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Abstract: In this paper, the robust D-stability problem for dis
crete uncertain multiple time-delay systems is examined on the basis 
of their such reduced-order models (the slow and fast subsystems), 
which are obtained by time-scale separation method. Under the 
condition that the slow and fast subsystems of the nominal system 
are both D(a, r) -stable, aD-stability criterion for the slow and fast 
subsystem of the original uncertain system is first derived. A delay
dependent criterion in terms of spectral radius is then proposed to 
guarantee the robust D-stability of the original uncertain system 
subject to structured perturbations. Moreover, the criterion for the 
robust asymptotic stability of the system subject to structured per
turbations can be obtained from the proposed robust D-stability 
criterion. A numerical example is provided to illustrate our main 
results. 
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1. Introduction 

Multiple time-scale phenomena which exist in many physical systems, compli
cate the stability analysis of the systems . Fortunately, the singular perturbation 
method provides us with a powerful tool for the order reduction and separation 
of time scales; see, for example, Kokotovic et al. (1 986) , Khalil (1989) , Hsiao 
and Hwang (1996) , Sun et al. (1996) , Mukaidani and Mizukami (1997), Shi et al. 
(1998) , and the references therein. An important procedure within this method 
is that the multiple time-scale systems are modeled as singularly perturbed sys
tems. Typical singularly perturbed systems include high-gain control systems, 
armature-controlled DC motors, tunnel diode circuits , nonlinear time-invariant 
RLC networks, control system of an airplane, et c. (Kokotovic et al. , 1986). A 
key to the analysis of multiple time-scale systems lies in the construction of 
the reduced-order systems. Then, the dynamics of the full-order system can be 
inferred from that of the reduced-order systems. 

On the other hand, robust stability of time-delay systems has been consid
ered over the years because time delays are commonly encountered in many 
engineering systems. For example, feedback systems controlled by computer 
have time delays due to the execution of many numerical operations . Besides, 
chemical processes, turbojet engines, long t ransmission lines, electric networks, 
hydraulic systems, and pneumatic systems, etc., all have time delays. Their 
existence frequently causes the instability of the system. Moreover, most of 
the dynamic systems contain some uncertainties that may arise, for example, 
from modeling errors or linearization approximation (Phoojaruenchanachai et 
al. , 1998). As these uncertainties are almost inevit able for any modeling of 
real systems, the problem of maintaining the stability of a system subject to 
uncertaint ies has been of consideration to researchers over the years (Wu and 
Mizukami, 1994; Lien et al. , 1998). Furthermore, clue to the existence of uncer
t ainties, the poles cannot be placed precisely at a specific location . Therefore, 
assigning the poles in a specific region instead of a specific location is more 
prac tical. Consequently, to achieve the various aspects of sys tem performance, 
the technique of pole-assignment has been considered during the past years; see, 
for example, Rachid (1990), Chou (1991 ), Lee et al. (1992), Su and Shyr (1994), 
Hsiao et al. (2000) , and the references therein. 

Recently, there have been many related research papers on the analysis 
and control design of the two-time-scale systems. Li and Li (1992) proposed a 
frequency-domain stability cri terion for discrete two-time-scale systems in which 
the time delay and uncertain perturbation have not yet been considered. Trinh 
and Aldeen (1995) proposed a criterion of asymptotic stability for singularly 
perturbed systems with multiple time delays, but the delay terms were t reated 
as the perturbations of the nominal system. Hsiao et al. (2000) investigated the 
D-stabilization problem of discrete singularly perturbed systems in which the 
f::~.rt.nrs nf tinw rl elav anrl nncertaintv have not been t aken into consideration. 
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dynamic systems. Consequently, it is practical to take them into consideration. 
This is due not only to theoretical interests but also to the relevance of these 
phenomena in the field of control engineering applications. It is the purpose of 
this paper to investigate the robust D-stability problem of uncertain discrete 
multiple tirne-delay two-time-scale systems. 

2. Problem formulation 

Consider the following uncertain discrete two-time-scale system with multiple 
time delays, which is modeled as a singularly perturbed system: 

n n 

~r1 (k + 1) = L(Ali + .6.A1;)x1 (k- h;) + t: L(A2; + .6.A2;):r2(k- h;), 
i.=O i=O 

(1a) 
n n 

x2(k + 1) = L(A3; + .6.A3;):1:1 (k- h;) + t: L(A4i + .6.A4i)x2(k- h;), 
i=O i=O 

(1b) 

where x1 ( k) E R'~~· and x2 ( k) E R'~~I, i.e., the dimensionality of the system ( 1) is 
n 5 + n 1 . The small positive parameter f is called singular perturbation param
eter, which often occms naturally due to the presence of small parameters in 
various physical systems. For instance, it may represent the machine reactance 
or transient in voltage regulators in a power system model, the time constant 
of the driver and the actuator in an industrial control system, and it may be 
clue to fast neutrons in a nuclear reactor model. It can be seen that, when the 
singular perturbation parameter E is sufficiently small, the system (1) will have 
two clusters of poles: one cluster of poles close to the origin and another close 
to the poles of subsystem xr(k + 1) = 2.:;,:,0 (A1; + .6.Ali):r1 (k- h;). 

Consequently, the system (1) possesses two-time-scale property, i.e., it pos
sesses slow and fast behavior in its response. Since the method of time-scale 
separation is used for the analysis of the system ( 1), the state of system ( 1) is 
decomposed into two parts, x1 (k) and :r 2 (k) corresponding to the slow and fast 
behavior, respectively. The discrete system (1) is referred to as the C-moclel in 
Naidu and Rao (1985). Moreover, A 1;, A2;, A3; and A4; .• i E 50, are constant 
matrices with appropriate dimensions, .6.A1 i, are perturbation matrices with 
the structured perturbations I.6.Aji I :::; D ji, where Dii are constant matrices 
with positive elements and are assumed to be known, h0 = 0, and h;, i E S{' , 
are pair-wise different positive integers, the discrete instants k are non-negative 
integers. 

REMARK 1 System (1) is a discrete- time system with time delay character·ized 
via a delay difference equation. According to the system augmentation appToach, 
(1) can be converted into a hiQher-order dela1;-free eQMtion x (k +]) = (A+ 
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.... , xl(k- h), x2(k), x2(k- 1), ... , x2(k- h), may be selected as the states of 
the delay-free system. 

However, note that there are altogether ( h + 1) (n 8 + n f) state variables in 
the system. Consequently, the system matrix A is of dimension (h + 1)(n8 + 
n1) x (h + 1)(n8 + n1 ). Take, for example, h = 5, n 8 = 3, and n1 = 3, then 
A is of dimension 36x36, which is a big matrix. However, in system (1), only 
3x 3 matrices are involved. Consequently, stability robustness analysis becomes 
quite troublesome if we use the converted delay-free system. 

The goal of this paper is to find a D-stability criterion for the system (1) 
by using the time-scale separation method. Throughout this paper, we use the 
following definition for the D-stability property of discrete multiple time-delay 
systems: 

DEFINITION 1 (Wang and Wang, 1995): Let a and r be real numbers, such 
that r > 0 and lal + r < 1. A discrete linear time-invariant time-delay system 
x(k + 1) = 2:~0 (Ai + 6.Ai)x(k- hi) is said to be r-obust D(a, r)-stable if, for 
all values of 6.Ai from a given region, all poles of the system are within the 
disk D(a, r) centered at (a, 0) with radius r. In other words, the solutions of its 
characteristic equation sat'isfy iz - al < r. 

DEFINITION 2 The multiple time-delay system x(k + 1) = 2:~0 1J!i x(k - i) is 
D(a,r)-stable if and only if I det[z/- IJ!(z)]l > 0, lz - al 2: r, where IJ!(z) = 
'\"'n .T. -i 
L.d= O 'J' iZ · 

Before the main results are derived, the nominal system of the uncertain 
system (1) is first introduced as follows. 

n n 

(2a) 
i=O i=O 

n n 

(2b) 
i=O i=O 

According to the time-scale separation method in Mahmoud (1982) and Sak
sena eta!. (1984), the slow subsystem and fast subsystem of (2) can be derived 
as follows. 

2.1. The slow subsystem of the nominal system 

The two-time-scale property of a singularly perturbed system is characterized 
by the presence of slow and fast modes. The dynamics of the fast mode of the 
system dynamics, which is active only in a short period (fast transient period), 
will ;mnP.:u at first. ThP. rlvnamir.s of svstP.m statP.s x , ( k) and x~ ( k) in the fast 
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The stability problem for the fast mode of the system ( 1), will be discussed in 
the following sections. If the fast mode is stable, the fast component of x 2 (k) is 
significant only during the fast transient period. After the period , the system 
dynamics reaches its slow mode and the fast component of x2 (k) is negligible. 
Consequently, the variables xi(k) and x 2 (k) approach their slow components , 
i.e., the quasi-steady states x 5 (k) and x2 (k) , respectively. The concept of quasi
steady states is introduced by Kokotovic et at. (1986) to indicate the rapid 
convergence of the systems states to their slow components after a short fast 
transient period. 

Consequently, in order to obtain the nominal slow subsystem, we replace 
x2 (k- hi) and x 1 (k) by x2 (k) and X 5 (k), respectively. Then the nominal discrete 
singularly perturbed system (2) can be reduced to the following slow subsystem: 

n n 

(3a) 
i=O i =O 

n n 

(3b) 
i=O i =O 

From (3), we obtain the slow subsystem as 

n 

Xs(k + 1) = LMi · X5 (k- hi), ( 4a) 
i=O 

where 

(
I- E t A4j) -

1 

A3i· 
J = O 

( 4b) 

Let 

n 

B j(z ) = LAjiZ-h , j E 5{. (5) 
·i=O 

Taking the z-transform of the slow subsystem ( 4), we have 

(
zl- t Miz-h;) -

1 

z · :r5 (0) = [zl- K(z)t1 z · x 5 (0) 
,=0 

= Gns(z) · Z · X 5 (0) , (6a) 
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I<( z ) ~ B, (z ) H (t,Au) · (1- 't,A•;) _, Bs(z ), 

Gns( z ) = [zl- K(z)]- 1 . 

If the slow subsystem (4) is D(a,r)-stable, then 

I det (G;:;-1(z )]l > 0, lz - al ~ r. 

2.2. The fast subsystem of the nominal system 

SHI NG-TAI PAN 

(6b) 

(6c) 

During the fast transient period, the quasi-steady states x 5 (k) and :i2 (k) are 
assumed to be constant. Thus, we may approximate x 5 (k - hi ) and x2 (k + 1) 
by x 5 (k) and xz(k), respectively. Moreover, by view of the nominal system 
(2) and the slow subsystem (4), it can be seen that x 1 (k) approaches x 5 (k) in 
( 4) as t: approaches zero. Therefore, if t: is sufficiently small , it is reasonable 
to approximate x 1 (k) by x5 (k) , i.e., xl(k) ~ x 5 (k) . According to the above 
discussion , we are in position to derive the fast subsystem of the nominal system 
(2) . Denote XJ(k) as the fast component of xz (k). We have XJ (k) = x2 (k)
xz(k) and 

XJ(k + 1) = xz(k + 1) - xz (k + 1) = x2 (k + 1)- x2 (k). (7) 

According to (2b) and (3b), we obtain the fast subsystem from (7) as 
n 

Xj (k + 1) = ELA4iXJ(k - hi) . (8) 
i=O 

Taking the z-transform of the fast subsystem (8) , we get 

X t(z) ~ (xi-' t,.4,;z-h) _, z · x t(D) ~ Gnt(z) · z · .s J(O), (9a) 

where 

If the fast subsystem (8) is D(a,r)-st.able, then 

I det(G~}(z) ]l > 0 lz- a l ~ ·r. 

(9b) 

In the following derivation, we assume that the nominal slow subsystem ( 4) 
and fast subsystem (8) are both D(a, r)-stable. 

3. The slow and fast subsyst en1 of the uncertain system 

Tn this section. the stabilitv of the slow and fast subsystems of the uncertain 
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as follows . 

LEMMA 1 (Hsiao et al., 2001) For any matri.r A E Rmxm , if p(A) < 1, then 
Jclet(J ±A)J > 0. 

LEMMA 2 (Su and ShyT, 1994) 
The zero state of the system x (k + 1) = L~o Mi x(k- i) is asymptotically stable 
if and only if I clet[zi- M(z)]J > 0, JzJ ~ 1, where M(z) = L~=oMiz-i. 

LEMMA 3 (Chou, 1991) For any m x m matrices A, B , and C, if JBJ < C, 
then 

(a) p(AB) ~ p( JAJ · JBJ) ~ p( JAJ · C) 

(b) p(A +B) ~ p( JA + BJ) ~ p( JAJ + JBJ) ~ p(IAI + C). 

LEMMA 4 (John, 1967) If f( z ) is analytic in a bounded domain 'l1 and contin
uous in the closure of 'l1 , then Jf(z)J takes its maximum on the boundary of 'l1 . 

3.1. The slow subsystem of the uncertain system 

Before investigating the D-stability of the uncertain slow subsystem, we intro
duce a lemma. 

LEMMA 5 If 

(10) 

holds, then we have 

(11 a ) 

where 

( = (ry( [1- (ct,v,) (rylr (llb) 

with 

ry = (1- c t,v .. r' (llc) 

Proof. From (llc), we have 

( 
n n \ -1 r ( n \ 1-l 

I - <LA4i - E Y':.0.A4i I = 'I). I I- E ),.0.A4i I . 7) (12) 
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Since 

(13) 

we obtain 

[I-£ (t,~>A,,) r ~I+£ (t,M••) ry + [£ (t,M••) { + 

Ht,M .. ) "r + 

Hence, we have 

(14) 

Thus, the inequality (lla) holds in view of (12) and (14). This completes the 
proof. • 

Let 
n 

Bjt:. (z) = 2)Aji + 6.Aji}z-h', .i E St . 
i=O 

Similarly to the derivation of (6a) and according to (1), we get 

X 5 (z) = Gt:.s(z) · Z · X 5 (0) 

where 
n 

Gt:.s(z) = { zi- [Btt:.(z) + c: [2)A2i + 6.A2J] 
i=O 

[I- c: t(A4i + 6.A4i) r1 

B3t:.(z)]} -t. 
i=O 

(15) 

(16a) 

(16b) 

From Definition 2, the uncertain slow subsystem (16) is D(a,r)-stable if the 
following inequality holds: 

1 det[ c;~(z) ll > o, !z- a ! :::: r. (17) 

LEMMA 6 If the nominal slow subsystem is D(a, r)-stable, i.e. I det[G;:;-I (z)]l > 
n I " - rvl > r fhPn fhP 11.nr.Prf.n.in slnw snhs11stem ( 16) is D( a. r) -stable if the 
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(18a) 

where 

S(PI ~ H t,A,. + t,D") ( (ot,D .. ) +E (t,D")] 
· {I" B,(a+ ,p-> II+ lryl · t, [D3i ·l(a + ,p-> )_,, IJ} 

+ t, [D,; l(o + ,p-> )_,, IJ + < I (t,A,.) ryl 

n 

. L [D3i · l(a + r/3 - 1)-h' I]. (18b) 
i=O 

Proof. Since 

according to (6c), (16b) can be rewritten as 

G~5 (z) = [zl- K(z )- ~K(z)] - 1 = [G~l ( z ) - ~K(z)]- 1 (19a) 

where 

~K(z) = t~A1iz-h' +c(tA2i) ·ry· (t~A3iz-h' ) 
t=O t=O t=O 

+ Ht, (A" + M,.) l· [~ _ , t,A., _ , t,M.r (, t,M .. ) 
(19b) 

Consequently, we have 

I det[G;;;~(z)]l =I det[J- ~K(z ) · Gns(z)]l · l det[G~J(z )]l-

Since I det[c ;-;:: (z)11 > 0, lz - al > r, the examin ation of (17) is eauivalent to 
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II::::(,B)· JGns(a+r,B- 1 )111 < 1, (29) 

II [ E ~t>D., · !(a + r~· ')-h, 1] · IGn/(a + r~-• )Ill < 1. (30) 

Then the uncertain discrete singularly per-turbed system ( 1) is D (a, T) -stable if 

p{f(,B) ·JGns(O' + r,B- 1 )J · [/-=:(,B) ·JGns(O' + T,B- 1 )J] - 1
} < 1, J,B J :S 1, 

(31a) 

wher-e 

JGnj(O' + r,B-1)1 

[1- o (~D., !(a +c~-·l-h'l) IG,.J(a+r~-·llr} 
[IB,(a + r~- · )I+~ D, · !(a + r~- · )-h, 1]- (31b) 

Proof. By virtue of (15), (16b), and (28b), <I>(z) is given by 

<I>(z) = [G6.~(z) - ~<I>(z)t 1 

where 

(32a) 

~<I>(z) = -c[I)A2;+~A2; )] · [I- ci)A4i +~A4; )]-
1

Bu,.(z) 
,=0 1.=0 

n 

+ c l:)A2i + ~A2;) · z-h; · Gt>.J(z)Bu,.(z). (32b) 
i=O 

From Definition 2, <I>(z) is D(a, r)-stable, if the following inequality holds: 
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Moreover, we have 

I det[G~~(z)- ~<I> (z) ][ =I det[I- ~<I>(z ) · GD.s(z )][· det[G~;(z )][. 

It is obvious that if (29) and (30) hold , implying (18) and (25) , then GD. 8 (z) 
and GD.J(z ) are both D (a:, r) -stable. Hence we have I det[G~~(z) ]l > 0, 
lz- a: l 2': T. Consequently, if I det[I- ~<I>(z ) · GD. s(z )]l > 0, lz- a: [ 2': r, i.e. 

I det[I-~ <I>(a: + r/)- 1 )-GD.s(a:+r/)- 1 )]1 >0, 1/JI ~ 1, (34) 

t hen the inequality (33) holds. Similarly as in t he derivation of (lla) , if (29) 
holds, then we have 

I GD.s(a + r /J - 1
) I~ I Gns(a: + r/) - 1

) I · [I - =-(!) ) · I Gns (a: + r/)- 1
) I] -

1 
(35) 

for all 1/J I ~ 1, in view of (19) and (22). Similarly, if (30) is satisfied, t hen we 
get 

IGD.J (a:+r/J- 1 )1 ~ IGnj (a:+r/)- 1 )1 

{I - 0 [t,D.,I (a+ rfi-' ) -h, I]IGn/ (a+ rfi -' ll r' (36) 

Due to (lla), (32b), and (36), it can be shown that 

I~<I>(a:+7·/J - 1 )1 ~ r( /J ), 1/J I ~ 1. (37) 

As a consequence of (35) and (37) , we have 

p[~<I>(a+r/) - 1 )· GD.s(a:+r/)- 1
) ] 

~ P {r(f)) ·IGns(a + r /J - 1 )1 · [I-=-(!)) ·IGns(a + r /J- 1 )1 r 1
}. 

According to Lemma 1, if (31a) holds, then (34) is obtained. Thus we have that 
ci>(z) is D( a: , 1· )-st able in view of (33). Hence, the uncertain discrete singularly 
perturbed system (1) is D(a, r)-stable. T his completes t he proof. • 

R EMARK 2 It is obvious that l11 l ~ IGns(z) l in view of (9b) and (llc). Thus , 
if the inequality (30) holds, then (1 0) and hence (1 1 a) hold. In other wor-ds, 
ineqMlity (30) implies Lemma 5. 

COROLLARY 1 Suppose that the nominal slow subsystem (4) and fast subsystem 
(8) are asymptotically stable and the following inequalities hold for all lf) l ~ 1: 

11 -=:: ro\ '" r o- 11ll _ , II(~ ~ ·~ ' · .\ ·- ·- ' [[ 
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where 

. {I~ B, (p-l) I + 1~ 1 t, (D,, lfih' II} + t, (Dli lfih' I I 
+ E (t,A,,) ~ t,cn,, lfih' ll 

Then the uncertain discrete singula-rly perturbed system ( 1) is asymptotically 
stable if 

where 

f(fi) = HltaA+ t,nu) ~ +£ (IB,(fi-'11 + t, n,.) IGnt(fi-'11 

[I- E (t, D,, · lfih· l) ·IGn1(p-1 11]-' } 

[IB3(13- 1)1 + ~(D3; ·l/3h'i)] . 

Proof. This result follows immediately from Theorem 1 by setting a = 0, r = 1. 

• 
COROLLARY 2 Suppose that the nominal slow S1tbsystern (4) and the nominal 
fast subsystem (8) are D(o:, r)-stable . If (29) and (30) hold for all (3 = eJ 0 , 

BE [0 , 2n], then the uncertain discrete singularly perturbed system (1) is D(o:, r)
stable if (31a) holds for j3 = eJ0 , BE [0, 2n]. 

Proof. If l/31 ~ 1, then we get 

jo: + ·r(J - 1
1 ~ jr(3 - 1 j- jo:j = r j/3 - 11- jo: j ~ T- jo:j > 0. 

Hence, the multiple poles of (a+ r(J - 1 ) -h ; , i.e. , (3 = -r/ a:, are outside the unit 
disk l/31 ~ 1. Equivalently, (a+ r(J- 1 )- h; is analytic in 1!31 ~ 1. Moreover, we 
obtain that Gns (a+ r(J- 1

), [J - 3((3) · IGns (a+ r(J - 1
) lt1

, and f( (J) are analytic 
and continuous for all 1!31 ~ 1, respectively. By Lemma 4, the evaluation of 
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5. Numerical example 

Consider the uncertain discrete system (1) with 

[ -0.1 
AIO = -0.1 

0.2 ] 
-0.3 ' 

A [ 0.1 
11 = -0.2 

-0.05 ] 
-0.1 ' 

A _ [ - 0.03 
12- -0.1 

-0.1 ] 
0.03 ' 

A [ 0.2 
20 = -1.3 

-0.3] 
-0 .6 ' 

A [ 0.5 
21 = 0.2 

0.2 ] 
-0.5 ' 

A [ 0.1 
22 = 0.3 

-0.3 ] 
-0.2 ' 

[ -0.3 
A3o = _2.9 

3.4 ] 
1.2 ' 

A [ 0.1 
31 = -2.3 

1.8 ] 
2.1 ' 

[ -0.3 
A32 = -1.6 

-0.2 ] 
0.8 ' 

[ -2.2 
A4o = 2.7 

-1.1 ] 
3.6 ' 

A [ 2.8 
41 = -2.1 

3.8 ] 
1.6 ' 

[ -2.8 
A42 = 3.2 

-3.1 ] 
-3.1 ' 

ho = 0, h1 = 1, h2 = 2, E = 0.01 . Moreover, the upper bounds of the 
structured perturbations are given in the following: 

D [ 
0.02 0.01 ] D [ 0.01 0.002 ] D = [ 0.003 0.01 ] 

10 = 0.02 0.01 ' 11 = 0.01 0.01 ' 12 0.002 0.03 ' 

D [ 0.03 
20 = 0.01 

0.01 ] [ 0.02 
0.02 ' Dn = 0.02 

0.01 ] [ 0.02 
0.02 ' D22 = 0.02 

0.01 ] 
0.03 ' 

D [ 0.01 
30 = 0.01 

0.03 ] D [ 0.01 
0.01 ' 31 = 0.01 

0.03 ] [ 0.02 
0.02 ' D32 = 0.01 

0.03 ] 
0.01 ' 

D [ 0.02 
40 = 0.01 

0.01 ] D [ 0.03 
0.03 ' 41 = 0.01 

0.01 ] D [ 0.01 
0.02 ' 42 = 0.02 

0.01 ] 
0.02 . 

In what follows , the D(o:, r)-stability problem with o: = 0.1 and T = 0.7 is 
investigated according to Theorem 1. Since max p[(o: +r,B- 1 )- 1 J( (o: +1·{.3 - 1 )] = 

1!31 :S1 
0.6418 and max p[(o: + r,B- 1 )- 1cB4 (o: + r,B- 1 )] = 0.3185, the nominal slow 

1!319 
subsystem (4) and fast subsystem (8) are D(o:, r) -stable in view of (6c), (9b), 
and Lemma 1. Moreover, since 

and 

max II 2(,8) ·IGns (o: + r,B- 1 )111 = 0.3030 
1!31 :S1 
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the inequalities (29) , (30) , and (31a) are satisfied . By Theorem 1, the uncertain 
discrete system under consideration is D(0 .1, 0.7)-stable. For convenience of 
simulation , let 

~A [-0.02 0.01] ~A [-0.01 0.002] ~A [-0.003 -0.01 ] 
10 = 0.02 0.01 ' 11 = - 0.01 0.01 ' 12 = 0.002 - 0.002 ' 

~A [-0.03 -0.01] ~A [ -0.02 0.01 ] ~A [0.02 - 0.01] 
20 = -0.01 -0.02 ' 21 = 0.02 -0.02 ' 22 = 0.02 -0.03 ' 

~A [ -0.01 -0.03] ~A [ -0.01 0.03 ] ~A [ -0.02 0.03 ] 
30 = -0.01 -0.01 ' 31 = 0.01 -0.02 ' 32 = -0.01 - 0.01 ' 

~A [-0.02 0.01 ] ~A [-0.03 0.01 ] ~A [-0.01 -0.01] 
40 = 0.01 -0.03 ' 41 = -0.01 -0.02 ' 42 = 0.02 -0.02 . 

Table 1 shows the simulation results of the distance between the poles of the 
uncertain discrete system and the center (0.1, 0. 7) of disk D(0.1, 0. 7) for various 
E . This table shows that the uncertain discrete system is D(0 .1, 0.7)-stable for 
E ~ 0.032. However, if E 2: 0.033, the poles of the uncertain discrete system may 
lie outside the disk D(0.1, 0.7), i.e., the D(0.1, 0.7)-stability of the uncertain 
discrete system cannot be guaranteed. 

€ = E = E = E= E = E = E = 
0.008 0.01 0.02 0.03 0.032 0.033 0.035 

Pole 1 0.6360 0.5303 0.5764 0.6105 0.6163 0.6191 0.6245 
Pole 2 0.5195 0.5303 0.5764 0.6105 0.6163 0.6191 0.6245 
Pole 3 0.5195 0.6443 0.4542 0.5262 0.5385 0.5445 0.5562 
Pole 4 0.5310 0.5268 0.4542 0.5262 0.5385 0.5445 0.5562 
Pole 5 0.5310 0.5268 0.3726 0.4066 0.6965 0 .7208 0.7151 
Pole 6 0.3187 0.3488 0.6251 0.6835 0.6965 0.7208 0 .7151 
Pole 7 0.3187 0.3488 0.5948 0.6835 0.41.31 0.4162 0.4224 
Pole 8 0.3369 0.3407 0.4976 0.4654 0.4599 0.4573 0.4524 
Pole 9 0.4084 0.4332 0.4976 0.4654 0.4599 0.4573 0.4524 

Pole 10 0.2438 0.2549 0.2936 0.3196 0.3241 0.3262 0.3303 
Pole 11 0.2438 0.2549 0.2936 0.3196 0.3241 0.3262 0.3303 
Pole 12 0.0569 0.0630 0.0778 0.0835 0.0842 0.0846 0.0852 

Table 1. Distance between the poles of the uncertain discrete system and the 
center (0 .1, 0) of disk D(0 .1, 0.7) for various E 

6. Conclusions 

The robust D-stability of uncertain discrete two-t ime-scale systems with multi
nl<> tim <> rl <>bv" h::.." h<> <>n r.nn"irlPrPrl in t.his nanPr . ThP n~olJ(:ed-order models . 
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condition that the slow and fast subsystems of the nominal system are both 
D(a, r)-stable, we have proposed a frequency-domain robust D-stability crite
rion such that the slow and fast subsystems of the original uncertain system are 
D(a, r)-stable . A delay-dependent criterion has also been proposed to guar·an
tee the robust D-stability of the original uncertain system subject to structured 
perturbations . A numerical example has been provided to illustrate our main 
results. 
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