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Abstract: In the paper the effects of nucleation and growth of 
voids in the plastic porous media are investigated. Three different 
forms of the model are considered: the augmented Gurson model 
(total porosity model) with variable nucleation and growth material 
function, the same model with constant growth material function 
and the separated porosity model. 

The identification of the material functions parameters is based 
on Fischer's experimental data set for axisymmetric tension of steel 
specimens and formulated as a typical nonlinear regression problem 
using the least squares approach. The resulting minimization prob
lem is solved by means of our own implementation of the Boender 
at al. global minimization method. 

Calculations and statistical analysis (Akaike, FPE and Vuong 
tests) have led to a conclusion that the growth material function 
in the uniaxial tension for steel may be assumed to be constant 
although not necessarily equal to one. 

Keywords: plastic flow of voided media, material functions 
identification, global optimization, nonlinear regression, nonlinear 
programming, Akaike and FPE tests for nested models, Vuong test 
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1. Introduction 

In many mechanical problems of plastic flow and fracture of dissipative solids 
the intrinsic micro-damage effects are observed. Some researchers use a set 
of internal state variables to describe the intrinsic microdamage effects, while 
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others admit only one porosity parameter ~ and some material constants. We 
consider the latter way of description. In such constitutive models, in the form 
of the proposed evolution equation all parameters have to be determined. The 
evolution equation for the porosity parameter ~ has to describe the nucleation 
and growth mechanisms of microvoids. 

The formation of microvoids in commercial grade materials is attributed to 
the presence of inhomogeneities which can be in the form of dispersed inclusions 
and/or second phases. The microvoids appear either as cracks in the particles 
or as failure of the particle-matrix interfacial bonding. The actual microvoid 
morphology depends upon the interrelation of various microstructural parame
ters as well as the local deformation state. 

There have been many studies directed toward better understanding of void 
evolution and developing constitutive relations for inelastic porous solids. The 
model by Golganu et al. (1995), S0vik and Thaulow (1997), Pardoen and Delan
nay (1998), Pardoen, Doghri and Delannay (1998) and Pardoen and Hutchinson 
(2000), accounts for void shape effects and distribution of voids, respectively. 
In addition, some other effects, such as the strain mode effect in matrix (e.g. 
Koplik and Needleman, 1988; Tvergaard, 1990; Leblond et al., 1995; and Li et 
al., 2001) on the void growth, have been studied. All the analyses have shown 
clearly that besides the stress triaxiality and equivalent plastic strain, there are 
other effects influencing the growth of voids . 

The volume fraction of microvoids ~ as a function of equivalent plastic strain 
Ep given by Fisher (1980) is plotted in Fig. 1. It should be stressed that Fisher's 
data are complete in that sense that they deliver not only the total porosity but 
also the nucleation part of porosity. In the first part of our calculations we have 
not exploited that information . Also the results presented in our earlier paper 
(Nowak and Stachurski, 2002) have used the total measure of porosity neglecting 
the rest of the experimental information. This is somehow justified because the 
majority of the experimental results available in the literature contains only 
measurements of the total porosity (see Needleman and Rice, 1978; Saje et al., 
1982). 

It is postulated that the evolution equation for porosity parameter has the 
form (see Needleman and Rice, 1978; Perzyna, 1984; or Perzyna and Nowak, 
1987) 

(~) = (~)nucleation + (~)growth = 

= h(Ep, ~)0" : DP + g(Ep, ODP :I 
(1) 

where h, g are the material functions, I denotes the unit tensor, Ep is the 
equivalent plastic strain, CT is the Cauchy stress tensor, DP denotes the plastic 
rate of the deformation tensor and the operator: means the trace of second 
order tensors. 
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particles, by decohesion of the particle-matrix interface and by the particle 
cracking. The growth process is postulated to be controlled only by the plastic 
flow phenomenon. Both assumptions are justified by the experimental observa
tion results for metals (see a review paper by Needleman and Rice, 1978). 

The first term in the evolution equation (1) for the porosity parameter ~ 
describes debonding of second-phase particles from the matrix as the plastic 
work progressively increases. The nucleation material function ii depends on 
the equivalent plastic deformation Ep and the porosity ~· The second term in 
Eq. (1) is related to the growth mechanism. It is assumed that the growth 
material function g also depends on the equivalent plastic deformation Ep and 
the porosity ~ . 

In this paper we focus on the identification of material functions with the 
Fisher's (1980) experimental data. Some parts of our work parallel and extend 
what has been carried out by Perzyna and Nowak (1987) and by Nowak and 
Stachurski (2001, 2002) . All of t hem focus on the total porosity model. In paper 
one only theoretical total porosity model has been proposed. Two last papers 
document its numerical verification with various variants of material functions. 
In the current paper we propose another model with separated nucleation and 
growth effects, carry out numerical identification of both models and compare 
the results. 

We consider the separate evolution equations for the voids growth and the 
voids nucleation, i.e. we used the model in the form of two differential evolution 
equations with two state variables (growth of volume of fraction of voids and 
nucleation fraction of voids) . We have assumed the additivity of the two kinds 
of porosity components. Therefore in the right hand sides of the two differen
tial equations appear sum of the porosity components (see equation 12). The 
model and the appropriate mean square functional for that case are presented 
in Section 4. 

The Gurson's voided media plastic flow model itself is a set of differential 
equations (equilibrium, constitutive, plastic flow and porosity evolution equa
tions). The involvement of the Bridgman's equilibrated solution for the stress 
state reduces this set to one differential equation . To obtain the calculated 
porosity parameter, ~' in the first case, we had to solve poorly conditioned dif
ferential evolution equation (1) . The second case involves a set of two ordinary 
differential equations. 

The material function formulae used in the first case are described and the 
corresponding resulting least squares problem is introduced in Section 5. Data 
used for parameter estimation are presented in Section 6. The computational 
results are shown and discussed in Section 7. Some conclusions and observations 
are also stated. In Tables 1a, 2a, 3a the "best" minima found for each interval 
are collected. The presentation of the whole set of local minima is restricted to 
three sectors due to the lack of space (see Tables 1a, 2a and 3a). Section 8 is 
devoted to the analvsis of the identification results . Finallv. Section 9 contains 
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In this paper we focus on the traditional least squares formulation (see for 
example Levenberg, 1944; Marquardt, 1963) of the identification problem, where 
the sum of the second powers of deviations of the calculated and measured values 
is minimized. We have expected existence of many local minima in our problem. 
Therefore we have used our own implementation of the global minimization 
procedure of Boender at al.in the form presented in Torn and Zilinskas (1989) 
in standard ANSI C language. It combines the clusterization approach with local 
minimization. Locally, we have used the BFGS quasi-Newton method with the 
numerical gradient estimation (see for instance Bazaraa et a!., 1993; Bertsekas, 
1997; Fletcher, 1987; Stachurski and Wierzbicki, 2001). The BFGS method 
is an unconstrained optimization method ; however, in our implementation we 
have introduced box constraints on the parameters. Differential equations have 
been solved by means of the Rosenbrock method for stiff differential equations 
(see Press et a!., 1993). Details of the implementation can be found in Nowak 
and Stachurski (2001). 

2. Porosity model in t he case of total porosity 

2.1. Porosity evolution at the neck 

In the following considerations the uniaxial test is carried out in the room tem
perature. At the neck there exists a complex state of stress and maximum 
deformations. A material point is identified by the Cartesian convected coordi
nates xi (i = 1, 2, 3) in the reference state. In the current deformed state the 
coordinates of the material point, relative to the Cartesian frame, are denoted 
by xi . We assume, following Chakrabarty (2000), that after a neck has been 
formed in a cylindrical tensile specimen, the distribution of the stress across a 
transverse section is not uniform. We have assumed an augmented version of 
the Gurson's (1977) porous material model with the following porosity evolution 

(2) 

It is the Gurson's form of the equation of porosity evolution with varying g(€p) as 
proposed by Perzyna (1984). Non constant g(€p) reflects the influence of voids 
from the neighbourhood on the growth of a particular void. In equation (2) 
the plastic strain controlled nucleation criterion suggested by Gurson's (1977) 
analysis of experimental data obtained by Gurland (1972) is assumed. The 
nucleation of microvoids is not dependent on the hydrostatic stress. We assume 
that h(€p) and g(€p) are functions depending on plastic strain and unknown 
parameters. 

Our purpose is to determine the material functions h(€p) and g(€p) on the 
hasis nf the t.nt.al nnrnsit.v exnerimental data set. We have tested manv formulae 



Modelling and identification of voids nucleation and growth effects 823 

We have assumed the following form of the evolution equation (2) for a 
porous plastic solid 

[ 
1 ( axx ayy ) ( ( )] 1 h-- >.1- + >.2- + 1 + g 1 - ~) >.1 + >.2 + 1 1"\7 

1 - ~ a zz a zz v >. * 
(3) 

EP EP 
Where A1 = . ~X , A2 = . ~y and A* = ~((>.1 )2 + (>.2)2 + 1) , Xi iS the derivative Of 

E zz Ezz 

the porosity, Ep is the derivative of the equivalent plastic strain. Efx, E~Y and 

Efz are the plastic rates of the deformation tensor components in the Cartesian 
x, y and z coordinates. 

2.2. Stress state at the neck 

We employ Bridgman's (1952) solution for the stress state at the center of the 
minimum section of the tensile cylindrical sample . It has been obtained due 
to the assumption of the uniform deformation of the elements in the minimum 
section implying that the circumferential strain rate Eyy is equal to radial strain 
rate Exx in the minimum section (see Chakrabarty, 2000 , p.161). Inserting this 
equality in the equilibrium equations and combining with the yield condition 
yields 

axx = ayy = aln (~~ + 1) 
2 PR 

for x, y, z = 0. (4) 

The analytical expression for the stress depends on the matrix flow stress, 
a and the geometry of the neck, i. e. on the ratio .B..., where R is the radius of 

Pn 
the minimum section and PR is the neck contour radius . The behaviour of the 
matrix material is represented by a piecewise power law of the form a = ay· 
(lp/Ey)N , ay is the yield stress in uniaxial tension, Ey is the yield strain of the 
matrix material and N is the matrix strain hardening exponent, e.g. for carbon 
steel ay=175 .0 MPa, Ey= 0.001 and N= 0.18. Similarly as in Saje, Pan and 
Needleman (1982) it is assumed that 

R 
- = 0.833(f.p- 0.18), 
PR 

for f.p 2: 0.18 

(5) 
R _ ,.,,., 
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Taking equation (5) into account in the Bridgman's solution we obtain for 
axisymmetric tension 

O'x x = O'yy = ,\ (6) 
O'zz O'zz 

where 

(7) 

Furthermore, we have assumed the constitutive relation for the porous plastic 
solids introduced by Gurson (1977) . This constitutive relation can be put into 

the form introduced by R dnicki and Rice (1975), Eij = 1:JPijQk1 'J.kt, where J 
is the Jaumann rate-of-change of Cauchy stress tensor. Using this relation we 
can determine ,\1 and .>.2 

(8) 

(9) 

3. Formulation of the identification problem in the case of 
total porosity 

The problem considered in the current section has been reformulated. Our task 
is to find the optimal estimates of the unknown parameters in the material 
functions h(lp) and g(lp) which appear in equat ion (1) . It is assumed that the 
nucleat ion mechanism in (1)is controlled by the plastic strain only. The identifi
cation problem is stated as the problem of finding values of the material function 
parameters ensuring minimal value of the mean square functional calculated as 
the sum of the second powers of differences between the observed output val
ues Yi and corresponding calculated output values fi ('fi = F(lpi, x)). Here 
F represents the assumed model. It connects the input independent variable 
values, lpi, with the output values, ~' and accordingly a; denotes the unknown 
parameters. Thus, our problem is 

(10) 

where V C Rn denotes the set of admissible parameters values (n is the number 
of the unknown parameters to be identified). Substitution of the formula }?i = 
F(lpi , x) into (10) yields 

M 
'"'"'"T r:> f~ .. \12 (11\ 
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The second term in formula (11) represents the calculated output values 
}-;,.i, and M is the number of observations (measured input and corresponding 
output values) . In (11) , the second power of the euclidean distance is used. If 
11 == Rn (the unconstrained case), the minimization of the distance is equivalent 
to the minimization of its second power. Therefore, in the least squares method 
usually the second power of the distance in the observations space is minimized. 

In our primal problem the calculated output is obtained as a result of the 
integration of an ordinary differential equation , where on the left-hand side 
its derivative with respect to the input lp appears. The right-hand side of 
the differential equation depends on the input and output variables and on 
unknown parameters. The unknown parameters appear exclusively in the so
called material functions being a part of the right-hand side of the differential 
equation. See for details Sections 2 and 5. 

The parameters should belong to the set 11 of feasible values of parameters, 
defined in Section 5. In this part we have not made any use of the data on the 
growth or nucleation volume fractions although they are available in the Fisher 's 
data set. 

4. Formulation of the identification problem in the case of 
separated nucleation and growth porosity 

Identification of parameters in the formulation stated in Section 3 suggested 
that there exists an intrinsic non-uniqueness in the parameter determination. 
It has led to the observation that material functions h and g in some sense 
mutually compensate their impact on the identified model. 

Our first trial to eliminate that phenomenon was use of g = 1. We have 
carried out several identification runs with g = 1 and various variants of h. 

The second trial tested by us was the explicit use of the full Fisher 's data 
set taking into account not only the values of the total porosity but also the 
corresponding separated nucleation and the growth porosity. We have changed 
accordingly the identified model to the form of two separate evolution equations 
-the first one describing the nucleation of new voids and the second one describ
ing growth of the already existing voids. Those differential evolution equations 
are mutually connected by introduction of the total porosity into their right
hand sides as follows 

h(lp) 1-f~ - ~'' t1'( (T DP ) 
g(f.p)(1- C'- ~9)tT(DP) 

(12) 

This means that we keep the additivity assumption saying that total porosity 
~ is the sum of the nucleation and growth effects , i.e. ~ == ~n + ~g. The model 
represented by equations (12) is not mathematically equivalent to the model 
(2). Anyhow, we believe that it is justified on the basis of the existing models 
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existing voids. The only difference is the replacement of the partial ~ on the 
right-hand sides by the total porosity. 

The above presented change in the model formulation is reflected in the 
mean square function (11) where instead of t he sums of squares of deviations of 
the measured and calculated total porosity we sum up the squares of deviations 
of the measured and calculated nucleation part of porosity ~n and the squares 
of deviations of the measured and calculated growth porosity ~g, respectively 

min [I: { (i - C ( fpi, X)} 
2 

+ f { (f - e ( fpi, X)} 
2
]. 

xEV 
i=l i=l 

(13) 

Here, (nand ~n(tpi, x) denote the experimental and calculated (for given param
eters x) values of the nucleation of new voids, and (9 and ~Y(f"pi, x) denote the 
experimental and calculated values of the growth of existing voids, respectively. 
The calculated values ~n(tpi,x) and ~9(f"pi,x) are obtained by the numerical 
integration of the differential evolution equations (12). 

We have used the same sets of material functions as in the previous two 
parts of our identification calculations. 

5. Material functions 

This section contains formulae of the material functions which we have used for 
identification. There exist certain requirements that the shape of the material 
function h has to satisfy. We started trying to follow the ideas of Chu and 
Needleman (1980). So, as the first type of the function, the Gauss normal 
distribution function for function h was applied 

(14) 

where a 1 ,b1 ,c1 are the unknow parameters. All of these parameters have their 
mechanical meaning. Namely, a1 denotes the maximum value of the porosity 
parameter, b1 is the width of the voids distribution region and c1 represents 
the value of the equivalent plastic strain tp at the moment when the porosity 
parameter reaches its maximal value. 

We have also used two other forms of the material functions h 

a 1 (tp)b 1 exp( Ct tp) 

ai[1 + tanh(b1f"p + Ct)]. 

(15) 

(16) 

The second material function g describing the growth of microvoids must be 
uniformly equal to 1 when the initial void or voids are isolated in an unbounded 
matrix. It means that voids do not interact, no nucleation of new voids and 
no coalescence of voids in the growth process are considered. These three phe-
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this function 9 is not necessarily constant. As a first form of the 9 function the 
following formula (as in Perzyna and Nowak, 1987) was used 

91(lp , a2,b2,c2) = a2 exp(b2 (lpt2
] . (17) 

Unfortunately, in this case, the mechanical interpretation of the unknown 
parameters a2, b2 and c2 is not so clear. 

The identification was also carried out with five other different forms of the 
material function 9, namely 

(18) 

a2 
b2 - fp 

= (19) 

94 = 1 (20) 

95 = a2 (21) 

96 a2 + b2 · lp. (22) 

Tables la summarizes case notation for the total porosity model and Table 1 b 
for the separated porosity model. For instance Case Al denotes selection of h1 

and 91 . This means that we apply the Gauss normal distribution function as the 
nucleation material function h and exponential function as the growth material 
function 9 . Case B 1 corresponds to h2 and 91 , and so on. 

Table 1a. Summary of notations for the total porosity model 

9-function 
91 92 93 94 95 96 

h1 A1 A2 A3 A4 AS A6 
h2 B1 B2 B3 B4 B5 B6 
h3 C1 C2 C3 C4 C5 C6 

The corresponding cases for the separated porosity model are denoted simi
larly. The only difference is the addition of capital D in front of the case symbol. 
Hence, for example DAl means the use of functions h1 and 91 . 

Table lb . Summary of notations for the separated porosity model 

9-function 
91 92 93 94 95 96 

h1 DAl DA2 DA3 DA4 DA5 DA6 
h2 DBl DB2 DB3 DB4 DB5 DB6 
h3 DCl DC2 DC3 DC4 DC5 DC6 

We have maintained the same order of notations in the separated and total 
porosity models to simplify the comparison of identification results in both cases. 
The tables of results for the total norosit.v morl Pl <> r P twe>con t o rl ;n th n II ~~n~ .-l: .. 
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6. Brief description of Fisher's data used for estimation 

In J .R. Fisher's experimental investigation two carbon steels with 0.17 (type 
B) and 0.44 (type W) weight percent carbon, respectively, were used for the 
quantitative studies of microvoid nucleation and growth. All testing was done 
at the room temperature. Metallographic observations were made on both un
deformed and deformed specimens using both optical and electron microscopy. 
For each specimen, a series of transverse sections was prepared corresponding 
to successively smaller axial distances from the minimum cross section. Each 
new section was obtained by grinding to the next premarked position and thus 
the previous sections were destroyed. Therefore, all data required from a given 
section had to be obtained before preparation of the succeeding one. Each sec
tion was carefully polished and etched after preliminary use of various grades 
of abrasive papers. The microstructural parameters were determined in both 
deformed and undeformed specimens. For the deformed specimens the areal 
density of voids, 7JA, and the volume fraction of voids, ~, were obtained from 
transverse sections by standard metallographic techniques performed on scan
ning electron micrographs taken at a magnification of 2000 times. It is observed 
in Fisher's experiment that the voids tended to have elliptical cross sections 
similar to those of the particles, as might be expected since the particles were 
nucleation sites for these voids. 

The total volume fract ion of voids, ~ , and the nucleation part of volume 
fraction of voids, C, obtained by Fisher (1980) are plotted as the function of 
equivalent plastic strain Ep in Fig. 1. This measure of voids is used in our analysis 
in Section 4, with separation of the nucleation part from the full measure of~
As in Perzyna and Nowak (1987) the resulting diagrams of the nucleation part 
of ~n and the growth part of ~g versus Ep are shown also in Fig. 1. 

In this work, the thorough analysis of the data set was omitted since we de
cided to concentrate on the computational aspects of the problem of parameter 
estimation. We were interested in the question of whether it is in fact the global 
optimization problem. Furthermore, we wanted to obtain the decisive answer 
to the question of whether the assumed model does fit at all the given data set. 

7. Numerical results 

In this section the results of parameter estimation are presented. It is impossible 
to present all aspects of the calculations in a short paper. Therefore we restrict 
the presentation of the minima found to just the three with the smallest mean 
square function values. 

Our aim in considering various forms of material functions was to obtain the 
"best" fitting of the model to the data in the sense of finding the parameters 
ensuring the smallest value of the mean square functional (11) or (13), respec-
.;..; .... .1"\lu V,, ..... ~ hn,...'t'Y'Irvrr.t. ;n '".l ll f'":lC'llC' it ic nDrD<;:c;:~rv tf"'\ lmnn~P C:f1mP hn11nrh~ On thP. 
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Total , nucleation and growth void volume fractions, Fisher's data(13] 
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Figure 1. Total void volume fraction, ~, the nucleation volume void fr action, C 
(data from Fisher, 1980, for the Bl type steel) and the calculated growth volume void 
fraction, ~9 , as a function of equivalent plastic strain, Ep-

overflows in calculations (specially for the g function) . In our computations we 
have used the following strategy- at the beginning a broad range of the feasible 
parameters were assumed. Next, we have continued our calculations taking at 
the subsequent steps small intervals containing t he previously found optimal 
values of parameters as their new feasible ranges. At each such main step we 
have found several local optima. For many of them the underlying variables 
were located at the range bounds. Because of that we have adopted special 
strategy consisting in subsequent minimizations with restricted range of param
eters. It gave us an opportunity to better explore the whole range of parameters 
we were interested in . The second and very important reason for such strategy 
was the large computational effort and memory requirements for storing many 
local minima and points leading towards them if we decided to run the pro
gram assuming excessively broad range of parameters. The third and not less 
important reason were numerical difficulties encountered in the integration of 
the differential equation . Its right-hand side contains a singularity and is very 
sensitive even with respect to relatively small changes in some parameters. It 
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precision arithmetic of the workstation. 
In each case we have started our computations assuming at the beginning a 

broad range of feasible parameters. For instance in Cases A1, A2 and A3 we 
have taken 

Al: 0.01 ~ a1 ~ 0.05, 0.1 ~ bl ~ 0.6, 0.9 ~ CJ ~ 1.3 
1.0 ~ a2 ~ 1.5, 0.01 ~ b2 ~ 0.3, 0.01 ~ c2 ~ 0.6 

A2: 0.01 ~ a1 ~ 0.1, 0.1 ~ bl ~ 0.5, 1.0 ~ CJ ~ 1.3 
0.1 ~ a2 ~ 0.6, 0.5 ~ b2 ~ 1.2, 0.8 ~ c2 ~ 1.8 

A3: 0.01 ~ a1 ~ 0.1, 0.1 ~ bl ~ 1.0, 1.0 ~ CJ ~ 1.3 
1.5 ~ a2 ~ 3.0, 2.5 ~ b2 ~ 5.0 

The results are presented in Appendix in subsections A1 and A2, in Ta
bles 2a, 2b- 5a, 5b. Tables with suffix "a" contain the following information 
about a minimum: 

• the corresponding values of parameters 
• the functional values f. 

Tables with suffix "b" contain frequently used statistical information: 
• residual standard deviation Se , where 

M 
where: Yi 

yi 

[ 
M - 2] I:i=l (Yi - Yi) 

M 

is the number of observations, 
are the observed values of the output, 
are the calculated values of the output 

'fi=F(€p•,x) fori=l , ... ,M 

• relative standard error S ew 

Se 
Sew= Y 

where Y is the mean value of the observed output 

(23) 

(24) 

(25) 

(26) 

• correlation coefficie t 1'yy between the observed and calculated output: 

I:~l (Yi - Y;) (Yi - Y) 
1'yy = ------------------~--~-----.1 

r M - 21 ~ r M ( - :: \ 212 
'\' (V - v\ - I '\' V - V I 

(27) 
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where Y is the mean value of the calculated output 

(28) 

• Akaike's information criterion AIC (Soderstrom and Stoica, 1989, p. 442, 
eq. 11.48; Holnicki eta!. , 2000, pp. 187-189) 

AIC = M * lnVM(x) + 2 * n (29) 

where n denotes the number of the model parameters and VM(i) is the 
loss function 

• final prediction error criterion (FPE) (Soderstrom and Stoica, 1989, p. 
444, eq. 11.54; Holnicki at a!., 2000, pp. 187-189) 

FPE -v (') 1+n/M 
- MX *1 - n/M. (30) 

In the cases with the prefix "D" corresponding to the model with the sep
arated nucleation and growth porosity all statistical quantities except for the 
Akaike's and FPE information criteria are duplicated, i.e. they are given sep
arately for the nucleation and growth values. Akaike and FPE information 
criteria are calculated for the separated cases treated as total (i. e. after sum
ming up the outputs) to make them comparable with the total cases. Those 
criteria are used for discriminating between the rival nested models. Further, 
we use only part of them in the analysis because only few of our models form 
groups of nested models. 

Tables are organized as follows . Subsection Al contain the results for the 
total porosity model - in Tables 2 with variable growth material function, in 
Tables 3 with constant growth material function . Similarly, in subsection A2 
we present the results for the separate porosity model, again presented in two 
groups - in Tables 4 with variable growth material function and in Tables 5 
with constant growth material function . 

7.1. Vuong test for discriminating between the rival nonnested mo
dels 

There exist several tests for discriminating between the nonnested models (for 
instance: Cox test, Vuong test, Bayes factors, F test , J test, JA test) (see 
Clarke, 2000; McAleer, 1995; Vuong, 1989). We have considered the use of the 
Cox and Vuong Tests . The Cox test is harder to perform than the Vuong test. 
It requires many extra simulations to calculate its value. Furthermore, it may 
reject both of the two compared models without any decision. The Vuong test 
is the easiest to perform; it is only necessary to calculate the difference in the 
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simulation nor any prior information . Vuong test nether leaves us without any 
answer. It allows to select the best model even from a set of bad nonnested 
models. 

The null hypothesis i the Vuong test is that compared models M 1 and 
M2 are equivalent. The H 1 hypothesis states that model M 1 is better than 
M 2 , while H2 hypothesis is that model M 1 is worse than M 2 . The actual 
(approximate) test is: 

(31) 

(32) 

(33) 

where 

(34) 

wL = 2_ t [lnh(1'i iX;:~~)l2- [2_ £lnh(1'iiXi:~~)l2 
M i=1 fz(YiiZi ,BM) M i=1 fz(YiiZi,BM) 

(35) 

Here L}w ( B}w) is the logarithm of the likelihood function for model M 1 with the 
parameters e}w and LL(BL) is the logarithm of the likelihood for model M2 
with the parameters BL, respectively (for t he definition of likelihood function 
see e.g. Soderstrom and Stoica, 1989). 

The symbol h(YtiXt;B}w) (f2 (YtiX1 ;B~1 )) denotes the likelihood function 
for the model Ml (M2) with parameters equal to e}w (BL) - the estimated 
values of the unknown parameters B. 

In simple terms, if the null hypothesis is true, the average value of the log
likelihood ratio should be zero. If the H 1 hypothesis is true, the average value of 
the log-likelihood ratio should be significantly greater than zero. If the reverse is 
true, the average value of the log-likelihood ratio should be significantly smaller 
than zero. This means that the Vuong test statistic is simply the average log
likelihood ratio suitably normalized. 

Our models have different number of parameters. Therefore, following Clarke 
(2001) we have adjusted the log likelihood ratio statistic 

(36) 
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This adjusted value has been used to calculate Vuong test results collected 
in Tables 6, 7 and 8. Table 6 contains the results of the mutual comparison 
of models Al, A2, A3, A6, Bl, B2, B3, B6, Cl, C2, C3, C6 and Table 7 - of 
models DAl, DA2, DA3, DA6, DBl, DB2, DB3, DB6, DC1, DC2, DC3, DC6. 
Models represented in Table 8 were selected according to the following rules: 

• select on the basis of the Akaike or FPE information criteria (Tables 2b, 
3b, 4b and 5b) the best model from any group with g = 1, g being the 
estimated constant and g linear and one particular form of the h function, 
for instance A4, A5 and A6 

• select using the Vuong criterion (Tables 6 and 7) the best representative 
of any group with one h formula and all other forms of g including linear 
g (for instance, the first group consists of Al, A2, A3 and A6) 

• Models selected in two previous steps are compared via the Vuong test 
(the results of the pairwise comparison are collected in Table 8). 

8. Analysis of the identification results 

We have carried out four separate variants of numerical experiment. The first 
one concerned the case of the total porosity model and variable shape of both 
material functions. The results are collected in Tables 2a and 2b. In the second 
case we have assumed constant growth material function g (we have tested 
two variants - the first one with g = 1 and the second one with an estimated 
value of that constant). Those results may be found in Tables 3a and 3b, 
respectively. Similar two cases have been used for the model with separate 
porosity. The results for varying shape of g are presented in Tables 4a and 4b 
and the corresponding results for constant g in Tables 5a and 5b. We have 
used various forms of material functions. Therefore the above mentioned cases 
contain many subcases. We have found many local minima in all subcases. Their 
presentation in Tables 2a- 5a is restricted to the best three of them, ordered with 
respect to the fitting error values in the increasing order. Tables 2b- 5b contain 
the corresponding statistical indicators. The results presented in tables show the 
variety of possible solutions to the minimization of the mean squares function 
if the parameters appear in the model nonlinearly. It seems that the presented 
numerical results justify the hypothesis that many local minima exist in the 
considered problem. Many of the local minima found are acceptable also from 
the statistical point of view. 

The values of ryy close to 1 show a good correlation between the calculated 
and measured output. 

Tables 2a and 2b contain the computational and statistical results for the 
estimation with the varying growth function g. Fig. 2 presents the corresponding 
dependence of the total porosity differences (observed minus calculated values) 
on the equivalent plastic strain. The analysis of Tables 2a and 2b shows that 
for the varving growth material function o the worst choice of the nucleation 
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Figure 2. Differences between the experimental and calculated total porosity for cases 
Al, Bl, Cl, A2, B2 and C2 versus equivalent plastic strain with varying g. 

material functions - normal distribution function (14) and shifted hyperbolic 
tangent function (16) are equally good. The mechanical interpretation of the 
normal distribution function parameters is easier. It was frequently used in the 
previous studies published in the literature. Therefore in our opinion the normal 
distribution nucleation material function is a reasonable choice. 

The large number of local minima found in all cases from that group led us 
to the conclusion that there exists a kind of internal nonuniqueness in the total 
porosity model. Due to that observation we have decided to study the total 
porosity model with the constant g material function (with g = 1) , i.e. the form 
of the porosity model proposed by Gurson (1977). 

The results accumulated in Tables 3a and 3b show that fitti ng error is of 
the same magnitude as in the corresponding cases with varying g function. Sta
tistical indicators are not worse than in cases with varying growth function g. 
Fig. 3 presents the resulti g dependence of the total porosity differences (ob
served minus calculated values) on the equivalent plastic strain in the case of 
constant g. 

The results collected in Tables 3a and 3b for the constant !!:rowth function a 
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Figure 3. Differences between the experimental and calculated total porosity for cases 
A4, B4, C4, A5, B5 and C5 versus equivalent plastic strain for constant g. 

constant g = 1. We can derive also the same conclusion as for the varying 
growth function g - namely that the powered exponent nucleation function h is 
the worst choice. The conclusions drawn on the basis of the fitting error agree 
with those deduced from the Akaike and FPE test values. In group A (with h 
being the Gauss function) the best one among A4, A5 and A6 is A5, in group B 
- B5 and in group C - C4. For the separated case Akaike and FPE point out 
that linear g (i.e. DA6, DB6 and DC6) are the best ones in all three groups . 

Vuong test (Tables 6 and 7) selects A3 (from Al-A3 and A6), B3 (from Bl
B3 and B6) and C6 (from Cl-C3 and C6) . The best models selected by means 
of the Akaike and FPE tests for each group and those selected by means of the 
Vuong test were further compared using again the Vuong test (see Table 8) . The 
analysis of Table 8 shows that the best choice is the shifted hyperbolic tangent 
as the h function and g = 1 (model C4) . Similarly good results are obtained 
with the Gauss normal distribution as the h function and g - an estimated 
constant. The fitting error is better for model A5. 

To conclude the presentation of the results for the total porosity model we 
have included Figs. 4 (a- b) containing graphs of material functions h (for the 
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plastic strain. Second possibility of overcoming the nonuniqueness studied by us 
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Figure 4. Graphs of the material functions values for the total porosity model, a) 
model A5 and b) model C4, versus the equivalent plast ic strain. 

was the investigation of the separated model. It was possible to pose the prob
lem in that way because Fisher's data contain the total and nucleation parts 
of porosity separately. The total porosity models considered by us assume the 
additivity of these two phenomena- growth and nucleation of voids. However, 
when separate data are available, it seems to be natural to exploit them sep
arately in the model and in the corresponding identification problem. This is 
exactly what we have done in cases DA, DB and DC. We have formulated the 
separate porosity model and identified its parameters. The results are collected 
in Tables 4a-5b. The fitt ing error is in that case of magnitude w-6 and the 
statistical indicators are also relatively good. It should be stressed, however, 
that the fitting error in that case is the sum of deviations of two outputs -
nucleation and porosity growth . 

The computations have been carried out in the similar manner as in the 
total porosity model. We have started with the varying growth function g and 
afterwards continued with the constant growth material function g. 

'T'hP. Pst.im:J.t.P.ri rP.s11 lt. s for the varving growth function are collected in Ta-
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the resulting dependence of the total porosity differences (observed minus cal
culated values) with respect to the equivalent plastic strain. General conclusion 

x10_, Cases: DA 1, DA2, DA3 and DA6 
6~~?=~------.---,---,----,----.---,--~ 

-e- DA1 n 
_...._ DA2n 
-+- DA3n 
+ DA6n 

4 -B- DA1g 
""*" DA2g 
-+- DA3g 

DA6 
c~ 
>V" 

I 2 
c. 

c ~ 
>V" 

vi 
·~ 
-~ 0 

8. 
.E 

"' g 
"' Q; -2 
:t= 
i5 

-4 

-6L---__ L_ ____ L_ ____ L_ ____ L_ ____ L_ ____ L_ ____ L_ ____ L_ __ ~ 

0.5 0.6 0.7 0.8 0.9 1.2 1.3 1.4 
Equivalent plastic strain, EP 

Figure 5. Differences between the experimental and calculated separated porosity 
for cases DAl , DA2, DBl, DB2, DCl and DC2 versus equivalent plastic strain with 
varying g. 

is the same as for the total porosity model. The powered exponential function h 
is the worst choice. The normal distribution and the shifted hyperbolic tan
gent functions are almost equally good. Therefore we recommend the use of the 
normal distribution functions since it is easier to interpret its parameters and 
it is more frequently used. Furthermore, the graph of the growth function g 
is approximately linear (see Figure 7). Therefore we have tried also the linear 
form of g, obtaining only slightly larger fitting error. 

We have tried also to use the constant growth material function g. The re
sults are collected in Tables 5a and 5b. Fig. 6 presents the resulting dependence 
of the total porosity differences (observed minus calculated values) with respect 
to the equivalent plastic strain. The fitting errors are quite small in that case. 
Also correlations between the calculated and observed porosity are acceptable. 
It is interesting in that case that the Vuong test prefers model DC6 (g is lin
ear), but the material function g is almost constant, although not equal to 1. 
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Figure 6. Differences between the experimental and calculated separated porosity 
for cases DA4, DA5, DB4, DB5, DC4 and DC5 versus equivalent plastic strain with 
constant g. 

towards that constant value. Even in other local minima found, the estimated 
constant value of g is almost equal to 0.86. Such phenomenon was not so clearly 
observed in the total porosity model although the Vuong test value shows that 
the model C4 is the best one and the model A5 (with h - the Gauss normal 
distribution function and g - an estimated constant) is only a bit worse. The 
value of the Vuong test of order 10- 3 permits even to claim that C4 and A5 are 
equivalent. 

Figs. 7 a,b contain graphs of the material functions DA5 and DC6 showing 
the dependence of their values with respect to the equivalent plastic strain. 

9. Conclusions and comments 

The main novelty of the paper lies in the introduction of the model with sep
arated nucleation and growth of voids. This differentiates substantially the 
current paper from its two predecessors (Nowak and Stachurski, 2001, 2002), 
where we have considered exclusively the model with total porosity. In the 
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Figure 7. Graphs of the material functi~ns values for the separated porosity model, 
a) model DA5 and b) model DC6, versus the equivalent plastic strain. 

both variants of the model with various forms of the material functions. Special 
attention has been paid to the case with constant function g (with an estimated 
constant value and its case with g = 1). The identification results were analysed 
and compared. We have included also statistical tests for discrimination of the 
nested models (Akaike and FPE information criteria) and the Vuong test for 
nonnested models selection . 

It should be stressed that in the identification process of the model with 
separated porosity the minimized mean squares function (ll) consists of two 
summarized terms. In the first one we sum up the squares of deviations of the 
measured and calculated nucleation part of porosity ~n and in the second term 
the squares of deviations of the measured and calculated growth porosity ~g , 

respectively. 
The estimated material functions h (for the best models) are plotted in Fig. 4 

for the total porosity model and in Fig. 7 for the separate porosity model. We 
would like to stress that our material function was determined with following 
important assumptions. The matrix material is plastically incompressible (Pm = 
0 where Pm is matrix density) and t he elastic part of a strain rate tensor is 
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material, although qualitative conclusions may be valid also for other types of 
materials. 

We have found several local minima in all cases. The best fitting error for 
the total porosity model is of order w- 7 . However, fitting error in other cases is 
only slightly larger. Of course, the corresponding material function parameters 
have different values. 

In all tested forms of the separated models we have also found several sets of 
parameters (local minima of the mean square function) with the fitting errors 
close to the best one (within the range from 10- 6 to 10-5 ). The parameters 
are reasonable from the mechanical point of view. An interesting and open 
question is which local minimum found should be selected. It seems that in 
the total porosity model (when the voids nucleation and growth phenomena are 
simultaneously present), the constant material function g = 1 as used by many 
researchers is a reasonable choice. However, we should stress that the identifi
cation procedure with g = a2 , where parameter a2 was identified , has led to a 
bit different value of that constant - in the total porosity model approximately 
equal to 0.9 and in the separate porosity model approximately equal to 0.86. In 
our opinion the value 0.86 obtained for the separate porosity model is proba
bly closer to the real value since in this model we have exploited the available 
experimental data more thoroughly. 

In the separate porosity model the fit t ing error is of the order of 10-6 . 

However, in this case the mean squares function has a double number of the 
summed components (60 versus 30 in the total porosity cases). In fact, we sum 
up the fitting errors for the nucleation and growth porosity parts. Having that 
in mind, we may claim that t he separate porosity model is at least as good as the 
best total porosity model. In our opinion it is even better to apply the separate 
porosity model for voids nucleation and growth processes in the elastic-plastic 
material subject to a unidirectional elongation. 

Our numerical experiments suggest that the nucleation of new voids can 
be modelled using the normal distribution material function. This choice was 
among the best in all tested cases. We have observed equally good results 
for the shifted hyperbolic tangent function. We recommend the use of the 
normal distribution function because it is easier to interpret its parameters in 
mechanical terms. In view of our results it is reasonable to use the porosity 
model with a constant value of the growth material function g, though with the 
constant not equal to 1. For the ductile steel this constant is probably near 
0.86. 

In our opinion the results obtained are very interesting. They indicate that 
while modelling jointly the nucleation and growth of voids it is reasonable to use 
the total porosity model with constant material function g. However, contrary 
to the common practice it seems that the constant should be different from 
the usually applied value 1. We suggest its identification for each particular 
material. 



Modelling and identification of voids nucleation and growth effects 841 

whether the euclidean distance in the space of observations is the best measure. 
One can use in the formula (10) the h - norm or 100- norm or any other suitable 
norm. Then the problem will be nondifferentiable and will have completely 
different features but it can also be handled by our computational program after 
a replacement of the local gradient minimizer by a suitable nondifferentiable 
optimization method. It is the next possibility we intend to study in the future 
- the use of other measures of deviations of the calculated output from the 
measured one. Existence of many local minima is also expected in that case. 

The work of Z. Nowak has been prepared in part within the framework of the 
research project KBN 8T07 A 05221. 

The work of A. Stachurski has been sponsored by the Faculty of Electron
ics and Information Technology, Warsaw University of Technology, under the 
Dean's Grant No. 50960013003. 
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APPENDIX 

Al. Results for total porosity model 

A.l.l Results for total porosity model with variable growth material 
function 

Table 2a. Identified parameters and fitting errors for the cases Al-A3, A6, 
Bl-B3,B6, Cl-C3, C6 

h - nucleation functions with a1, bl and c1; 
g - growth functions with a2, b2 and C2 

C;u<~~ " ? 
,, C? 

2.081212c-2 3.203013<~- 1 1 .142077 1.0481 10 1 .54033!k-1 5.887020t:-1 1.700284e-7 
A1 2.450752c-2 3.4 1 7G24t·:-l 1. 103470 1.100321 G.501482t:-2 1.04 1033e-1 ] .87Q7J[H:-7 

2.073352e-2 3 .24G4QOe- l 1.146024 1 .052570 l.G27DOD•!-l 1 .54 1150e-1 2.013GG7t ~ -7 

2.81VG88c-2 J.2!)018[H!- } 1.187475 5.039020e- l 1.021578 1.688143 1.8038211!-7 
A2 2 . 704320P.-2 3.427333t:-l 1.103001 5.30241()!:-1 1.002745 1.430616 1. 0848G5e-7 

3.177080t:-2 3.3G053lt:-l 1.216207 4 .G8040Ge- 1 1.144043 l .503800 2.007170t: - 7 
2.4 12438e-2 3.1455G4e-l 1.148306 2.401575 3.350[103 l.GG2G08c-7 

A3 2.G87240e-2 J.G00 1 78t :- l 1.200510 2.303028 3.208201 4.727703t:-7 
3.00085Gc-2 3. 033141·~-1 1.27~005 2.547001 3 .7.55 8 15 1.028270·~-o 

1 0 2.5G3080t:-2 3.317G24f:-1 1.178424 7 .G27087t)-1 3.005508•:-1 1 .G0570St!-7 
11 AG 1 .802020c-2 2.000520t:-1 1.091176 7 .G[i4488c:-1 4 .380055·~ -1 2.0320[12•·:-7 
12 1.280082•:-2 2.440338.:- 1 l.0030G7 8.400703t:· l 4 .001000e- 1 2 . 130074•:-7 
13 1.54 8730c-2 1.82010G [1.0GG584e-l 8. 20 1 838<~- 1 7.1578G8c- 2 2.012 150·~ - 1 1.007D05e- O 
14 D1 l.G42854e- 2 1.807010 G.8G1003t:-1 G.22D55.'Jc-1 1.044730<: - 1 3.017150•:- 1 1 .1G4333e-G 
15 1 .2D405Gc-2 l.G07321 G.287D::J8e-1 D.2D2D85e-1 l.4G2G83e -1 2.302D::J8c- 1 1.47 1 DOGt:-G 
16 l.G34108e-2 1. 747208 G.708 lfi(k- 1 3.8883G2e-l 8.832407e- 1 1.3100 16 1. 300740•:-G 
17 D2 l.GD8248t:-2 1.7l::J4GO 0.7824D5c- 1 3.000[13 l t:-l 7.D74402e-1 1.143107 2.038704t:-G 
18 1.431 830c-2 1.!:)70570 7.0500131:- 1 4 .823GG0e- 1 7.234002t:-l 1 .2881 54 2 .1778G1 e-G 
10 1.584352•:-2 1.003237 8.008182c- 1 2.024103 4.053833 D.33 1585e-7 
20 D3 1.381212e-2 1.600GOG 8.28 7273•: -1 2.167304 4.040607 1 .225 12 2o:-O 
21 1 .4 25320•:- 2 1.033803 S.2GGG2D•:- 1 2 .26GG34 4.20!)744 2.052042•:-G 
22 1 .4 7D07St:-2 1.000422 7 .[15234Gu- l 5 .701520e-l 1.41841 3.:- 1 1 .53527De-G 
23 D 6 1.505820r:-2 1 .57580 0 0.345404t:- l 4.72030 l e - 1 3 .702108t:- l 1 .588777t:-G 
24 1.300701(:-2 1.50400 3 7 .304732t:-1 4.073083<:- 1 4.1508GOt:- 1 1 .054040c-O 
25 2.455850·~-2 2 . .5863 0 0 -2.422 738 8.008700<:-1 1. 790121 <~- 1 2.700432(:-1 2.300857t: - 7 
26 C1 2 .G82353e -2 2.!)0455 4 -2.4G285D 7 .G87302t·:-l 1. 74070De-l 1. 7 G3.J34c - 1 2.045270·~ -7 

27 2.034788e-2 2.423 110 -2.40023!) 7.755841t:- 1 1 .3J2077e-l 2 . 18702 1c:- 1 2.Vl0700e-7 
28 2.8G873Ge- 2 2.722010 -2.GG0194 4.112G41 e-l 8.034GG3c- 1 l.GOGGGO 1 .8875D3t:-7 
20 C2 2.4010031~-2 2. 7G7700 -2.49238-J 4. 7114Gll!-l G.OO l GlGe-1 l.GG1727 2.0 700301 ~ - 7 

30 2.62 114 2•: -2 2.7 108 1 5 - 2.490050 4.430047c-l 8.5000001·: -1 1.574GOG 2 . 21 103Gf:-7 
31 3.D!JG557c-2 2.53054 8 -2.505004 1 .70G428 4.2 132!) 1 2 .2074381':-7 
32 C3 3.DD7300c-2 2.G461 4 3 -2.070470 1. 517G23 3.0GG418 2 .G05705•:-7 
33 3. 724288c-2 2.823082 -2.76438 7 1.410700 3. 7G2033 3.G4Gl08•:-7 
34 2.080778e -2 2.G840 75 - 2.502633 5.48800lr:- l 2.0783031;- ] 1 .077GGOc-7 
35 CG 2.84080Ge-2 2.8 1 2704 -2.022750 4.003034r:- 1 2 . .J20827t:- l 1 .0846 14t: - 7 
36 2.!)12G54c-2 2.80G8 1 G -2.020100 4.51 843 1e-1 2.730G01e-l 2.0007511~ - 7 
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Table 2b. Statistical results for the cases Al-A3 , A6, Bl- B3, B6, Cl- C3, C6 

Se - standard deviation , Sew - relative standard error , r y i' - correlation 
coefficient , Akaike - AIC information-criterion, F P E - Final Prediction Error 
information criterion 

Ca:-~t: ·"e .-. ,~w '"yy Akaike FPE 
U.GG7G l 5•:-0 G . .J7200 I e -3 !1.000037£~ -1 -5.77GU09e +2 S. l l7485e -O 

A I G.235 784t-:-O G.SS4 11 5 e-3 0. OOOG38f:- l - 5.74G083r~ +2 S.03 1 251r~ - o 

G.7 12223c-O 7 .13875Gt:-3 D.DD%4%-1 -5.7241G~h: +2 D.GI3G3Ge·D 
G.3 1273Ge·D G.035533t~ - 3 D. DDD592c~ -1 -5 .74318l c +2 0.04 14G8e-O 

A2 G.G IG21Ge· D 7 .0 8 72!H c-3 O.ODOG49c:-1 -5. 72 802[1<.:+2 9.47G130c-O 
G.G0050Ge- O 7 . 147402•!-3 O.O!Hlt.48e- 1 -5.725150~+2 0.58200 lc:- 0 
U.!:i42027t:-O G.502G7!:ie-3 !).O!JOG30e- l -5 .80354Gt~ +2 7.42004 lf:-9 

A3 I .G 7 .J03lt:-8 1 .0024 7 Dt•-2 O.ODO I S2c- 1 .[i.470574 e +2 2.111GGDt:-8 
a 3.427!>0Gt·:-8 l.U0717l c -2 0.000302t~ -l - !j. 238000·:+2 4.502800e-8 
10 5.05 2350~-o 0.504 7 84(~ -3 D. 000031 •:- 1 - 5.707435c·~ +2 7 .573808e-D 
II AG G. 770505e -O 7.l7!J 7 8 lt :-3 0.0000 12· ~ -l -5 . 741 204(~+2 0.080 1 83c!-O 
12 7 . 13324 7e-O 7 .38444!)t!-3 0.00'!>5 2 1.:-1 -5. 725300(~+2 0.558107(!-0 
13 3.3!J'!>G83e-8 1 .!JO!J l 89e-2 D.DDS283e· l - !J.224003t: +2 4 .8 11 034 t!- 8 
I~ D l 3.88 1100e -8 1 .G00830n- 2 D.DOSSSOe· l -5 .1 80 178c!+2 !J.!J58751e-8 
I G 4.00G3 53e-S 1 . 023 1 GOo-:- 2 D.D D704Soe· l -5. 107511u+2 7 .0271G4c- 8 
I G 4.G30700e-8 !.8 GOSG3e- 2 0.0082GGf:- 1 - 5. 1 250050.+2 G.G30GG2 r.-8 
17 D2 G. 700G80e- 8 2.2407'!>0·~-2 0.008053(~- 1 -5.00G527c+2 o.733 1G7•~ -s 

I S 7 .2 50538e-8 2.318532t!-2 0.007187c:- l -4 .0 8G058c:+2 1 .0307!130.-7 
I D 3. 11 0528e-8 l .!J327fi2e - 2 D.DDS4D3e · 1 -5 .208700f:+2 4 . 107954 •:-8 
20 D3 4.083740e -8 1 .70731--l e - 2 0.007804t~ -1 -0 .1 84402·:+2 0.4 7200~}!: - 8 

2 1 G.843140c-8 2.20300(h:- 2 0.000485t: - l -5. 0243GOt: +2 0. 1G04G8c- 8 
22 5. 11700Gc-S 1.00 1084e-2 O.OOS754c:- 1 -5.1144441'~ + 2 0.857320<!-8 
23 DG !J.205023 e-S 1 .99 1955t:- 2 0.007010.:-l -5 . 103825<:+2 7 .09G2 74 c- 8 
24 G.5134G7e-S 2.2 1000Ge-2 0.9SI5D55t :- l -5.030070•:+2 8. 727722c:- 8 
25 7 .GG0524 e- 9 7.041082t:-3 O.ODO!J25c- l -.S.G82828t: + 2 1 .00847 4<:-S 
2G Cl 8.8 1758 5 c: - O 8. 1730291-! - 3 9.909 543t!·l -5.030585e + 2 1 .2G2900c!- S 
27 D. 7023G4c -O S.GOOGS4e-3 0.009510·:- 1 - G.G 0 0043f: + 2 1 .3SOG20c-S 
28 G.29 1075c-O 0.024008c-3 0. OODGOlk- 1 -5. 7 44202~: + 2 0.0 11734f:- O 
2D C 2 0.002 1 30~:-0 7 .24 78271J-3 O.OODGOOe-1 - 5.71G.S10•:+2 0.88GG31(_:-0 
30 7.37212Dc:- O 7 .48 300 Gt:-3 0.00950 1 t:-1 -!J . GO!J080t~+2 1.0558 78j~ -s 
3 1 7.358 12Ge- O 7.480700e-3 0.0990 17e-l ~5 .71 507Se+ 2 9.8G052Gc- O 
32 C3 8.5523G0e - 9 8.079005e-3 9.009423e -l -5. GG OOG3c +2 l . 1450 7 2c-8 
33 1. 18 1 703•-: -8 0.5 11 700•:-3 0.00!)2 18f!- l -5.5G8810e +2 1 .583423c-8 
34 G.50 2200c-O 7 .001104e-3 !J.OOO::iGle-1 -5. 7407::i2 t:+2 8.833221 .. ~-o 
3G CG G.015370c-D 7 . 105..J.02e-3 0. OO!J555 e- l -5. 748004c +2 8 .8G428 l e-O 
3G O.G091 70e-O 7 . 149080~:-3 0.000540t!-l -!:i . 744 7G2e+2 8.07GGG5e-O 

A.1.2 Results for total porosity model with constant growth material 
function 

Table 3a. Identified parameters and fitting errors for the cases A4 , A5 , B4, B5, 
C4, C5 

h - nucleation functions with a1 , b1 and c1; 

g - constant growth function with a2 1 and a2 estimated 

Ca~f'! ,,, "-2 
3 .005fi!J2c- 2 3.GGG8 15e- l 1 .282348 1. 0 l. D832G8<o·7 

A4 3.00503-Se- 2 3.3483G5e -1 1.227703 1.0 2.8870 13c-7 
3.100320t:-2 3.47DD.S7.::-l 1.232G.S3 1.0 4 .54GG 74t:-7 
2.G5 7334t:- 2 3.473840c-:- 1 1.21 4838 1 .1 4200 3 1 . 7 883!JOe- 7 

A5 2.44 7573e -2 3. 233043•:- 1 1.1780 14 1 .134DDD 2.4G1784<:- 7 
3. i'40300c-2 3.533 57 7(~- 1 1.278040 0.023870(!-l 2.818G01t:-7 
1 .22040 3c-2 1. 502!:14 8 7 .3G737St ~-1 1.0 1 .30078St:- G 

D 4 1 .2480fi 2f:-2 1 .48!J07G 7 . 14G470t! · l 1. 0 1 .442804f:-O 
1. 277 7 79t~ - 2 1 .4052G 1 0.870340 · ~ - 1 1.0 l.G 12 120e-O 

10 1 .329 7G0e-2 1.0284 G4 7 .32.J8 8Ge- 1 0.028104t:- l 1 .1 G2002o:-O 
11 Il5 1. 308028t:- 2 1 .5 7773 3 G.3GOSG4 e· l 0.84SI008o: - l 1.3G4830.,·G 
12 1 .32 7030e - 2 1.430378 G.40534Gt:-l 1.002GG4 2.07 7007(:- 0 
13 2.20 11 83e-2 2. 72720!) -2.48•1[150 1 .0 l .974333c-7 
14 C4 2.20020<k-2 2.07 138 1 - 2.452[180 1.0 2 . 105057•:- 7 
15 2.205837•~-2 2.085177 - 2. 4 50003 1.0 2.123488• :-7 
I G 2 .424180•:-2 2 .81GI20 -2 .!"',RG .'i 2 ."", 'l .1~01 ()R•·- 1 1 1)1 'l.11) ~ .... 7 
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Table 3b. Statistical results for the cases A4, A5, B4, B5, C4, C5 
Sew - standard deviation , Sew - relative standard error, ryy - correlation 

coefficient, Akaike - AIC information-criterion, F P E - Final Prediction Error 
information criterion 

Ca"'e .~~ .'l'cw Akai k r! FPE 
6.6 10892c-9 7 .09 123le -3 9.9!)9580e-l -5. 788874f~+ 2 7. 7G85G l e -O 

A4 9.623375c-9 8.571815e-3 !) ,!)!)!)3 401~ -1 -5.G72477c+2 1 .130858e-8 
1.5155!18r:-8 1.071005c:-2 !).009251 e- l -5.531 683c + 2 1 . 780!)55t·:- 8 
5.9G l3 2 1e-9 0.740050e -3 9.999G l 9e-l -!::1.800037c+2 7 .478358c:-O 

A5 8. 17 2G 14c-O 7.8808041!-3 0.000507c-1 -!:> . 703133c+2 1 .025238e-8 
0.39 533Gc: - 9 8.4G4723c-3 O.OOOJGOe-1 -&.G50011c+2 1.1 7BG2Ge-8 
4.5350G l c -8 1 .840385e-2 9.0082::JOc- 1 -5 .101S44c + 2 5.33027Gr~-s 

D4 4.80954Gc-8 1 .803327e-2 0.008404(!-l -5 .173GSOt:+2 5 .G!:i177le-8 
5 .373734e- 8 1 . DDS 720t·:- 2 !) . !)!)8534t~ - 1 -5. 13 0304c~ +2 G.3 1475Gc!- 8 

10 3.876339e-8 l . 7073571!-2 9.998!J4 l c -1 -5.220!JG0~+2 4.862792c-8 
11 D5 4.5494G4c-8 1 .852984c~-2 9 .998501 ~:- 1 -!J . l 70923c+2 5.7072 12c-8 
12 G.923523c:- 8 2.2G l !J79e-2 0. 998598f~-l -5 . 040749~:+2 S .G8!J 4 2 4 e - 8 
13 G.5811 10e - 9 7 .07800!Jc:-3 9. 9995!)8(!- l -5.790274c~ + 2 7. 7335G2e-9 
14 C4 7 .01985Ge- 9 7 .30!J773c-3 O.DD!J!JS!J<!-1 -5. 7702G7e + 2 8.24 9 140c:-!J 
15 7 .0782!)4c:- !J 7 .333948c- 3 !).!J99G18c:- 1 -5. 7G7G97t-~+2 8.3 178 10e -9 
IG G.377318e-!J G. 075820c-3 !J.OOOG72e- 1 -5. 78002Gc:+2 8.000218e-9 
17 C5 G.58500Ge- 9 7 .08 7020e -3 O.!JODGGOe- 1 -5. 77008Sc:+ 2 8.200832c-O 
18 0.7Gl!J98c-!J 7 . 173355c!-3 9.009GG5e - l -G .702327c+2 8.470247P.-!) 

A2. Results for separated porosity model 

A .2.1 Results for separated porosity model with variable growt h ma
terial function 
Table 4a. Identified parameters and fitting errors for the cases DA1- DA3, DA6, 
DB1- DB3, DB6, DC1-DC3, DC6 

h - nucleation functions with a1 , b1 and c1 ; g - growth functions with a2, b2 
and c2 

C <uce ,_ b c 02 ,)., 
{~ ') f 

1 3. 1933 10c-2 3.242008c- l 1 .203502 8.2 11 754e- l 4.3G0255c- 2 2. 11 G27Gc-2 3 .8 4 HiG(k-G 
2 DA I 3.940290c-2 3.785443c:- l 1 .28!)201 8 .24418Ge-1 3.&371GOc- 2 2.900G28t:-2 4. 1990&!Jc:- G 
3 2.66 1606c-2 2.814220c-1 1. 134062 8.39G822c-1 3.000000c-2 J.OOOOOOe-2 4.!J08 105c:- O 
4 3.1GG840e-2 3.208090o-1 1.1980G9 4.495204c:-1 0.044GGGe-1 1.507!)8!) 2.070804t!- G 
5 DA2 3.6492D3e -2 3.583740e- l 1 .25 7 008 4.43 1 033e- l 1.066636 1 .020025 2.082412c~-o 

6 2. 77588Ge - 2 2.889782e-1 l.l!J2GIG 4.4G l !J73c:- l O.OGSOJGc~ - 1 1 .600207 2 .3 270!)I c -O 

7 2.!JG935Ge- 2 3. 1 08410c:-l l.l7G1 69 1.811850 3.13G222 1 .!J97 173c:-G 
8 DA3 2.G94745c:-2 2.877444 e- l 1.13!)520 1 . 700000 3.008815 2.40 1 1371:-G 
9 2.908!)85c-2 3.002490e -1 1.179788 1. 866987 3.127 4 03 3. 184075.-: - 0 

10 3.4440 11 c -2 3 .0555 1 7<:- 1 1 .230720 4 . !)00000<:- 1 3 .!JOOOOOc - 1 2 .!)93737<!- 0 
11 DA6 2 .827350c-2 3. 1 00254c:- 1 1.1523 10 0 .2G3487c -l 2 .2457D&c- 1 4 .350573t:-G 
12 3. 122510e-2 3.3!JD28Dc- 1 1.1 87&83 G.Ol3909t:- 1 2. 1S2 728c: - 1 4 .4G5304c:- O 
13 t.20400Dc- 2 1.666148 8.075080t~ -l 4.041240e-1 O.OOOOOOe -1 1.241780 0.000870(~- 0 

14 DOl 1.374453t:-2 1.836789 7 .450208c·l 4 .0 ~ 1 000(:- 1 5.43780Gc·: - l 1 .370!JG 1 G.GG43G7·~ - 0 

15 1.307317t:-2 1.857122 7 .407808( ~- l 4.81GG17c- 1 5.031233c-1 1.420247 7 . 1 4~0 12c:- G 
I G 1.30G251 e -2 l .G07246 7 .8!J!J4G8r:- 1 4 .8!J 13 17c- 1 0.702717~: - 1 1.312784 G.02 11 0 7e -G 
17 DD2 1.4 ~~0 73c-2 l.GOOOO() 7.178!J22t:-l 4 .0001 07<:- 1 0.000020f:- 1 1.400000 0.300885•:- 0 
18 1.4G378!JE-!-2 1 .668226 7.3050 1 De! - l 4 . 72D533c:-l 8.8081 1 1t:-1 1.291674 1 .380573e- 5 
19 1 .3G01 12t~ - 2 1 .3552 15 7 .2204!J4c- l 1 .096486 2.337009 3. 758!:103e-O 
20 DD3 1 .822050c:-2 1 .30·1295 4 . 229292t:· 1 8.22D0 14c- 1 2 .028777 !:1. 0 18874e- O 
2 1 l .G8240!Jc!-2 S.!J20310t:- 1 4 .48 1801c- l !J.3705G2c- 1 2. 158984 1. 442480P.- 5 

22 1.040700t~ -2 1.694600 5 .892G.JGt:- 1 0. 14120Dc- l 2.284382~: - 1 7.0G8 244c·: -O 
23 DD6 1 .2G4450c-2 1 .G74237 8.48.J074f:- l 0.3G3.J80c·: -1 2.40907-Sc-1 1 .024005e- 5 
24 1.440077c -2 1. 750012 0.0408.S.S c:- l G.378839,- l 2.863493 e-1 1 .33400Gf:-.S 
2[1 2.24!J47 8e-2 3.410590 -2.025411 8.3238!J3e- l 2.008707t:- 2 .S.312087 e-3 4.82 1.J07c-G 
2G DC! 2.021143c!-2 3 .4050.J5 -2 .83 1718 8.100507c- 1 3.000000c~- 2 1 .2 74750t:- 2 4.80058 7e-O 
27 1 .83744!Je-2 3.!)!)!)077 -2.705133 8.145520c~ -l 3 .000000c- 2 1.490G70f:· 2 7. 107831t:-O 
28 2.3G37 12c -2 2.837932 -2 . .S101G7 4 .4720!JOe-1 8. 108240c- 1 1 .813 760 2.373!)88c-G 
29 DC2 2 .3038G5e-2 2 . 7878 15 -2.4 868 16 4 .484030·~- 1 8. 125782e- l 1.791143 2 .3934G l c:-G 
3 0 2.255&54·~ - 2 2.932520 -2.530504 4.443233e-1 8. 1 77483c-~ - l 1.842203 2.40 1880e-O 

3 1 2.404208c-2 2.G25G 17 -2.39064 1 1 . 72504 0 3 .042239 2.208080c-G 
32 DC3 2.4400 15c-2 2.033202 -2.30!)!)!)7 1 . 73G3G 2 3.077805 2.207700e-O 
33 2.520504e-2 2.407748 - 2.2908 14 1 .708019 3.038305 2 .3 14303e-G -- ",., ... ., ... ..... " "' ..... '""' ~ " A Anf'ICif'l " "' 1': 1 "'1/lf'l -. , ( 7'1 1 11f': 1 .-• . 1 ? nR~4 7nr• - ri 
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Table 4b . Statistical results for the cases DA1- DA3, DA6, DB1- DB3, DB6, 
DC1- DC3, DC6 

s e - standard deviation, Sew - relative standard error, ry y - correlation 
coefficient , Akaike - AIC information-criterion, F P E - Final Prediction Error 
information criterion 

Ca,.;t ~ ·~C .:lc ~ w · ~v , .. A ka ikn FPE 
1 G. 77 3 14 4c-S 2.2.J l 308e- 2 0.0947 l ~ e- l 0. 0 7[1!J33n- l -·1. 8 1 0 11 4(~+2 1 .8340S3t~ - 7 

2 DA1 G. lDOll.Se -8 2.147G80c - 2 D.DD3.J04c - 1 0 .074GS4t:- l - 4. 782.S38e+ 2 2.0047 12t:- 7 
3 1 .530 71Gc -7 3.3G l 085c~- 2 o. ooo o8o.,. 1 O.D74 830t:- 1 -4. 7CJG4 20e+2 2. 180!)3 (1 t:- 7 

1 1.7!J20fi l c- 8 1.151 2241!-2 0. 0 04G8 1.,· 1 0 .0872 30.,· 1 -.J. 001G84t: + 2 0.88G410., ·8 

" D A 2 S.428G::i8e-O 7 .0023 4 0c - 3 O.D041 15t:- l !J. 08 7 .JG0 cJ-l -4. 00!)0 5 11:+2 0.04 1838e-8 
G 3.202048e-8 l.UG287Ge- 2 O. !Hl34 1 5~- l 9 .0SGGG7t:-1 -4.9G.S438t~+2 1. 1 112GGt:-7 
7 l. 814 12 l e - S 1.173.J1Gc: -2 0.093883.,-1 !). 088 1 25c~ - l -5 .032 007e+2 s.020J7o,~ - s 

8 D A3 3.57 1030 e -8 l .G44880c- 2 0.00 11 fi3c- l !U>8 78GGt:- l -4.975802e+2 1.0724GSt~-7 

0 3.G5 15 14 c-8 l .G5854 Gt!-2 9.9945921"!- l 9. 98854 Ge- 1 -4.8883 14e+2 1 .422 1G7t:-7 
10 G. 777280t:-S 2.247 722c·2 V.00 1GG2c- 1 9.!>85G57t:- l -4.!>074 22c + 2 1.337 153e- 7 
11 D AG 1.45075l c-7 3.2G0728c-2 0.087552t:- l 0.08 11 GG t:- 1 -4.70 1540(:+ 2 1.043184c- 7 
12 1 .30 7 3 2Ge-7 3. 1300 20c- 2 0. 0 0103Gc-1 O.OS 1 2 70f:- l -4 . 7 8347 3e + 2 1.0944 09(: - 7 
13 1.9102 8 7c-7 3.8G5 4 2Ge-2 O.DG8055t"":· l 0 .0 0 0 3 6 1<:-1 -4. 7 8 24 GOe + 2 2.0052 1 -Jt~ -7 

14 D O l 2. 2 84232 t"":- 7 4.2 1073 7e- 2 O. OGGG04e- l 9 .0 8 0054t:- 1 -4.GCI 3022 t: + 2 3 .0 35Cl4 0 c- 7 
1o 2.G84 00l e- 7 4.G10388c-2 O.OG4881c-1 O. OSOOG0.,- 1 -4.G3G3GOc+ 2 3.2 124 7Ge- 7 
1G G.345580c-8 2. 20281 Oc- 2 0.074G43e- l 0 .080 72 l t: - 1 -4.7000.S4 t:+2 1.05GG8St:-7 
17 DD2 0.4GG2.S0t:-8 2.G34G73r!-2 0.077433 t.: - 1 0.0888801':-1 - 4. 7855GOt~ + 2 1.08525!-k- 7 
18 5.4 11 387c- 7 G. 14 1882t:-2 0. 073008c -1 0.08000 7c- 1 - 4. 770050c+ 2 2 .02 1457c!- 7 
10 8.302G45c-8 2.40G!>54c-2 0 .082G l 7t!-l 0.99 174 l t:- l - 4 .83G80Se+ 2 1 .G7 873Gt:- 7 
20 D03 1.3550 GDe - 7 3. 154 72 4 t: - 2 0.0824 17!:- 1 D.OOOGGit:-1 -4. 7122 44o+2 2. 5000 i 1 e- 7 
2 1 4 . 1G0080t: - 7 5.424328c-2 O.OG37GOe- l 0.00 1 03Gt~ - 1 -4.4 100GOc+ 2 G. 4 428GGe- 7 
22 2. 0 343 08e-7 3.81050Ge- 2 0.078735r:- 1 0 .985452c-1 -4.098 04 3~:+2 2.G273 11 e - 7 
23 DOG 4.0010 Gle- 7 5.3 12854 e -2 9 .9 7 30G4e- 1 0 . 0 8 744 3t~-1 -4.GS59G8e + 2 2. 73 1 GGSe- 7 
24 3.0 70 33 0 e -7 5.327 714r:- 2 0.0 7 1000r~- 1 9.088 7G3r:- 1 -4.G I1 G0 2 t: + 2 3. 4 7225 1r> 7 
2 o 7.34G4o t ~~-s 2.328858t~ -2 0.003 1G0r:-l 0.077041e- l - ·1.GGOG4 l c+2 2.070453c- 7 
2G DC ! 1.34801 Gt: - 7 3. 1G70G4c-2 0.001350c- l 0.072233c- l -4.G0 7382c+2 3.52 725 1c:- 7 
27 3.011 8 1Ge- 7 4.08743[u~-2 O.D83323c- l 0.9G7G7Ge- 1 -4.G03084r:+2 3.57G4!)~u:- 7 

28 !).!)000 3 4 c-O 8.G88577c- 3 0.002G38<·' - 1 0.087277c- 1 -4.058330c+ 2 1. 13704 0 t:- 7 
20 DC2 0. 153054e- D 8.3 10827t!-3 0.002428c- l 0.9874 2 1c:- 1 -4. 040280c + 2 1 . 1 70 722e- 7 
3 0 1 .oso4oo ,~-s 1. 127040e -2 0.002833e-1 0.08G80 3c - 1 -4.04 71 2 11:+2 1 . 1 7800Gf:- 7 
3 1 1. 23 1G04e- 8 O.G43 120e- 3 0.001832 e- 1 O.DS040 l e - l -4.0D2 100c: + 2 l.O l7245e- 7 
32 DC3 1 .384 3 0 8e- 8 1.022074 e-2 O.D0212.Jt~ -1 0 .0 80 107t:- l -4.0.J0 1G0t":+2 1 . 13 l !J82e-7 
33 L GG 7 3 18c-8 1.1 2 13 7Gc-2 9. 99 1 Gll e- 1 0 .080 3 1G., · 1 - 4 .04504G t:+2 1 . 1 8080 5t ~ -7 

3 4 8.0!J l 8 2 0 t~ - O 7 .820002 (~ - 3 0.002443 t:- 1 0.08800Gt:- 1 -4. 0 08355c+2 0.0721 5 2 £: - 8 
3G DCG 1.8GG 774 c: - 8 l .l82802t:-2 0.001700(:- 1 0.0885l l t:- l -•1.053GG5c +2 1. 1 5 1 853t~ - 7 

3G 2 .5G00 3Gt:-8 l .380047t: -2 9.001308e- 1 O.D8857Gr:- 1 - 4.024 17 3e +2 1 .2GGB 18l: - 7 

A.2 .2 R esults for separated porosity m odel with constant growth ma
t erial function 

Table 5a. Identified parameters and fitting errors for the cases DA4, DA5, DB4, 
DB5, DC4, DC5 

h - nucleation functions with a1 , b1 and c1 ; 

g - constant growth functions with a2 = 1 or a2 estimated 

C;u; r: I> c 
2.4.J55GOe- 2 2.31G203e- l 1. 13320 1 1.0 2.203G2!Jf!- 5 

DA4 2.7308!JOe-2 2.5.J854Gc- 1 1.1 69457 1. 0 2.300003t:-.J 
2.8024 19c-2 2.G4 43G7c:- 1 1. 177008 1. 0 2 . 3230G3t:-5 
3 .323055(:-2 3.335458!:- 1 1 .2 10735 8.58 I 2G8f:-1 3.8!JG-1G3e-G 

DA.J 3.5717 1 3t":- 2 3.480GDlt:-l 1.2 4 0 108 8.G18057e - l 3.023/GGe -G 
3.045804<:-2 3. 107008e-l 1. 18520 1 8 .58G075e -1 4.10349 7t:- G 
1.078528e- 2 1 .830830 0.442 1 Gl e- 1 1.0 3.103 14 Ge- 5 

DD4 1 . 10 i G0 7c-2 1.814G23 0. 133710t:-1 1.0 3. 22 G4 3St:- 5 
1 .14i34 0c- 2 1. 763 157 8. 74G32fk-l 1.0 3.31 1483e-5 

10 1 .30 1742t':-2 1.400424 7 .834045e- 1 8 .G23074l:-l 6.787-l l Gt :-G 
11 005 1 .5G2 1 12r:- 2 1.507073 G.OOOOOOe - l 8.4 1 3G22e- l 7. OOD!JSSc- G 
12 1 .274083e- 2 l .!J4D482 8.242542t:- 1 8.474340t :- 1 7 .597238t :-G 
13 3.3G5387t: - 2 2.60028[, - 2. 711 450 1. 0 2. 7 4GOO!J•:-.J 
14 DC4 3 .0070G3c - 2 2 .500!:.65 -2.03044 1 1 .0 2 .788104t;-5 
1G 3.4 1 2038t~ - 2 2.488300 - 2.G23G37 1.0 2.80100Gt~ -G 

1G 2 .430504<!- 2 2 .05 2102 · 2 .3 01 388 R . .'"",RR:11 o .... - 1 4 4 /)11)77 P- fl 
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Table 5b. Statistical results for the cases DAl - DA6, DB l - DB6, DCl - DC6 

Be - standard deviation, Sew - relative standard error, ry)' - correlation 
coefficient, Akaike - AIC information-criterion, F P E - Final Prediction Error 
information criterion 

Ca>!t~ .~ f: -"C\\' '/'~y Akhikt· FPE 
3.084033<)· 7 .J . .J41!:102c ~ -2 0 .0832.J3t !-l 0.98447!:k-1 - 4.31G202e+2 8.08424 [11 :- 7 

DA4 3.G4GGG3e- 7 .:J.28Gll2e- 2 D.OS3 ,l07,:-l 0.08.J12lt :- l -4.3l.J341 e +2 !) . 00!)228t:- 7 
3 .227280c-7 4.0G803lc•-2 O.OS.J207e- 1 0.084804(:-1 -4 .312248r:+2 0 .OOO.JGGt: - 7 
.J.807100t:- 8 2.08G283r:-2 0.004080<>1 0.07GG23~-1 -4.848022c:+2 l.Gl2Gl0c-7 

DA.J 4 .322428t:-8 1. 70041Gr:-2 0 . 004 233<:- 1 0 . 07G08Gt~-l -4 .8435G8t:+2 l .G407G2c-7 
1.047GG3c- 7 2 . 701 OG(h:-2 0 .003782c -1 0 .07410Ge -1 -4 .820G74e +2 1 . 7l.JD10t.:-7 
3 .4<l.J4GGe-7 .J.03G17h:- 2 O.OJ2!:..40e- l 0.084172t :- l -4.212G73t:+2 1.2.J4G4 l e- G 

DD4 3 . 134Gl0<>7 4. 797007e-2 O.OGG220<;-l 0 .083Gl3e- l -4 .2003130+2 1.280GGOc-G 
3 .12G720e-7 4. 7GG!:>!:>4<,-2 O.OG204G<~-1 0 .082GG7e-l -4 .201004e+2 1.30277lc-G 

10 G.G743G7e-8 2.222807t!-2 9.078483e-l 0.074228•!-1 -4 .G.J9332• !+2 2 . 9720CHk-7 
11 DB5 1.408280e- 7 3.19831Gt!-2 0.082GGDt:-1 9 . 071 1 841~ -1 -4 .G30522e+2 3.1G8770e -7 
12 G.G55G2D e-8 2.211882c - 2 O.D7G321e- 1 9 .07C.70(k-1 -4 . 441332<~+2 G.OOG<l27e-7 
13 3.400240e- 7 G.124C.G!k-2 0.003442t!-l 0.0857371·!- l -4.200072·~ +2 1 .073G32t•-G 
14 DC4 2.811037e-7 4 .GGG330(! - 2 0 .073G58c-l 0.08434lc-l -4.2G01G7e+2 1.07G425c-G 
IG 3.0G0401c- 7 4.78GOG7c-2 O.OGG48G•, - 1 0.08G054c-1 -4.25D238e+2 1.003G77e- G 
10 G.!233GOo-8 2. 132040c-2 0 .002148•:-1 0 .074423c-1 -4 .80S2GOc+2 1 .83SG41c:- 7 
17 DC5 0 .5123441·! -8 2.100858,!-2 O.OOI028 e- l 0.074227e- 1 -4. 788017e +2 l.OGSO l .Je- 7 
18 G.80[lll0e-8 2.250727e- 2 0. 0020041"'• 1 0.0740021:- 1 -4. 787420<:+2 1.000438<, -7 

A.3 Vuong test values for pairwise comparison of models 

Table 6. Vuong test values for the total porosity models with varying g 

Ca~ r. A2 A3 AO D1 D2 D.) DG C1 C2 C3 CO 
AI 0.02200 -0.00700 -0.20202 0 . 10818 0.10088 O.l.J200 0.19742 O.OG130 O.IJC,499 0 .03500 0.01322 
A2 - 0.05004 -0.04700 0 . 12203 0.15233 0.11 0 57 0.14070 0.01020 -0.00057 0.00055 -0.01070 
A3 0.010.59 0.10008 0 . 19019 0 .140 72 0.19033 0 .0.':)71.':) 0 .00!:">51 0 .05120 0 .040 1 G 
AO 0 . 17704 0 .21009 0.10270 0.208 1 0 0 .00045 0.11982 0.00035 0.05043 
D1 0.0807[) -0.17144 O.OG020 -0.23333 -0.17013 -0.177.50 - 0.18-JJO 
D2 -0 . 18891 -0.00407 -0.2GGOO - 0.21470 -0.22780 -0.22978 
D3 0.11300 -0 .21038 -0.10030 -0.1G23G -0.1700 1 
DG - 0.2424G -0.21070 - 0.21002 -0.221344 
Cl -0.0432.5 -0 .03029 -O.OG70G 
C2 0.01GSO - 0 .030G4 
C3 -O.U0207 

Table 7. Vuong test values for the separated porosity models with varying g 

Ca:;c DA2 DA3 DAG DDI DB2 DD3 DDG DC! DC2 DC3 DCG 
DA! -0.18582 -0.31271 -0.02300 0.0 7002 -0 .02008 0 .00887 -O .OG1G2 0.24304 -0 .18000 -0.1G22G -0 . 17434 
DA2 - 0 .01GSG 0 .14308 0 . 14240 0 .08753 0. 11G11 O.OG497 0.20182 -O.OOG20 -0.04172 -0 .05401 
DA3 0.17238 0. 1 73GO 0.08034 0.11G7G O.OG83G 0.31007 0.00580 -0.020.':)7 -0.04082 
DAO 0.00020 -0.01514 0. 0 2070 -0 .0.':)501 O.G1881 -0.20250 -0.20000 -0.21870 
DDI - 0.0842G -0 .05505 -0.1289-J 0.07182 -0 . 14038 -0.18704 -0.20800 
DD2 0.20323 -0.1G302 0.17924 -0.11404 -0.28084 -0.31838 
DD3 -0.39121 0.14292 -0.14440 -0.3DOfJO -0.33031 
DDO 0 .22070 -O .OS22G - 0 .20054 - 0 .24800 
DC! - 0 .385G7 -0.34739 -0.3G4GO 
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Table 8. Vuong test values for the comparison of the best models from particular 
groups 

A5 D3 n:; C4 CG DA3 DAG DD3 DDG DCG 
A3 - 0.01220 0 .14072 0.1G430 ·0.00978 0.040 1[1 0.20409 0.30307 0.27041 0.33G38 0.2GOGG 
A:> 0.17707 0.18444 - 0.00411 0.10737 0.3S008 0.37044 0.32708 0.40128 0.31GGO 
D3 O.OG300 -0.22007 ·0 .17001 0 . 12083 0 .17070 O.f>89GO 0.48022 0 . 100G8 
D5 -0.22GGJ -0.17844 0.00803 0.14710 0.4340G 0.42353 0.17438 
C4 0 .3 7340 0.3740[) 0.38004 0.47157 0 .3 7030 
CO Cl .3G500 0 .3 7711 0.33 741 0 .4 28G4 0 .33383 

DA3 0.17238 0.11G7G O.OGSJG -0.04082 
DAO 0.02070 -0.0[)G01 ·0.21870 
DD3 -0.30121 -0.33031 
DDO - 0.24800 




