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Abstract: A control problem over the infinite time horizon for 
periodical system is considered. Our aim is to analyze a special 
concept of solving problems of this type, based on the known idea 
of reachable sets. We try to consider this concept in a more general 
manner than it was done in earlier works and to find what is really 
essential in it . The algorithm corresponding to the proposed general 
description is presented. 
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1. Introduction 

The reachable sets concept has been introduced a few decades ago, see Bertsekas 
and Rhodes (1971, 1972) , Glover et al. (1971). In some papers on this subject 
another terminology was used (periodically invariant, viable sets), see Bianchini 
et al. (1993), Karbowski (1999). We found that there is something common 
and essential in all those approaches, but it has not been explicitly and clearly 
formulated. All the papers quoted are often loaded with many part icular details 
concerning special features of each case. 

In the present paper we are going to consider the concept in as general terms 
as possible. That is why we try to apply the formulations using the logical 
and set- theoretical language only. This should not be strange at all , however, 
realizing that this language has been accepted in mathematical sciences for 
almost 200 years and that it makes possible to see clearly many apparently 
different things. This will be sufficiently clear, we hope, via an example, which 
we consider in the sequel. The main tasks to be achieved in this paper are the 
following: 

First , we formulate in Section 2 the periodic and infinite horizon control 
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for further considerations. Although this formulation is apparently similar to 
the classical one, it is essentially different in fact , since it uses the elements of 
the power set 2x of the state space as decision variables (instead of the states 
themselves), see the examples in Sect ion 3. 

Secondly, we discuss the methodological constructions built within the reach­
able sets concept. The basic notions are introduced, the theorems are proposed 
and demonst rated in detail in Section 3. At the same time, the respective 
necessary assumptions are formulated. 

Finally, the respective computational algorithm is theoretically analyzed in 
Section 4. Let us underline at once the generality of the presented approach. 
The formulation of control problem, of the assumptions admitted and finally of 
some properties concerning the concept itself (t he respective theorems) , have 
this general, abstract character. 

2. Problem formulation 

The present formulation is applicable to a large class of problems, due to the use 
of an abstract scheme expressed by means of elementary logic and set theory. 

What is important in the proposed formulation, it is that the problem is 
periodic and infinite. Moreover, the required condition to be satisfied has the 
special form , with the general quantifier Vn at the beginning and the same 
relation for each period i.e. for each n EN; where N = {0, 1, ... } is the set of 
all non-negative integers . 

There are two groups of variables, having the sense of state sets and controls 
in our problem. Suppose that we are given a set X, called state space and a set 
M representing the contml space. Let us denote by X the family of all subsets 
of X : X = 2x. For a given p(x,m) being sentential ftmction (predicate) of 
two free variables and F being a mapping from X x M into X, we consider the 
following infinite pmblem: 

Find a sequence {mn}, 111n EM and a sequence {Xn}, X n EX, n = 0, 1, ... , 

defined by the state equation: X n+l = F(Xn , m n), n = 0, 1,. .. (1) 

that satisfy the condition: Vn EN: p(Xn, m n) · (2) 

The problem (1)-(2) will be reformulated now into a more logically concise 
form. Introducing two auxiliary variables x and J..L , representing an initial state 
set X 0 and a sequence of controls { m n} respectively, we can formulate the 
problem as follows: 

Find x EX and J..L E MN that satisfy the following formula P(x, J..L) : 

3~m~ 1 E MN. ~X, 1 E XN : [{m, } = J.Ll /\ fXo = xl/\ 
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Note first that formula P(x, J.L ) can be satisfied only by x EX and J.L E MN. 
Indeed, if P(x, J.L ) is true, then, according to (3) there exists a set Xo E X, such 
that X 0 = x and a sequence mn E M N, such that { mn} = J.L . 

Taking into account this remark, our problem will be formulated shortly as 
follows : 

Find a pair (x, J.L) that satisfies formula P(x, J.L) (4) 

where P (x, J.L) is defined in (3) . This is exactly this type of problem, to which 
the reachable sets concept can be applied. 

One can see that the above form follows that of Terlikowski (2002) for a 
min-max optimization problem. It has been obtained in the paper quoted after 
a suitable formal manipulation (see chapter "The regular concise form of the 
problem") . 

2.1. Transferring the classical problem into the power set of the state 
space 

It will be shown now how to transformulate the classical control problem, e.g. 
that of keeping the state in a given set, to the form presented above. 

A dynamic system is considered described by the following discrete time 
state equation, over the infinite t ime horizon: 

where Xt E X ~ ffi.n is the process state value at instant t; rn1 E M ~ ffi."' - the 
control value and Zt E Z ~ ffi.z - disturbance value within the stage t, i.e. between 
time instants t and t + 1. ffi.n, ffi."', ffi.z are n, m, z - dimensional Euclidean spaces 
respectively; ft is a function , ft: ffi.n x ffi."' x ffi.z-+ ffi.n; n ,m ,z E {0, 1, ... }, i. e. 
the set of all natural numbers. 

The following instantaneous constraints are imposed, noted in a unified form 
as: (xt, mt, zt) E Wt ~X x M x Z, t = 0, 1, .. . , where Wt is a given nonempty 
set, depending on t. 

It is assumed that we deal with the following, periodicity relations in our 
control process: V t : ft = f t+T, V t : Wt = Wt+T· Thus, each period consists of 
T "similar" intervals called stages, numbered with indices i = 0, . .. , T -1. The 
idea is to transfer the problem from the state space X into the space of state 
sets, 2x. 

We use the following notation and definitions: M = {(R0 , ... , Rr- 1 ) :Vi= 
0, 1, . . . , T -1 Ri E M x} is t he set of all T -element sequences of control laws. 
We denote by {Ki}J' the sequence ofT+ 1 mappings J{ i : 2x x M -+ 2x : 
K 0 (X , m) = X; J( i+ 1(X, m) = {y : :Jx, z : [x E K i(X, m) 1\ (x, Ri(x), z) E 

Wi 1\ y = fi(x, Ri(x), z)]}, i = 0, 1, ... , T- 1. 
The mapping J(i+l, i = 0, . .. , T - 1 determines the set of states reached 
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beginning of the first period, i.e. at time instant 0), and a sequence of control 
rules m = (R0 , ... , Rr_ 1 ) within this period, provided that every disturbance 
value is such that constraints are satisfied. The last mapping, corresponding to 
the T-th stage, is denoted by F: F(X,m) = KT(X,m) and it determines the 
set of all states reached by the system at the end of the first period, for any 
initial state x 0 E X and the control m. 

Next, the sequence ofT relations P; ~ 2x x M, i = 0, 1, ... , T -1, is defined 
as follows: P;(X, m) = {\fx E Ki(X, m) 3z (x , R;(x), z) E Wi}. Note that 
the condition in this formula expresses the requirement for the pair ( x, R; ( x)) 
to belong to the projection of the set W; on the product of state and control 
spaces IRn x JRm. As it is seen, P;(X,.m) signifies that for the control m and for 
any state reached at the beginning of the i-th stage- all the constraints imposed 
for i-th stage are satisfied. One may say that every relation P;, i = 0, ... , T -1, 
describes those constraints, which concern only the i-th stage of the first period, 

Finally, we define the relation P as the conjunction of all relations from the 
sequence {P;}if- 1

: 

P(X,m):::: {X~ X 1\ mE M 1\ [Vi= 0, ... , T -1: P;(X,m)}. 

Note that, clue to periodicity of the control process, P describes those con­
straints that concern the stages t = nT, nT + 1 ... , (n + 1)T - 1, for any 
n = 0, 1, ... , that is, for any period of the infinite control process. Finally, 
with the aid of this notation and due to the periodicity of control process, we 
may note informally the problem as the infinite conjunction: 

In this conjunction, mn is a finite T-element sequence of control laws in the n-th 
period, that is mn = (Rnr, ... ,R(n+l)T- 1), and the state sets Xn (determining 
the states at the beginning of n-th period) are defined recursively: Xn+ 1 = 
F(Xn, mn), n = 0, 1, ... , with a given initial condition. 

Our problem can be therefore be noted in the following concise regular form: 

Find an initial state set X 0 ~X and a sequence {mn}, 

with mn E M,n = 0, 1, ... , such that \In EN: P(Xn,mn) 

subject to: Xo = Xo, Xn+l = F(Xn, mn), n = 0, 1, .... 

3. The basic notions and theorems in reachable sets 
concept 

The idea of reachable sets has been applied to solve e.g. the min-max opti­
mization problem for linear system case in Glover et al. (1971), Bianchini et al. 
(1993). The present analysis, although applicable to an essentially larger class 
of problems, needs, however, some additional assumptions. They are in any way 
easily satisfied in the classical case of a problem described through a recursive 
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The following two abstract and general conditions concern the set-algebraic 
properties of p and function F : 

'<IX , X' EX 'r/m EM : {( (p(X, m) 1\ X'~ X)-+ p(X', m) ) 1\ p(0, m) )} 
(A) 

'<IX, X' EX 'rimE M : {(X'~ X-+ F(X', m) ~ F(X, m)) 1\ (F(0, m) = 0)} 
(B) 

The symbol a -+ f3 means here and thereafter the implication and a = f3 the 
equivalence, if a and f3 are sentential expressions. 

Condition (A) states that the relation determined in X by p( •, m), for any 
fixed m E M, is invariant with respect to the inclusion relation ~ . The first 
part of (B) states that F(•,m), with any fixed mE M, is a mapping X-+ X 
homomorphic for the inclusion relation ~ in X, i.e. the relation ~ between two 
sets is conserved in their images by F ( •, m). 

The form of (A), (B) is in fact very general. We use such a form to capture 
many different cases and to stress that this is the only important thing (and not 
many other specific features of the state equation et c. ), which is relevant from 
the point of view of the considered concept of reachable sets. The general formal 
language is ideal to obtain such a methodological gain . Assumptions (A) and (B) 
occur to be quite naturally applicable to the optimization problem considered 
in Terlikowski (1997) and Karbowski (1999) . Indeed, these assumptions are 
satisfied if p and F result from a usual description in the state space and p 
results from a safety-type description of control variants, Terlikowski (2002). 
Note that only the cases of this type are considered in the majority of works in 
this field . The basic t heorems characterizing a special class of solut ions will be 
now proved under two above assumptions. 

The first theorem introduces the crucial notion of the concept : the reacha­
bility, as well as a special class of solutions called reachable stationary solutions. 
By stationary solution we mean such a pair (X, { m n} ), which is a solut ion of (3) 
and , moreover, {mn} is a constant (time invariant) sequence of controls, that 
is: mn = m for all n = 0, 1, .... This sequence will be usually noted by { m}. 

TH EOREM 3.1 Let the pair (X, 1n) satisfy the following reachability condition: 

p(X, m) 1\ [F(X, m) ~X]. (5) 

Then, under assumptions (A) and (B) , the pair (X, { m}) is a solution of pr-ob­
lem (3). 

Proof. Let (X , {m }) satisfy (5). We consider the sequence {Xn}, X 0 = X, 
being the solution of equation (1) , for the constant sequence { mn} such that 
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First, it is evident that the formula Vn E N: Xn+l = F(Xn, mn) occurring 
in (3) is satisfied by the sequences {Xn} and {mn} = {m} . In particular, we 
have: Xo =X EX, m 0 E M and Xn EX for all n = 0, 1, .... We will prove by 
induction that Vn ;::: 0 : Xn ~ X . Indeed, we have Xo = X ~ X and supposing 
Xn ~ X for some n ;::: 0, we get by assumption (B): Xn+l = F(Xn, m) ~ 
F(X, m). The latter, due to F(X, m) ~X in (5), implies: Xn+l ~ X. Then, 
since we have p(X, m) by (5), we see that assumption (B) implies p(Xn, m). 
This means t hat p(Xn, mn) holds for every n;::: 0. Hence, {Xn} and {mn} = 
{m} satisfy formula Vn EN : p(Xn,mn) in (3) , so the pair (X, {m}) satisfies 
formula P(x, J.L) . • 

DEFINITION 3.1 Any pair (X, m ) satisfying (5) is called reachable pair and X 
is then called reachable set. The corresponding pair (X, { m}) is called reachable 
stationary solution of problem (3). 

According to Theorem 3.1 , the reachability concept allows us to transfer in 
a way the infinite formulation (3), as well as the infinite control sequence {mn} , 
into a finite form. Indeed, (3) is now replaced by a finite formula (5) and { mn} 
is replaced by a finite-wise, i.e. constant, stationary sequence { m}. In the 
sequel we shall be interested mainly in reachable stationary solutions. We shall 
formulate now the third assumption which, together with (A) and (B), enables 
one to find effectively a solution of reachability condition (5) . The following 
crucial definition will be applied to the problem under consideration. 

For a given set X E X, let us denote by R (X) the following family of sets: 

R(X) = {Y: 3m [p(Y,m) 1\F(Y,m) ~X]}. (6) 

By virtue of assumptiona (A) and (B) , the family R(X) has the following im­
portant property: 

VX, Y, Y' EX: [(Y E R(X)) 1\ (Y' ~ Y)]-+ [Y' E R(X )] , (7) 

which states that any subset of an element of R(X) is also an element of R(X) . 
Observe that the sets Y belonging to R(X) are inclusion inverse elements to 
X, by mapping F. However, it is not only function F, but also formula p(x, m) 
that intervenes in definition (6). Thus, we should rather say that the sets from 
the family R(X) are inclusion p-inverse elements to X , by mapping F. 

We shall use the following definition: 

DEFINITION 3.2 For a given family of sets E, we call largest set of E the set 
max ~ E defined as follo ws: 

[X= max~ E]::: [X E E 1\ (VX' E E: X' ~ X)]. (8) 

The above formula is understood as a conditional definition of functional term 
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The latter notions, R(X) and ma:r ~ E, appear in the following definition 
of mapping D: 

[Y = D(X)]:::: [(X EX) 1\ (Y =X n max~ R(X))]. (9) 

The third assumption, stating the existence of the larges "inclusion p-inverse" 
element. by mapping F, is the following: 

VX EX: [R(X) '/= 0] -t [:J Z : Z =max~ R(X)]. (C) 

Note that the family R(X) is never empty due to assumption p(0, m) in (A) and 
F(0) = 0 in (B). It includes at least one element, the empty set 0. Assumption 
(C) is then equivalent to: VX EX :J Z : Z =max~ R(X). 

Hence, under (A), (B), (C), the mapping D is defined correctly and D E 

xx. The second, crucial theorem concerns the problem of effective solution of 
reachability condition (5). 

THEOREM 3.2 The following potential reachability condition for a set X: 

:Jm : p(X, m) 1\ [F(X, m) ~ X] (10) 

which states that the pair (X, m) satisfies reachability condition {5) with some 
m, is equivalent, under assumptions (A), (B), (C), to the equation: 

X= D(X) . (11) 

Proof. Let us denote by W(X, Y, m) the following formula: p(Y, m)/\F(X, m) ~ 
X which occurs in definition (6) of family R(X) . We have then, by this defini­
tion: R(X) = {Y : :Jm: W(X, Y, m)}. Suppose that X' satisfies equation (11); 
then, by definition (9) of D : X' E X and X' = X' n max ~ R(X'). The second 
relation means that a set Y' exists, namely Y' =max~ R(X'), such that: 

Y' E R(X') and X' = X' n Y', (12) 

the latter equation being equivalent to X' ~ Y'. 
We will show that (12) implies that (10) is satisfied for X' i.e. that: :Jm : 

W(X', X', m). Indeed, according to the first part of (12), Y' satisfies the for­
mula :Jm : W(X', Y, m) with free variable Y. That is, there exists m such that 
W(X',Y',m). Hence, we have: p(Y',m) 1\ F(Y',m) ~X' and, due to the 
second part of (12), X'~ Y'. Thus, by assumption (A) we get: p(X', m). On 
the other hand, by (B): F(X',m) ~ F(Y',m), hence: F(X' ,m) ~X'. 

As it is seen, the potential reachability condition is really satisfied for X'. In­
versely, let us suppose that X' satisfies (10). This means that formula W(X, Y, m) 
is satisfied, with some m, by the triple (X', X', m). Then, X' ~X and, by defi­
nition of W: X' E R (X') . Tim . bv assumotion (C) . X' C max C R (X') . But 
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This theorem allows us to realize the process of searching for a solution of the 
potential reachability condition (10) in a convenient, algorithmic way: namely, 
by solving equation (11). Having found any set X, a solution of (11), we obtain 
a reachable stationary solution of problem (3), simply by finding any m such 
that the pair (X,m) satisfies reachability condition (5)(T heorem 3.1). 

Let us consider some simple examples. 

EXAMPLE 3.1 Given the discrete time state equation: Xn+l = Xn -mn(xn)+zn 
with the constraints: Zn E Z = [0, ~], mn(xn) E U = [0, 1], one searches for 
a set X 0 s,;; R and the control rules mn(xn) : R-+ R such that the condition: 
Xn EX= [0, 1] be satisfied for all n = 0, 1, .... 

(1) According to the Bertsekas' procedure aimed at keeping the state within 
a given set X, we construct backward in time the sequence {X -d of states: 

X _o =X, X - i- 1 =X n {x: :Ju E U Vz E Z (x-u+ z) EX_;} . (E1) 

Then we take the intersection of all sets X-i, n{X -i : i = 0, 1, ... } as the sought 
state set X 0 . In our problem we put X =X and, after respective calculations, 
we get immediately that 

X n { x : :Ju E U V z E Z ( x - u + z) E X } (E2) 

is the sought solution X 0 for our problem. Moreover, for every interval X = 
[Xmin, Xmax] s;;; X such that lX I = Xmax- Xmin ~ IZI = ~' we get a solution 
X 0 = X as well, just by subst ituting X with X in (E2). The set defined in 
(E2) is the largest of all those solutions X 0 . The formula from (E2): Vz E 
Z (x - mn(x) + z) E X determines every admissible control law mn, for any 
interval X mentioned above. 

(2) One can also use the approach of the present paper. First, we should 
reformulate the problem so as to express it in the space 2R of the state sets. 
We get the formulation (3) with M = RR and 

p(X, m) = [(X s;;; X 1\ mE UR)); 
F(X,m) ={(x -u+ z): x E X,z E Z,u = m(x)}, (E3) 

with m a function on the state set X, mE M. Note that M represents the set 
of all control rules. 

As far as reachable solutions are concerned (see Definition 1), we must, 
according to Theorem 3.2, analyse the family R(X), see (6). In the present case 
we get: 

R(X) = {Y: :Jm Y s,;; X 1\ mE UR 1\ F (Y, m) s,;; X} 
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- for every interval X= (Xmin, Xmax] ~X such that lXI = Xmax- Xmin ~ 
IZI = ~, R(X) is the family of all subsets of X, (E4) 

- R(X) = {0} for X not satisfying the above condition. 

Thus, max ~ R(X) = X and hence, (see 9), D(X) = X for any interval X 
satisfying (E4), what means, Theorem 3.2, that every such X is a reachable set. 
By Theorem 3.1 any set X0 = X is therefore a solution of our problem with 
stationary, i.e. constant with respect to time control rule . • 

It is now worth considering the important question of generality of the pre­
sented reachability approach. The next theorem answers partially this question. 

THEOREM 3.3 If there exists the largest set X* of the family of all X such that 
(X, m) is a solution of problem (3), that is: 

X*= max~ {X: 3f..L P (X,f..L)}, (13) 

then, under assumptions (A) , (B), (C), the set X * is (the largest) reachable set. 
Thus, due to Theorem 3.2: 

X* = max ~ {X : X = D (X)}. (14) 

Proof. One easily proves by induction, using the regular properties of formula 
P(x, f..L) and applying a respective transnumeration of sequences, that if a pair 
(X, { mn }) is a solution of problem (3), then the "shifted" pair (F (X, mo), { m ' n}) 
is also a solution of this problem. Here m 0 is the first element of { mn} and 
{ m ' n} is such a sequence that m' n = mn+ 1 for every n = 0, 1, . . . . Let the 
pair (X*, {mn }) , where X * is defined by (13), satisfy formula P(x,f..L) and let 
mo be the first element of the sequence { mn}. We shall prove that the pair 
(X *, mo) satisfies reachability condition (9). 

It follows from the above that F(X*, m 0 ) satisfies the condition: 3p, P(X, p,) , 
occurring in (13). Therefore, since X* is the largest of all sets satisfying this con­
dition, there must be: F(X*, m 0 ) ~ X*. Evidently, we have also: p(X*, m 0 ). 

Thus, the reachability condition (9) is really satisfied by (X*, m 0 ). 

Then, we conclude from Theorem 3.2 that X* satisfies equation (11) , that 
is: X* = D(X* ). Consider now any X' satisfying equation (11) . By Theorem 
3.2, X' satisfies the potential reachability condition (10), that is the pair (X',nt) 
satisfies reachability condition (5) for some m. Therefore, it follows from The­
orem 3.1 that (X',{m}) is a solution of problem (3); hence, X' must be, by 
definition (13), included in X*. This means, together with X* = D(X*), that 
X* is the largest set satisfying (11) . Thus (14) holds. • 

Theorem 3.3 (together with 3.1 and 3.2) justify, in a sense, the presented 
approach. It is clear that if we confine ourselves to reachable stationary solutions 
only, this is not an essential restrir.t.ion . Tt. snffirPs t. h::~t. t.hP brO'Pd «Pt ovi«t <>r1 
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The Theorems 3.1 and 3.3 are close to the results obtained in Bianchini et 
a!. (1993) , and in Karbowski (1999). In both papers considerations focused on 
particular cases only. In the first one it was a linear problem, while in Karbowski 
(1999) a min-max multiobjective problem was considered. A general approach 
similar to that presented here has been discussed in Terlikowski (1997), but in 
a very concise form , without some details and proofs. 

Let us consider another example. 

EXAMPLE 3.2 In order to show the capacities of our approach , we consider a 
very simple case of an infinite process that does not use at all any control. 
Namely, we take the process: 

Xi+l = F(Xi), i = 0, 1, ... (E5) 

of subsequent self transformations of sets Xi E X = 2R being subsets of the real 
numbers space R. 

The formula p has the form: p(X) =(X~ [0, 1]) , for any X~ R. Consider­
ing the problem (3) in this case, we can not apply the classical idea of recursive 
state sets since we do not consider a transformation of state values , but of their 
sets as a whole. We shall apply the general approach developed in Section 3 
(Theorems 3.1 and 3.2) . 

Denote C = [cmin, Cmax] = [t, tl and ax = inf(X) , bx = sup( X) for any 
X ~ R. Let the function F : 2R --t 2R be defined as follows: F(0) = 0 and for 
any 

1 1 
X~ C: F(X) =[ax+ 

4
(bx- ax) , bx- 4(bx- ax)J.; (E6) 

having represented any X ~ R as the sum X = Xinf U X U Xsup where Xinf = 
X n ( - oo, Cmin) ) X sup = X n ( Cmax) + oo) and X ~ C, we let : 

(E7) 

and 

1 
F inr(Xinf) =[ax - 4 (bx -ax), 

1 
bx + 4 (Cmin- bx )], (E8) 

1 
Fsup(Xsup) =[ax- 4(ax- Cmax), 

1 
bx + 4(bx- ax)], (E9) 

where ax, bx denote infimum /supremum of respective sets: Xinf in (E8), Xsup 
in (E9). 

As it can be seen, the consecutive sets X i are contracted or expanded ac­
cording to the state equation (E5), during the infinite process. The obtained 
........... ...... \....1 ..-. .. ......., -... ~ 1-. ~ .... h nAl"'lCI ; c .f. c i n c •::d-iof.,~nrr t h o r>AnQfl~~intQ. 'Tl( Y .. \ r.n t.hP inflnitP. t.im P 
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singleton. Observe that we have no possibility of applying directly the classical 
Bertsekas' approach here, since the subsequent state sets Xi are not transformed 
according to any state equation of the form Xi+ I = fi(xi, mi, zi)· 

To find and discuss the solution, we first verify by a simple calculation that 
assumptions (A), (B), (C) are satisfied. Then we observe what follows: 

1. For any X ~ C the set X belongs itself to the family R(X) = {Y : 
F(Y) ~X}, due to definition (E6) of F. Moreover, X is the largest set of 
this family : X =max~ R(X). 
Therefore, see (9): D(X) = Xnmax ~ R(X) =X. This means, according 
to Theorem 3.2, that any set X ~ C is a reachable set. Due to Theorem 
3.1, it is then a solution of our problem. It is easy to verify that C is the 
largest of those reachable solutions. 

2. For X ct. C the situation is different. We may limit the analysis to the 
case X ~ [0, 1] taking into account the condition p(X) that should be 
satisfied by X 0 = X, see (3). For example, there is no any nonempty set 
X ~ [0 , Cmin), which would be reachable, since any (and so, the largest) 
Y E R(X) must be strictly included in X. This follows from the expansion 
property ofF, see (E8). In consequence, the reachability condition X = 
D(X) is never satisfied in such a case. The same concerns X(cmax, 1] and, 
more generally, any X ct. C. 

Finally, X is a reachable solution if and only if X ~ C. After all, it can be 
easily verified by (E7)-(E9) that every solution must satisfy condition X ~ C . 
Due to Theorem 3.3 the set X* being the largest of all solutions, is a reachable 
solution, what has been else stated above in 1. • 

Note that we deal in the above example with a specific (not general) case 
when the set of all solutions of problem (3) is identical with the set of reachable 
solutions. 

4. Algorithm for finding a reachable solution 

Three theorems given in Section 3 constitute a sufficient background for finding 
a solution of problem (3) in an effective algorithmic way. The corresponding 
algorithm seeks a reachable set of initial states by finding a fixed point of mapping 
D, i.e. such a set X that D(X) = X, see Theorem 3.2. 

A sequence {Xk} of state sets is determined as follows: for a chosen X0 E X 
treated as the starting set, one calculates the sequence of sets {Xk}: 

(15) 

where D(X) =X n max~ R(X). 
The algorithm terminates the iteration (15) at some step r:v. The set Xro, 

denoted by X, is the final result of the algorithm. We would like X to be 
a good approximation of a fixed point of D. The controls m corresponding to 
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when calculating D(Xk) · In particular, at the final step of the algorithm one 
determines m such that the pair (X, m) satisfies the condition: 

p(X, m) 1\ [F(X, m) ~X]. (16) 

The main question to be considered concerns the relationship between the 
sequence {Xk} and the fixed points of D. The respective convergence conditions 
for the sequence {Xk} in the space 2x have then to be fulfilled, so that the set 
X be a good approximation of such a fixed point, in an appropriately chosen 
topology. However, questions of algorithm convergence are not strictly analyzed 
in this paper. 

The concept makes use of the contraction mapping idea. The following, 
obvious contraction property: 'VX E X : D (X) ~ X, that follows from the 
definition (9) of D, is crucial there. Thereby, the sequence {Xk}, (15), is a 
descending one: xk+l ~ xkl k = 0, 1' .... 

'Ihis fact suggests the following idea for our consideration. We consider the 
set X(Xo), being the product of all sets Xk: 

X(Xo) = n{X.k : k = o, 1, . .. } (17) 

as a theoretical representation of X. Hence, instead of considering an unknown 
set X and ano~her unknown reachable set X being a fixed point of D , one con­
siders the set X(Xo), well defined by the algorithm. Instead of considering the 
con~ergence of {Xk} to one of those unknown sets, we cons~der its convergence 
to X(Xo) . But a new question, that of the reachability of X(X0 ), arises. 

Let us assume that the following supposition holds: 

(18) 

which states that X(X0 ) is a fixed point of mapping D. 
However, this crucial supposition is not provable under the assumptions 

(A) , (B) , (C) only. Some continuity type assumptions are now also needed. We 
propose the following abstract form of a new assumption, expressed similarly to 
(C), in terms of th~ mapping R, see (6). 

Suppose that X 0 E X is such that the sequence {Xk}, Xk+l = D(Xk), 
k = 0, 1, ... satisfies the following relation: 

(D) 

This assumption has the form of a certain continuity definition. Indeed, the 
inverse inclusion 2 in (D) holds, under (A) , (B) , (C) , simply by logical rules of 
transposition of quantifiers V and 3. Thus, relationship (D) is equivalent to the 
following : 
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As it is shown in Terlikowski (2002) for the min-max optimization problem, 
some standard topological assumptions are sufficient for (D). 

The following two theorems present the basic r~ations existing between the 
reachable sets and the algorithmically defined set X(X0 ). 

THEOREM 4.1 Suppose that assumptions (A), (B)_ and (C) are satisfied. Then, 
for an:_y set Xo sati_!fying assumption (D), the set X (X0 ) verifies equation ( 18), 
i.e.: X(Xo) = D(X(Xo)). 

Proof. Using notation X= X(Xo) and Xk = Xk, we have evidently: D(X) s;;; 
X. To prove that also X s;;; D(X), it suffices to show that X E R(X). In fact, 
X s;;; Xk> k = 1, 2, ... , thus, by (15): X s;;; D(Xk), k = 0, 1, .... Then, by (5) 
we obtain: X s;;; max s;;; R(Xk) and hence, by property (7) we get: X E R(Xk) 
for any k = 0, 1,... . Thus X E n{R(Xk) : k = 0, 1, ... }. Therefore, by 
assumption (D): X E R(n{Xk : k = 0, 1, ... }) = R(X). This means that 
X s;;; (X n max s;;; R (X)) = D(X). • 

Thus, under assumptions (A)·(D), the theoretical representation X(X0 ) of 
the algorithm result X is the sought reachable set. 

Of course, an appropriate topology in X should be still selected, such that the 
sequence {Xk} converges to its product X(X0 ). The set X= Xro will be then 
an approximation of X(Xo), that is: X ~ X(X0 ), in this topology. Finally, 
X will provide, with the respective control m, compare (16), an approximate 
solution to problem (3). 

Let us underline that the above algorithm starts with any set XQ. E X sat­
isfying (D) and, of course, iteration (15) may lead to the empty set X(X0 ) for 
some Xo. w_e shall now briefly consider the case of the largest reachable sets in 
relation to X(Xo). 

THEOREM 4.2 Let (A) , (B), (C) be satisfied and let Xo be any subset of the 
state space, $"-o E X. Then, for any reachable set X include~ in X 0 the set X is 
included in X(Xo). If, moreover, (D) holds for X0 , then X(X0 ) is the largest 
reachable set included in X0 . 

Proof. Before proving the first asertion, let us show that: A s;;; B -+ D(A) s;;; 
D(B) for any A, B E X (monotonicity of D). 

Indeed, we have: D(A) =An max s;;; R(A) and D(B) = B n max s;;; R(B). 
First , we find that R(A) s;;; R(B) if A s;;; B. This follows from the definition 

(6) of family R, under assumptions (A) and (B). Hence, we have max s;;; R(A) s;;; 
max s;;; R(B), that together with As;;; B, implies D(A) s;;; D(B). 

It will be shown now, using the induction principle, that any X s;;; X0 , 

satisfying reachability condition (5) is included in each set xk generated by 
algorithm (15). Suppose that X s;;; Xk for some k ~ 0. Then, by monotonicity 
of D : D(X) s;;; D(Xk). By Theorem 3.2 we have X = D(X), if X is a 
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algorithm (15), D(Xk) = Xk+1, there is X <;;; Xk+l· We have thereby proved 
that Vk 2: 0 : X <;;; ~kl what means, by definition (17), that X <;;; X(X0 ). 

Due to Theorem 4.1, X(X0 ) is a reachable set, if (D) is satisfied with X0 , and 
if (A), (B), (C) hold. But d!:1e to the first part of this theorem, any reachable 
s~t X <;;; Xo is inclu<!_ed in X(Xo). Since X(Xo) is one of such sets (we have 
X(Xo) <;;; Xo), thus X(Xo) is the largest reachable set included in X0 . • 

Let us consider finally the set X(X) where X denotes the whole state space. 
This is, under assumptions (A), (B), (C), the largest set resulting from the algo­
rithm (15) , by monotonicity of t he operator D. But, as it results from Theorem 
4.2, it is also the largest of all reachable sets, if X satisfies (D). Moreover, ac­
cording to Theorem 3.3, it is the largest set at all , as far as solutions of problem 
(3) are concerned, if such a largest set exists. 

5. Conclusions 

The main tasks of this paper were twofold : 
1. to develop the concept of reachable sets for a very general statement of 

a class of periodic control problems defined over the infinite time horizon 
(Section 3), 

2. to analyze an algorithmic realization of the above general scheme (Section 
4). 

The formulation of periodic, infinite control problem, proposed in Section 2 
is much more general than those considered in the previous works in this field . 
This formalism allows us to capture a large class of control problems and, due to 
its transparency and generality, to find and clearly present the basic mathemat­
ical facts concerning the reachable sets concept. This analysis, in particular the 
formulation of sufficient general assumptions (A)-(D), used within the presented 
five theorems, is the original contribution of the author. It is shown elsewhere, 
Terlikowski (2002), that all the sufficient applicability conditions (A), (B), (C), 
(D) are quite easily fulfilled for an important class of optimal min-max control 
problems. We obtain then the complete solution of the problem. In particu­
lar, an effective algorithm fitting the scheme presented in Section 4 occurs to 
be entirely applicable. Note that computers available today are suitable for 
implementation of such an algorithm which operates on sets. 

We would like to emphasize, however, that the special optimization problems 
(e.g. the min-max ones) are not the main subject oft e present paper. Our 
attention is focused in fact on the theoretical aspects of the considered reachable 
sets concept. 
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Abstract: In the paper the effects of nucleation and growth of 
voids in the plastic porous media are investigated. Three different 
forms of the model are considered: the augmented Gurson model 
(total porosity model) with variable nucleation and growth material 
function, the same model with constant growth material function 
and the separated porosity model. 

The identification of the material functions parameters is based 
on Fischer's experimental data set for axisymmetric tension of steel 
specimens and formulated as a typical nonlinear regression problem 
using the least squares approach. The resulting minimization prob­
lem is solved by means of our own implementation of the Boender 
at a!. global minimization method. 

Calculations and statistical analysis (Akaike, FPE and Vuong 
tests) have led to a conclusion that the growth material function 
in the uniaxial tension for steel may be assumed to be constant 
although not necessarily equal to one. 

Keywords: plastic ftow of voided media, material functions 
identification , global optimization, nonlinear regression, nonlinear 
programming, Akaike and FPE tests for nested models, Vuong test 
for nonnested models. 

1. Introduction 

In many mechanical problems of plastic ftow and fracture of dissipative solids 
the intrinsic micro-damae:e effects an~ ohsPrvPrl Smn P rPSP::>rf'llPr" " ""' " cot 


