the paper, the solution is assumed to satisfy the 
standard second-order sufficient optimality conditions (30)-(31). In the con
text of flow problems without constraints on the controls, conditions of this 
type have already been used by several authors. We only mention Desai and 
Ito (1994), who used second-order conditions to investigate convergence of the 
augmented-Lagrangean method, and Hinze (1999, 2001) who assumes second
order conditions to prove the convergence of Newton- and SQP-methods. We 
should mention that second-order sufficient optimality conditions are also nat
ural assumptions to prove convergence of numerical algorithms and to derive 
error estimates for numerical approximations of control problems. 

In the second approach, following MaJek and Roubfcek (1999), we invoke 
the increment formula (20) to obtain global stability. This increment formula 
is equivalent to a second-order expansion of the objective functional. The 
known regularity results for the N avier-Stokes system as well as for the lin
earized Navier-Stokes system and for the adjoint system will systematically be 
exploited. Essentially, to guarantee the above outlined global stability, we have 
to assume a sufficiently viscous flow, i.e. a small Reynolds number, see the as
sumptions (3) and (50) further on. Applications of flows with low Reynolds 
numbers are polymer manufacturing processes or nanotechnology. 

The scheme of the paper is the following. In Section 2, we specify the 
optimal-control problem (\l3) we will deal with and recall some of its basic prop
erties already known. In Section 4, we address the local Lipschitz stability 
of locally optimal controls, states, and adjoint states with respect to certain 
perturbations of both the cost functional and the equation. Here, we assume 
standard second-order sufficient optimality conditions which are formulated, 
together with first-order conditions, in Section 3. Finally, in Section 5 even 
the global stability of the unique optimal control is shown provided that the 
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2. Problem formulation 

Assuming 0 a bounded domain in JRn, n :S 3, with C 2-boundary r, we will 
deal with the following "velocity tracking" optimal control problem for flows 
governed by the steady-state incompressible Navier-Stokes system: 

Minimize J(u, f):= r ~lu- Uctl 2 + 11!12 dx ln 2 2 
(cost functional) 

SUbject tO (u · 'iJ)11. - IJ !::J.U + 'iJp = j On 0, (state system) 

('+!) divu = 0 on 0, (incompressibility) 

f( x) E S(x) for a.a. X E 0, (control constraints) 

uE W~'2 (0; JRn), pE £6(0), j E £ 2 (0; JRn), 

where £6(0) := {p E £ 2 (0); fnpdx = 0}. 
Here, the distributed force f represents the control and ( u, p) is the state 

response, where u is the velocity field , p is the pressure, while Uct stands for a 
given desired velocity profile. By v > 0 we denote the fluid viscosity, which is 
indirectly proportional to the Reynolds number. 

The quadratic velocity-tracking cost functional J we use in ('+!) is a standard 
option in flow control , see Gunzburger (1995) or Bilic (1985), Gunzburger and 
Manservisi (1999). It has reasonable applicability and simplifies the analysis 
considerably. Anyhow, ('+!) is obviously not a linear-quadratic problem because 
of the bilinear convective term ( u · 'iJ)u in the state equation. 

As to the parameter /, the desired velocity profile ud, and the set-valued 
mapping s ; 0 =; JRTI l We aSSUme 

1;:::: 0, Uct E Lq(O; JR"), 

S measurable, closed- and convex-valued, 

N?NJ 
sup IS(x)l :S p(x) , p E L,.(O) , : 2 II PIIL2 (fl) < 1, 

(1) 

(2) 

(3) 

with q, r ;::=: 2 to be specified later and with Np, p < 2nj (n - 2), denoting the 
norm of the embedding W~·2 (0; lR") c L,.(O). The adjective "measurable" in 
(2) has a standard meaning: for any open A c IRn, the set s- 1 (A) := { x E 
S1; S(x) n A =j::. 0} is Lebesgue measurable. Examples for mappings S satisfying 
(2) are 

S(x) = { s E IRn; lsi :S p(x)} (4) 

or 

(5) 

with measurable radius p : 0 --+ lR or measurable functions ai, bi : 0 --+ JR. 
Of course, (4) satisfies sup IS(x)l = p(x), see (3), while in case (5) one has to 



686 T. ROUBICEK, F. TROLTZSCH 

In what follows, we denote the set of admissible controls by 

In L2 (0, JRn) we introduce t he scalar product (u, v) := In L~=l uividx, while 
(~ : () := In L~=l 2::7=1 ~ij(ijdx is the associated one in L 2 (0, JRnxn) . For 

convenience we recall the frequently used notation (u · \l)u := I:;=l uktxuk. 

Moreover, for u E W~ ' 2 (0;1R"), (Vu)T is the matrix having the column vectors 
\lu1, ... , \lun. It is common to use the t rilinear form b: H11•2 (0; 1Rn)3 ---> lR, 

b(w, u, v) := ((w · \l)u, v) . (6) 

It is known that b(w, u, v) = -b(w, v, u) if divw = 0 and the normal component 
of w on r vanishes; here we will always have even wlr = 0. This property 
immediately implies that b( w, v, v) = 0 holds under the same assumption. 

The solution (u,p) to the Navier-Stokes system in (qJ) is understood in the 
weak sense. As p does not occur in J, we can advantageously use divergence
free test functions to remove p from the weak formulation. For k = l, 2, let us 
introduce the state space 

W k 2 (" n) { k 2(n n) . } o,'orv H; lR := v E W0 ' H; lR ; d1v v = 0 . (7) 

DEFINITION 2.1 We call u E W~ '6rv(O; JRn) a weak solution to the no-slip 
boundary-value problem for the ste~dy-state Navier-Stokes system in (qJ) if the 
variational equation 

((u · \l)u,v) + v(\lu: \lv) = (J,v) 

is satisfied. 

Testing (8) by v := u, the basic a-priori estimate 

N? 
IIVuliL2 (n;IR" x") ::; --IIPIIu(n) 

1/ 

(8) 

(9) 

is easily obtained. Thanks to this, the following existence theorem can stan
dardly be proved: 

THEOREM 2.1 (Galdi , 1994) Let the assumptions (2)-(3) be satisfied. Then, 
for each f E :Fad , there exists a unique weak solution u =: u(J) of the state 
equations according to Definition 2.1. 

Moreover, the (nowad ays standard) regularity result 

(10) 

is known, see e.g. Constantin and Foias (1989) or Galdi (1994), Chapter VIII, 
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THEOREM 2.2 Let the assumptions (2)-(3) be satisfied and fi E fad be given, 
i = 1, 2. There exists a constant Co being independent of ft , h such that 

llu1- u2llw 1 •2(rl; IR") :S Co llf
1

- f 2
ll£2(rl;IR") 

holds for the associated solutions Ui of (8). 

(11) 

Proof. We test the variational equality (8) for u1 and u2 by v := u1 - u2 and 
subtract the associated identities. Then, abbreviating shortly U = u1 - u2, we 
get 

((u1 · \7)ul- (u2 · \l)u2, U) + v(\7U: \7U) = (h- /2, U). 

Write 

((u1 · \7)ui- (u2 · \l)u2, U) = ((u1 · \7)U, U) + ((U · \l)u2, U). (12) 

Thanks to divu1 = 0 and u1lr = 0, the identity b(ui, U, U) = 0 holds and we 
can estimate the nonlinear term by 

((u1 · \7)ui - (u2 · \l)u2, U) = -((U · \l)u2, U) 

2 /V21Vl ? 
:S ll\7u211£2(n;JR"X") IIUIIL•(n;IR") :S -v-IIPIIP(n) IIVUII£2(0; IR" x") 

< vii\7UIIi2(n;JR"X")' (13) 

Now, the Lipschitz estimate is easy to derive since the nonlinear term can be 
absorbed by v (\7U: \7U). • 

Moreover, besides the (norm,norm)-continuity of the mapping f f-' u(J) : 
L2(r!; !Rn) -> W~'6rv(r2; !Rn) implied by Theorem 2.2 , it is a standard exercise 
to show also its (~eak,norm)-continuity. Under our assumptions (2)- (3), f ad is 
weakly compact in L2(r!;!Rn). Therefore, the existence of at least one globally 
optimal pair (u, ]) for (l.P) follows by standard weak compactness arguments. 
The uniqueness of u will be investigated later in Section 5. However, for several 
reasons we do not confine ourselves to globally optimal controls. Optimal control 
theory essentially relies on first-order necessary optimality conditions forming 
the so-called optimality system. The majority of optimization algorithms com
putes solutions of that system. Due to the nonconvexity of our problem, not all 
of these solutions are optimal, and second-order sufficient conditions are usually 
verified to guarantee local optimality. For instance, second-order conditions can 
be checked numerically. 

Only in exceptional cases one is able to verify global optimality. Therefore, 
it is natural to investigate the stability of single local solutions with respect to 
perturbations rather than to restrict the analysis to global solutions. Since any 
global solution is also a local one, this discussion is even more general. In view 
of this, we will just assume that a locally optimal reference control J is given 
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REMARK 2.1 Without (3), we could get existence of the globally optimal pair 
too , provided 1 > 0 and provided we give up the natural requirement of a 
unique response to a particular control. In this case, the argument is that J is 
a coercive (with respect to the control) weakly lower-semicontinuous functional 
on a closed graph of the pairs (u, f) satisfying (8). 

3. First- and second-order optimality conditions 

Consider a given locally optimal reference pair (/, ii.) . We begin with recalling 
the first-order necessary optimality conditions. Formally, they can be found 
by applying the well-known Lagrange principle, where the state-equations are 
eliminated by the Lagrange function 

L(u , f, w) = J(u, f) - (! - (u · 'Vu ), w) - v('Vu : 'Vw) , (14) 

see (8). Obviously, for a fixed multiplier w E W~,'6 1v(O; JRn), the function 

L(-, ·, w) : w~·6Iv(O; JRn) X L2 (0; JRn) --) lR is quadratic and continuous, hence 
it is a C2-fun~tion. According to the Lagrange principle, (/, ii.) should satisfy 
the necessary optimality conditions for minimizers of L with respect to f E F ad, 
i.e.· L~(u , f , w)(u) = 0 for all u E W~,'6 1 v(O; lRn) and Lj(u, f , w)(f- f) 2: 0 for 
all f E F ad· The first relation leads to the adjoint system to the Navier-Stokes 
equations linearized at u = u, 

- vf:lw + ('Vu) T w- (u · 'V)w + 'V1r = ud- u, 

div w = 0, 

(15) 

for t he so-called adjoint state w = w(u), which is associated with a given state 
u. Notice that ('Vu)T w- (u. 'V)w means o=~=l(~wk - Uk~:~))i=l, ... ,n· 

DEFI NITIO N 3.1 Under a weak solution to the adjoint system (15} we under-
stand any wE W~'61v(O; JRn) satisfying the integral identity 

v('Vw : 'Vv) - ((u · 'V) w, v) + (w, (v · 'V)u) = (ud - u, v) 

for all v E W~,'6 1v(O ;lRn). 

(16) 

Now we formulate the standard first-order necessary optimality conditions. 
They were proven for the case without control constraints by Desai and Ito 
(1994), for instance. This proof extends to control constraints by obvious mod
ifications. 

THEOREM 3.1 Let {1}-(3} hold, and let f be a locally optimal control for(~) 
with associated state u = u(/). Then the variational inequality 

(r/-w, J-/) 2: 0 VJ E Fad (17) 

is satisfied for- w = w( ii.) E W~'6rv (0 ; JRn) being the unique weak solution to the 
. ' ' - · ' - .... - - -
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Let us only briefly sketch the existence and uniqueness of the adjoint state 
w(u). Consider the adjoint variational equat ion (16) for a given u. Testing (16) 
by v := w, we get 

viiV'wlll2(fl;R"x") = -((w · V')u, w) + (ud- u, w) 

:S: llwlll•(n;R") IIV'ull£2(fl;R"x") 
+ N4,2 llud - ull£2(fl;R"JIIwiiL4 (n ;R")' (18) 

where N1,2 is the norm of the embedding £ 4 (0) C £ 2 (0) , from which we get 
easily existence and uniqueness of w solving (16) provided that assumption (3) 
holds. We should mention that even W 1'00-regularity of the adjoint state, 

(19) 

holds with C1 = C1 (q) for all q > n. This result has been proved in Malek 
and Roubicek (1999) provided that (1) is satisfied. For other (but weaker) 
results concerning regularity of w see also Theorem 3.2 in Gunzburger, Hou and 
Svobodny (1991). 

Let us denote 1>(!) = J(f , u(f)) . Recall that u = u(f) is unique under the 
assumption (3). The following increment formula has been derived in a slightly 
modified, relaxed form in Malek and Roubicek (1999) : 

- - 1 - ? 
if(!) - if?(!)+ (w -If , f- f)= 2llu- ulli2(fl;IR") 

+~Ill- f ll i2(fl;IR"J- (((u- u) ·V')w,u - u), (20) 

where u = u(}), u = u(f), w = w(u). Up to the second-order terms on the 
right-hand side, (20) gives immediately the directional derivative of 1>, namely 
D<P (f, h) = - ( w -1 f , h) hence the Gateaux derivative of 1>, denoted by 1>' (f) E 
£ 2(0;JRn)* ~ L2(0;lRn), is given by 1>'(!) =If- w. 

It is more convenient, however, to consider the variational inequality ( 17) in 
a formally different way: We know that fad C £ 2(0; JRn) and wE £ 2(0; JRn). 
Therefore, 1f - wE L2 (0; JRn). Define the set 

N (f-)·= { {zEL2 (0;lRn); (z,f-}) :S: 0 Vf Ef ad } if!_ E fad 
fad . 0 iff ~ fad, (21) 

which is the standard normal cone to fad at f. Then the variational inequality 
(17) says that -if?' (f) E Nf,.d (f), i. e. the negative Gateaux derivative of 1> at 
] , identified with an £ 2-function, belongs to N fad. In other words, 

1f- w + NfaJ(f) 3 0. 

The variational inequality (17) can also be written as ( w - 1 ],]) 
max /Efad ( iiJ - 1 ], f) being equivalent to the pointwise condition 

( W (X) - "( .f( X)) · .f( X) = max ( W (X) - "/ {(X)) · S 
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a.~ . on n. In view of the convexity of S(x) and concavity of the Hamiltonian 
'H.w(x, s) := w(x) · s- ~ l sl 2 in the s-variable, this can be rewritten as the 
pointwise maximum principle 

'H.w(x, /(x)) = max 'H.w(x, s) 
sES(x) 

(22) 

for a.e. X E n. Expressing the same fact in terms of minimization, /(x) is the 
unique solution of 

min llsl 2
- s · w(x) = min l is -'Y- 1w(x)l 2 +c. 

sES(x) 2 sES(x) 2 

Therefore, we have the important projection formula 

(23) 

where Projs(x) denotes the projection operator from IR71 to S(x). 
For further purposes, we equivalently re-formulate the first-order optimality 

conditions (8), (16) , (17) as the abstract inclusion (generalized equation) 

:F(u,w,f) + (O,O,N:F.d(/)) 3 0, 

where N:F.,1(/) is from (21) and the mapping :F is defined by 

[:F(u, w, f)]I(v) := ((u · 'V)u- f , v) + v('Vu: 'Vv), 

[:F(u, w, f)]2(v) := v('Vw: 'Vv) + (w, (v · 'V)u) 

- ((u · 'V)w- u + Uct, v) 

[:F( u, w, f)h := !' f- w. 

(24) 

(25a) 

(25b) 

(25c) 

The inclusion (24) is a condensed form of the first-order necessary optimality 
conditions, i.e. of the optimality system. 

Let us first discuss the right spaces between which :F should be defined 
to finally obtain the best st ability results . Take (u, w, f) satisfying (8), (16), 
and (17). By the definition of Fad, we have f E L2(0 ; IR11

). The fact that 
u E W~,'6 1v(O;IR11 ) solves (8) implies in particular u E W5,~1y(O;IR11 ) due to 
a well-known regularity result by Galdi (1994), Chapter VIII, Theorem 5.2, 
provided n has a C2-boundary, as indeed assumed. 

The adjoint equation (16) can equally be viewed as the Stokes system with 
the right-hand side (u · 'V)w- ('Vu)T ·w + ud- u, which certainly belongs to 
L2(0; IR11

). So, w E W~,'61v(O; IR11
) solving (16) must belong to W5,'61v(O; !Rn) 

due to the well-known regularity for Stokes systems, see Galdi (1994), Chap
ter IV, Theorem 6.1. This justifies the definition onvg·61v(O; IR11

)
2 x L2 (0; IR11

) 

as the domain of :F. ' 
Let us now consider the range of :F. The first two components of :F define 

the elements of W~,'61v(O;IR11 )*, hence functionals. On W5,'6rv(O;IR11
)
2 we get 

for the first component 
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where (u · 'V)u- v.6.u- f E L2 (f1; IR.n), hence [.F(u, w, f)h can be identified 
with an L2-function. The same holds true for [.F(u, w, !)]2. Notice that, despite 
their simple structure, both functionals are only applied to the divergence free 
test functions. Therefore, we consider .F( u, w, f) as follows: 

F . w2,2 (r! · IR.n)2 X L2(f! · IR.n)---) L2,* (r!·IR.n)2 X L2(f! ·IR.n ) (26) 
· O,DIV ' ' O,DIV ' ' ' 

where 

L~:~rv(f!; IR.n) := {f E W~,'6rv(f1; IR.n)*; ~j E L2 (f1; IR.n) 

Vv E W~,'61v(f1; IR.n) : (!, v) = (}, v)} 

W2·2 (r!·IR.n) ·= {v E W2·2 (r!·IR.n)· vir = 0 div v = 0} O,DIV ' · ' ' ' · 

(27) 

(28) 

The space L~'~rv(f!; IR.n) is the space of equivalence classes in L2 (f1; IR.n) of 
functions havi~g the same rotation (in the distributional sense) and is naturally 

normed by 11!11£2,• (n·IR") := inf1-llfll£2(n·IR")• where the infimum is taken over 
O,DIV ' ' 

all j occurring in (27) for f under consideration. 

LEMMA 3.1 The mapping F is of class C1 . 

? ? 
Pmof. On W0'01y(f1; IR.n), we know that 

([F(u,w,f)]I,v) = ((u · 'V)lt-l/.6.u- j,v) 

for all v E W~,'6rv(f1;1R.n), and (u · 'V)u - l/.6.u- f E L2 (f!;IR.71
). The mapping 

( u, f) f---4 -l/.6.u - f is linear and continuous. The same holds true for the 
embedding of L2 (f1; IR.n) into W~·61 v(f1; IR.n)*. Therefore, the linear part of [Fh 
is trivially of class C 1 . Its nonli;1ear part can be identified with the convective 
term B(u) := b'(u,u, ·),i.e. in the classical formulation B(u) := (u · 'V)u, and 
we find 

B(u + u)- B(u) = (u · 'V)u + (u · 'V) ·u + (u · 'V)u =: B(u)'u + r2(u), 

where the second-order remainder term ll'~'2 (u)ll£2(n·IR") = o(llullw2.2 (n·IR")). 
I tJ DIV ' 

The Frechet-differentiability of B is shown. By injection into W~·6;v (r!; IR.n )*, 
this yields the differentiability of the nonlinear part of [Fr ]1 . ' 

As to the continuity of the differential of [Fh, it suffices to show 
the continuity of the mapping u f---4 B' ( u) from wg·61v (r!; IR.n) to 

£(Wg'6rv(f1; IR.n), L~'~rv(f!; IR.n)). Let u; be given, i = 1, 2, ,and abbreviate 
again'u = u1 - u2 . Even Lipschitz continuity follows from the estimate 

IIB'(ui)- B'(u2)11c(w2·2 (n·IR") £2·• (n·IR")) 
O,DIV I 1 O,DIV ' 

sup ll(u · 'V) U + (U · 'V)ull£2.• (n·IR") 
lliLIIw2,2 (11 R")~ l o,orv ' 

ll,DJV ' 

< sup ll(u · 'V) U + (U · 'V)ull£2(n;IR") < CII'VUIIP(n;IR") 
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with a suitable C = C(D). The component [f]; is considered analogously, while 
the continuity of [f]3 is obvious by linearity. • 

In the context of optimization, the definition off is justified by the following 
assertion. 

LEMMA 3.2 The optimality system J E fad , (8), (16) , (17) is equivalent to 
(24). 

Proof. Let (u,w,f) satisfy the optimality system (8), (16), and (17). Then, u 
and w are weak solutions of t he state equation and adjoint equation. Moreover, 
they have the regularity wg·61v(D;1Rn). Therefore, [f(u,w,f)]; = 0 holds for 

' i = 1, 2. Moreover, the variat ional inequality implies [f(il, ·w, /)]3+N.Fac~ (/) 3 0. 
Altogether, the inclusion (24) is fulfilled. 

Conversely, if (24) is satisfied by (i:L, w, f), then we obtain from its third 
component N .Fad(/) #- 0, hence J E fad . By definition of N .Fad(/), the varia
tional inequality follows immediately. Moreover, the first two components are 
equivalent to the weak formulations of the state- and adjoint equations. Thus, 
(u, w, f) solves the optimality system J E fad, (8), (16) , and (17). • 

In order to perform a second-order analysis, we need the second order deriva
tive of the Lagrange function . The second differential of L(-, ·, w) at a point 
(u, f), denoted as L"(u, f, w): [W~,'6rv(D; JRn) x L2 (D; JRn)F __, JR, is given by 

L"(u, f, w)[(u1, h), (uz, h)] = (u1, uz) + !(h h) 
+ ((u1 · V')u2,w) + ((u2 · V')u1,w). 

It is symmetric and independent of ( u, f). We obtain the estimate 

IL"(u, f, w)[(u1, h), (u2, h)JI ~ 
~ (Ni + 2 NliiY'wiiL2(!1 ;1R" )) ll ud W 1 •2 (!1 ;1R") ll u2l l W 1 •2 (!1 ;1R") 
+1llh II £2(!1;IR") llhllu(n;IR"), 

expressing the boundedness of the quadratic form L"(u, j, w), which is even 
uniform with respect to all w under consideration. If L" (·u, j, w) is restricted 
to the diagonal of [W~,'6rv(D;1Rn) x L2 (D;1Rn)J2 , which is what we will need, 

we simply write L"(u, j, w)('ii., j)2 := L" (u , j , w)[(ii, ]), (ii, ])]. By b(ii, ii, w) = 

-b( ii, w, ii), this restricted second differential takes the form 

L"(u, f, w)(ii, ])2 
= lliilli2(!1 ;1R") + 1llflli2(!l;IR")- 2((ii · V')w, ii ). (29) 

This complies with the increment formula (20). The standard second-order 
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DEFINITION 3.2 We say that a second-order sufficient optimality condition, 
briefly (SSG), is satisfied at (u,f, w) if there is 6 > 0 sv,ch that the coerciv
ity condition 

L"(u, f, w)(u, !)2 ~ 6llflli2(n;~"l 

holds joT all ( u, f) solving the N a vier-Stokes system linearized at ( u,f) : 

((u · \l)u, v) + ((u · \l)u, v) + v(\lu: 'Vv) = (!, v) 

for all vEW~,'6rv(O;JRn). 

(30) 

(31) 

PROPOSITION 3.1 Let (3) hold, and let (u, f, w) satisfy the first-oTder necessary 
conditions f E Fad, (8) and (16) with u and f substituted for u and J, together 
with the second-oTdeT sufficient condition (SSG). Then (u, f) is locally optimal 
with respect to the topology of w~:6rv(O; JRn) X L 2 (0; JRn). 

Sketch of the proof. By Casas and Troltzsch (2002), eqs. (4.11)-(4 .12), the 
condition (30)-(31) yields <I?" (f) (f, f) ~ 61llfll i2(r!;~") for some 61 > 0 and for 
all f E L2(0; JRn). Moreover, the mapping (u, f, w) ~-+ L"(u, f, w) is continuous. 
This follows from the estimate 

I [L'' ( u1, h, wi) - L" ( u2, h, w2)][( ii.1, J1), ( ii.2 , J2)]1 

= i(ul · 'Vu2), W) + (u2 ·\lui), W)l 
~ 2II'VWIIu(n;~" x " l llii.IIIL4(n;~"l llu2ll £4(n;~" l 

~ 2Nli1W II un. 2 (n;~"l llu1llw1.2(n;~"l ll u2 llw 1 • 2 (n;~"l 

where we abbreviated W := w1 - w2 . This continuity is inherited also by 
<P"( ·)(f, f), so that we can conclude that J is locally optimal for <I> with 
respect to the norm of L2 (0;!Rn). The continuity of the state mapping 
f ~-+ u : L2 (0; JRn) --> W~,'6rv(O; JRn) yields the claimed local optimality of 

(u,f). • 
In this paper, we will not apply Proposition 3.1. Instead, we shall directly 

use the condition (SSC) to obtain our result on Lipschitz stability. Therefore, 
we have only briefly sketched the proof. 

REMARK 3.1 Often, in the literature, a seemingly stronger condition is used 
instead of (30), namely 

(32) 

for all (u, f) satisfying (31); where 61 > 0 is fixed again. Yet, this is equivalent to 
(30) provided the linear mapping f ~-+ n: L2(0;1Rn)--> W~·61 v(0;1Rn), u being 
the solution to (31), is bounded. This can be seen by the following arguments: 
Let N = N(u, f) denote the norm of this mapping. Then 6llflll 2 (r!;~") = 
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can take o1 = max(2, 2N)- 1o. Here, by putting v := u in (31), we can estimate 
explicitly 

N < ~ v~ 
2 :::; ? ? - < +oo 

- v- N411V'ullu(n;JR") v-- N4N2IIPIIL2 (n) 

where the estimate (9) for u and the assumption (3) have been used, too. 

REMARK 3.2 The condition (30) implicitly requires"!> 0. 

4. Local stability analysis of (~) 

(33) 

Let us now address the main focus of the paper, i.e. the stability of a locally 
optimal reference pair (u, f) of the original problem(~). To be more specific, 
for a perturbation parameter E = (cq, Eu, Ef) E L2(r2; IRn )2 x L"(r2; IR11 

), we 
consider the perturbed optimization problem 

Minimize J(u, f):= k ~lu- udl 2 
-tl· Eu + ~1!1 2 - f · Ef dx 

subject to (u · \i')u- v6.u + \i'p = j + Eq on r2, 

divu = 0 on n, 

uEW~'2 (r2;1Rn), pEL6(r2), jEFad· 

As an example, one can think about a perturbation of the desired profile ud, say 
1ld + ed, which is obviously equivalent to considering the originalud but taking 
Eu = ed. 

The first-order optimality conditions for (~c), written in the condensed form 
of the inclusion (24), now read 

(34) 

To investigate the stability of locally optimal pairs, we rely on a deep stability 
result by Robinson (1980) formulated for generalized equations covering, in 
particular, also our inclusion (24). Let us briefly recall some definitions that are 
basic to understand this theorem. We consider the generalized equation 

0 E F(z) + N(z), (35) 

where F : Z _.. Y is a mapping of class C 1 between two Banach spaces Z and 
Y, while N : Z --> 2Y is a set-valued mapping with a closed graph. Let z be 
a solution of (35) . The generalized equation (35) is said to be strongly regular 
at the point z, if there are open balls Bz(z,pz) := {z E Z; liz- zllz :::; pz} 
and By(O, py) := {c E Y; I IcilY :::; Pr·} such that, for all E E By(O, py ), the 
linearized and perturbed generalized equation 

c E F(z) + F'(z)(z- z) + N(z) (36) 

admits a unique solution z = z(c) in Bz(z, pz) and the mapping E f---7 z(c) from 
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P~OPOSITION 4.1 (Robinson, 1980, here modified.) Let z be a solution of the 
generalized equation (35), and assume that (35) is strongly regular at z. Then 
there are open balls Bz(z,pz) and By(O,py) such that, for all c E By(O,py) , 
the perturbed generalized equation 

c E F(z) + N(z) (37) 

has a unique solution z = z(c) in Bz(z,pz) , and the mapping c f---+ z(c) from 
By(O,py) to Bz(z,pz) is Lipschitz continuous. 

This result enables us to investigate a simpler inclusion arising from (34) by 
linearization ofF around the locally optimal triple ( u, w, f), i.e. the inclusion 

F(u,w, J) + F'(u, w, f)(u - u,w- w, f- J) 
+(O,O,N.rad(J)) 3 (cq,cu,cf). (38) 

In view of the definition (25) ofF and of the fact that (u, w,f) satisfies (24), 
in classical formulation it represents the optimality system 

-v~u + (u · \i') ·u + (u · \i')u + \i'p = f + (u · \i')u + cq, 

divu = 0 

(39a) 

-v~w + (\i'u) T w- (u. \i')w + V'1r = ud- u + ((u- u) · \i')w (39b) 

-(\i'(u-u))Tw+cu, 

divw = 0, 

('yf- w - cf,J - f);::: 0 Vj E fad · (39c) 

LEMMA 4.1 Let (1)-(3) hold and suppose that the triple (u, w,f) satisfies the 
first-order necessary optimality conditions together with the second-order suf
ficient optimality conditions (SSG) . Then, for any c E L 2 (0;1Rn)3

, the lin
earized inclusion (38) admits a unique solution (ue:, We:, fe:) and the mapping 
c f---+ (ue:,We:,ft:): L2 (0;IRn)3 _, W2•2 (0;IRn) 2 X L2 (0;1Rn) is Lipschitz continu
ous. 

Proof. The generalized equation (38) represents the first-order optimality con
ditions for the perturbed linear-quadratic problem 

Minimize J(u,J):= £Giu-udl 2 +~1fl 2 

-((u - u) · \i')w · (u- u)- cu·U- cf·f) dx 

subject to (u · \i')u + (u · \i')u- v~u + \i'p = f + (u · \i')u + cq, 

divu = 0 on n, 
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This problem represents a certain linear-quadratic approximation of the problem 
(s.fj<) at the fixed locally opt imal pair ( u,f) with w = w( u) solving the adjoint 
equation (15) . Hence, in fact, (s.fj~Q) depends also on (u, /). However, this 
dependence will not be explicitly indicated, since ( u, f) is kept fixed. 

The second-order condit ion (30) with (u, f) satisfying (31) just says that, 
disregarding the affine term (u, f) f---t (u · 'V)w · u + (u · 'V)w · u- (u · 'V)w · u
ud·u - Eu·u - E.f · f included in the cost functional and the fixed term (u ·'V)u+ E.q in 
the right-hand side of the linearized Navier-Stokes equation, the problem (s.fj~Q) 
has a quadratic and positive definite cost functional. Note that this fixed right
hand-side term, however, cannot change this fact because it only shifts the affine 
manifold containing all (u, f) satisfying (31), and similarly the affine perturba
tion of the quadratic functional cannot break its positive definiteness. This 
positive definiteness is even uniform wit h respect to E.. Therefore, (30)-(31) en
sures the existence and uniqueness of ( uE, wE, JE) solving (s.fj~Q) or, equivalently, 
solving (38). 

Let us now investigate the Lipschitz continuity of the mapping E. f---+ ( uE, fe) : 
L2 (D;!Rn) 3 -+ L2(D;!Rn) 2 . To this aim, we take two vectors of perturbation 

parameters c; = (E.'f,E.{,E.i), i = 1,2, and write shortly u;, w;, and f; instead 
of ue,, wE,, and fe,. To shorten the formulas below, we might use the following 
shorthand notation U := u1 - u2, F := h - h, [f := c{ - E.~, W := w1 - w2, 
and II := 1r1 - 1r2. 

Now write (39c) for E.f =E.{ and fi, i = 1, 2, 

(r h - w1 - c{, h - h) ~ 0, 

(r h - W2 -E.~, h -h) ~ 0. 

Adding these two inequalities, in view of our notation we get 

-(rF- W - [f,F) ~ 0, hence 

1'11FIIi2(n;IR") :::; (W, F)+(£!, F). 

( 40) 

( 41) 

Subtracting the perturbed state equat ion (39a) in the weak formulation for 
E.q = E.j from that for E.q =E.~, and testing it by W, we get 

(W,F) = v(\7U:\7W) + ((U·'V)u, W) + ((u·'V)U, W)- (Eq, W) . (42) 

Next we subtract the adjoint equation (39b), for u = u2 , E.u = c2, from that for 
u = u1, Eu = E.]', and obtain 

Testing it by U, in view of the formula 

(('Vu) T w, v) = - ((v · 'V)w, u) = - b(v, w, u), 

which is valid for all v,u,w E W~,'6rv(D;!Rn), we get 

v('VW: 'VU) = ((u · 'V)W, U)- ((U · 'V)u, W) 
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Inserting ( 44) into ( 42), we find 

(W, F)= -11UIIi2(!l;IR") + (£11
, U)- (Eq, W) + 2((U · 'V)w , U) . 

Thus, ( 41) together with the assumed second-order sufficient optimality condi
tion, applied in the form (32) with L" from (29), enable us to estimate 

1h (11FIIi2(!l;IR") + IIUII~!l , 2(!l;IR")) 
:::; L"(u,f, w)(U, F) 2 

= ri1FIIi2cn;IR") + IIUIIi2cn;IR")- 2((U · 'V)w, U) 

:::; (£ 11 ,U)- (Eq, W) + (£f,F) 

N'J: u 2 82 2 
:::; 202 11£ IIP(!l;IR") + 211UIIw1.2(!l;IR") 

N'J: q 2 03 2 
+ 203 11£ ll£2(!l;IR") + 211WIIw1,2(!l;IR") 

1 f 2 02 2 
+ 28211£ IIP(!l;IR") + 211FII£2(!l;IR") (45) 

with 81 > 0 from (32) and with arbitrarily small 82 > 0 and 03 > 0. 
The equation (43) is nothing more than an adjoint equation with unknown 

W = w1 - w2 and right-hand side -U + (U · 'V)w - ('VU) T w + £ 11 depending 
linearly on U = u 1 - u2 and £11 = c¥ - c~. We know that this solution depends 
Lipschitz continuously on the right hand side. For instance, this result can be 
verified by testing ( 43) with W. Therefore, we obtain 

( 46) 

Of course, we now take 82 and 83 in (45) small enough, which enables us to 
absorb all the right-hand-side terms with U and Fin the left-hand side of (45); 
e.g. we can take 82 :::; 81 and 03 < 81/C. This gives the Lipschitz continuity of 
c r-t (u10 , f 10 ): L2 (r2; !Rn)3 __, W1•2 (r2; !Rn) x L2 (r2; !Rn). 

Now, the Lipschitz continuity of c r-t w" : L2(r2; IRn )3 __, W1•2 (r2; !Rn) imme
diately follows from (46). From (39a) one can see that 

-v!:::.U + 'VP = G(il, divU = 0, 

with Q(i) := F + [q- (U · 'V)u - (u · 'V)U. We can estimate 

IIG(i)IIL2(!l;IR"):::; IIFIIP(!l;IR") + ll£qiiL 2 (!l;IR") 

+II Ull L6 (!l;IR") II Y'ull £3(!l;IR" x") 

+ llullu"' (!l;IR") II Y'UII P(!l;IR" xn) · 

( 47) 

( 48) 

By the reg~larity (10) of 'Vu, we have the L2-estima_te of Q(i) in terms of the 
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Notice that U E W 1
•
2 (n;lR") c L6 (n;JR71

) and u E W 2
•
2 (n;JR71

), hence 'VuE 
L6(n ; JRn xn) C L3(n ; JRnxn). 

Then, using the W 2
•
2-regularity for the Stokes system (47), see Galdi 

(1994), Chapter IV, Theorem 6.1, we get the Lipschitz continuity of E f---7 u" : 
L2(n; JRn )3 ___. w2,2 (n; JRn ). 

Similarly, (39b) shows t hat 

-vl::.W + 'VTI = G(iiJ, divW = O, ( 49) 

with G(ii) := -('Vu)TW + (u · 'V)W- U + (U. 'V)w - ('VU)T w + £11
• Now, 

by the regularity of both u and w, we have the L2-estimate of G(ii ) in terms of 
the assumed L 2-estimate of £ 11 and the already proved L 2-estimates of 'VU and 
'VW. Then, using the W 2

•
2-regularity, but now for the Stokes system (49), we 

get the Lipschitz continuity of c f---7 w": L2(n; 1R71
)
3 -) W 2•2(n ; lR71

). • 

PROPOSITION 4.2 Suppose that the assumptions of Lemma 4.1 are fulfilled. 
Then the generalized equation (24) is stmngly regular at (u, w,f) . 

Pmof. In view of the definition of strong regularity, this is a direct conclusion 
of Lemma 4.1. • 

Now we apply Robinson 's implicit function theorem to the generalized equa
tion (24) and obtain the main result of this section , where we write for conve
nience Y := L2 (n ; lR71

)
3 and Z := W 2

•
2(n ; lR71

)
2 x L2 (n ; lR71

): 

THEOREM 4.1 Let (3) hold and suppose that the triple ( u, w,f) satisfies the 
first-order necessary optimality conditions together with the second-order suffi
cient optimality conditions (SSG). Then there exist Pi > 0, i = 1, 2, such that, 
for all c E By(O, Pl) , the perturbed inclusion (34) in the ball Bz((u, w,f), P2) 
admits a unique solution (uc,wf:, f c) and the mapping E f---7 (uc,wc, fc) : 
By(O, Pl) ----. Bz((u, w,f), P2) is Lipschitz continuous. 

This stability result refers to solutions of the perturbed inclusion (34). It does 
not automatically guarantee that these are local solutions of (if!") . To have this, 
we need that ( u", wf:, f") satisfy a second order sufficient optimality condition. 
It is a nontrivial but standard exercise to show that the second order condition 
(SSC) is stable under small perturbations of (u, w, f) (notice that also the lin
earized equation is shifted by the perturbation). The continuity estimate of L" 
is the main tool to do this . Therefore, we only state the following result and 
skip its proof. 

C ORO LLARY 4.1 Under the assumptions of Theorem 4.1, there is 0 < [h:::; Pl, 
such that for all E E By (0, P1) the pert·urbed optimal control problem (if!c) has 
a unique local solution (u", !c) in Bz((u, w, f), P2). 

Since W 2•2 (n; lR71
) is continuously embedded into C(f2), this implies L 00

-

Lipschitz stability of the optimal state and adjoint state with respect to per-
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If, however, the perturbation Ef varies in Lr, 2 < r :::; oo, then also Lr
stability of the controls can be expected. To formulate this result, we put 
Yr := L2(f!;!Rn)2 x Lr(f!;!Rn) and Zr := W2•2(f!;!Rn)2 x Lr(f!;!Rn). 

COROLLARY 4.2 Theorem 4.1 remains true, if Zr and Yr are substituted for Z 
and Y , respectively, for all 2 < r :::; oo. 

Proof. Adapting formula (23) to the perturbed case (39c), we can immediately 
see that 

holds for a.a. X En. With the notation of the proof of Lemma 4.1 , this implies 

jF(x)j :::; 1Projs(x)b-1(wl(x)- c{ (x))}- Projs(x)b-1(w2(x) - c{ (x))} I 

:::; c iW(x)- £1(x)i:::; c (IIWIIC(nJ + l£1(x)l) 

for a. a. X E n, since the projection mapping is Lipschitz continuous on JR7l. In 
view of Theorem 4.1, we continue by 

lF(x) l :::; C (ll£11£2(0;1R")3 + l£1 (x)l), 

which in turn implies 

• 
Stability results of this type are of particular interest for the convergence 

analysis of numerical methods. For instance, the convergence of La.grange
Newton-SQP methods can be proved by the Kantorovich-Newton theorem for 
generalized equations provided that they are strongly regular. In our case, 
strong regularity is given by Lemma 4.1. Moreover, Lipschitz stability of opti
mal solutions is interesting in itself and can be used to answer other questions 
of optimal control theory. 

5. Global analysis of (Sf!) 

In this section, we show that Lipschitz continuity can be obtained without 
assuming a second-order sufficient optimality condition. Instead, we proceed 
under the condition, pointed out already in MaJek and Roubicek (1999), that 

N2 1 
Nq~I!Pii£2(n) + Nq,nlluctllu,(n;IR"):::; 2c1 

- TJ (50) 

with 'T) 2 0 being a tolerance (allowing us to distinguish the case 'TJ = 0), Nq 
again denoting the norm of the embedding W 1·2 (f!) C Lq(n) while Nq,n is the 
norm of the embedding Lq(n) C Ln(n) and C1 is from (19) . For given ud and 

. -
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Reynolds number to be sufficiently small. As the fluid is usually given with its 
viscosity v, we rather need a sufficiently small driving force (i.e. being restricted 
by p) and desired velocity profile ud, as (50) indeed expresses. See Bubak (2002) 
for quantitative analysis of these aspects. 

This condition (50) causes that the last term in (20) is dominated by the 
term !llu - ulli2(fl;IR") because of the following estimate: 

(((u-u) · 'V)w,u- u) :S: IIY'wiiL""(ll;JR"X")IIu- ulli2(fl;IR") 

:S: C1llu- udll£><+<(n;IR")I Iu- ulli2(fl;IR") 

:S: C1 (11ull£>•+•(ll ;IR") + lludiiL"+'(ll;IR")) llu- ulli2(fl;IR'') 

:S: C1 (Nq : 2
IIPIIL2(ll) + Nq,nlludiiL•l(ll;IR")) llu- ulli2(fl;IR"); (51) 

compare (9) and (19) . 
Then, as "( ~ 0, <fl is convex on fad and the 1st-order optimality condition 

(17) is even sufficient for global optimality, as already observed in Malek and 
Roubicek (1999), one can deduce even more: 

PROPOSITION 5.1 Let {1)-{3) hold. If"(= 0 but {50) holds with 7] > 0, then 
the optimal state u is unique while the optimal control f is ·unique only up to 
rotation-free functions , i.e. modulo the linear space {'Vp; p E W1•2 (0)}. If 
"f > 0 and {50) holds (possibly with 7J = 0), then the optimal control J as well 
as the optimal state u are unique and satisfy the second-order condition {31) . 

Proof. The increment formula (20), together with the calculation (51) , yield 
the estimate (<D'(h) - <D'(h), h -h) ~ C11JIIu1 - u2lll2(ll;IR")· Hence, the 
optimal u must be unique. Then, as f satisfies (8) , it is determined uniquely, 
but only up to 'Vp for p E W 1•2(D) arbitrary (such that f + 'Vp E fad, of 
course). Indeed, by Green's formula,(!+ 'Vp,v) = (f,v)- (p,divv) = (f,v) if 

1 2 -tested by v E W0 ,'orv(O; JRn) so that the control f + 'Vp has the same effect as 

J for"(= 0. 
If "f > 0, then (50) implies uniform convexity of <1) on L2 (0; JRn), hence the 

uniqueness of J and hence also of u is obvious. 
Furthermore, note that (50) also ensures that (30) holds even for any (u, !). 

In particular, it holds for those (u, f) which satisfy (31). • 

Note that, in view of the automatic validity of the second-order condition 
(30), Proposition 3.1 says that any admissible (u, f) satisfying the 1st-order 
optimality conditions is automatically locally optimal. This is, however, not a 
surprising effect as we already proved that (50) guarantees even much more, 
namely that this (u, f) is even the unique globally optimal pair. 

Let us now investigate the Lipschitz stability of this globally optimal pair, 
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(~E), i.e. we confine ourselves to c = (O ,cu ,c;f,), considering c;q = 0. By an 
appropriate modification of (34), the 1st-order optimality condition for (~E) is 
now 

(52) 

Let us mention for convenience that (52), in its classical formulation, represents 
the following system: 

-vf::J.u + (u · \i')u + \i'p = j, 

divu = 0 . 

-vf::J.w + (\i'u) T w - (u · \i')w + V'1r = u- ud + c" , 

divw = 0, 

Vj E F ad : (w -!J,j- f) ::; (c;f,j- f). 

(53a) 

(53 b) 

(53c) 

Assuming again (1) with q >nand (50), the tr iple (u , j, w) solving (52) is 
determined uniquely. 

L EMMA 5.1 Let (1) hold withq > n , let (2) and (3) be satisfied, and assume that 
also (50) holds with TJ > 0. Then the mapping (c;u ,c;f) ~---+ (J ,u) : L2 (D;!Rn)2 ____, 

L2 (D; !Rn)2 is Lipschitz continuous. 

Proof. We take again two vectors of perturbation parameters Ei = (0, ci, c{), 
i = 1, 2, and denote by (ui,];, wi), i = 1, 2, the corresponding optimal solution 
];, the optimal velocity ui, and the adjoint velocity Wi to (~EJ· We subtract 
(53c), written for c;f = c{ with j = ]2, from (53c) for c; f = c~ with f = h 
This gives again (41). Subtracting the perturbed state equations (53a) in the 
weak formulation (see (8)) for c = c1 from that for c = c1, and testing it by 
W := w1 - w2, we get the following expression for the first right-hand-side term 
in (41): 

(W, F) = ((u1 · V')u1- (u2 · V' )u2, W) + v(\i'U: \i'W). (54) 

Here, we adopt again the shorthand notation U := u1 - u2 , F := ]I - ]2, etc, 
used in the proof of Lemma 4. 1. Subtracting the perturbed adjoint equations 
(53b) in the weak formulation (see (16)) for c = c;1 from t hat for c = c2, and 
testing it by U, we get 

v(\i'W: \i'U)- ((u1 · Y' )w1, U) + (w1, (U · V')u1) 

+ ((u2 · V')w2, U) - (w2 , (U · V')u2) = - (U + £ u, U). (55) 

Comparing (55) with (54), after using several t imes the Green formul a in the 
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we get 

(W, F)= -!IU\\l2(n;IR"l- (Eu, U) 

+((ul · V')u1- (u2 · V')u2, W) + ((u1 · V')w1, U) 

-(w1, (U · V')ul)- ((u2 · V')w2, U) + (w2, (U · V')tt2). 

= -!IUI\l2(n;IR"l- (Eu, U) + ((U · V')W, U) 

:::; -I\UIIl2(n;IR"J + 4

1

5 1\Eul\l2(n;IR"l 

+5!1UI\l2(!1;IR") + I\Y'WI\Loo(n;IR")I\UI\l2(!1;1R")· (56) 

The assumption (50) with TJ > 0 implies, like in (51) , that !IV'W\\Loo(n;IR" ) :::; 
1\V'wl!ILoo(n;IR") + I\V'w21\Loo(n;IR"):::; 1- C1T] < 1, so that (56) yields (W,F):::; 
C\\Eu\\ 2 for some C = C(TJ). Moreover, the second term in the right-hand side 
of ( 41) can be estimated as 

(57) 

so that the last term can be absorbed in the left-hand side of ( 41) if 5 > 0 is 
small enough. Moreover, the term -I\UI\i,2(n;IR") in (56), if put to the left-hand 
side, gives the claimed estimate for U. • 

The (L2, L2)-Lipschitz continuity of U obtained in Lemma 5.1 can further 
be improved: 

LEMMA 5. 2 Under the same assumptions as in Lemma 5.1, the mapping 
(c:1£,c:f) f-) u: L 2 (f!;1Rn) 2 ---+ W~,·~ 1v(f!;1Rn) is Lipschitz continuous. 

Proof. In the same notation as in the previous proof, we get from (54) used 
with U instead of W the following estimate 

v!IV'UI\l2(!1;1R" x") = ((u2 · V')u2- (ul · V')u1, U) + (F, U) 

N2NJ 2 
:::; -~.~-\\p\\u(n)I\Y'UI\u(n;IR" x "l 

N2 2 2 
+ 45 I\FIIL2(fl;IR") + 51\V'U\\u(n;IR" x" )' (58) 

see also (13). From the assumption (3), for 5 > 0 sufficiently small, one gets the 
Lipschitz continuity as claimed. • 

PROPOSITION 5. 2 Under the same assumptions as in Lemma 5.1, the mapping 
(c:1£, c:f) f-) u: L2 (f!; 1Rn) 2 ---+ wg·~1v(f!; JRn) is Lipschitz continuous. 

Proof. Subtracting (53a) written for i = 1 and 2, we get 

-vi::!.U + V' P = F + (u2 · V')u2- (u1 · V')u1 = : G, (59) 
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Using the regularity (10), one can estimate the right-hand side of (59) as 

IIGIIP(!!;IR") = IIF- (U · 'V)u2- (u1 · 'V)Uii£2(!!;1R'') 

:S IIFIIL2(!!;1R") + IIUIILa(n;IR")II'Vu2IIL3 (!!;1R" x") 

+ llu1l l L00 (!!;IR") IIVUIIP(!!;IR" x") 

:S IIFIIP(!!;IR") + N3N611UIIwl ,2(!!;IR")IIu211w2,2(!! ;1R") 

+ cllull lw2,2(!!;1R") 11UIIwl,2(!!;IR") (60) 

with c from (10). As we can assume u1 and u2 ranging a bounded set in 
W2·2(0; JR.n), by Lemmas 5.1 and 5.2, we have the Lipschitz continuity of the 
mapping (£U' £f) f---7 G: L2(0; JR.n)2 ---+ L2(0; JR.n). Then, by the W2·2-regularity 
of the Stokes system, see Galdi (1994), Chapter IV, Theorem 6.1, occurring on 
the left-hand side of (59), we get the claimed assertion. • 
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