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Abstract: Reinsurance reduces the risk but it also reduces the 
potential profit. The aim of the paper is to derive optimal local 
reinsurance contracts balancing the risk measured by variance and 
expected profits under various mean-variance premium principles of 
the reinsurer. The reinsurer's premium is calculated per claim. It is 
found that the optimal rules are combinations of excess of loss and 
quota share contracts. 
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1. Introduction 

Let X be a nonnegative random variable, called risk, defined on a given prob
ability space (D, S, Pr). Reinsurance is a transfer of risk from a direct insurer, 
the cedent, to a second insurance carrier , the reinsurer. The reinsurer's share 
of the total claim amount is given by R(X), where R: [0, oo) -+ [0, oo) is the 
compensation function. The best known examples of reinsurance are stop loss 
and quota share. In stop loss reinsurance, R(X) = (X - b)+ , with b being 
a parameter. (From now on, a+ means {a, 0} .) In quota share reinsurance, 
R(X) = aX, where a E (0, 1) is a parameter. Both stop loss and quota share 
rules are optimal, i.e. stop loss (resp. quota share) minimizes the variance of 
cedent's payment under the constraint PRe = (1 + (3)ER (resp . PRe = Var(R)) 
with a safety loading parameter f3 > 0 (see, e.g., Gerber, 1979; Pesonen, 1984; 
Daykin eta!. , 1994; and Biihlmann, 1996). Here and subsequently, PRe stands 
for the premium of reinsurer, Var(X) denotes the variance of random variable 
X . and D( X) denotes the st.anrl;:J.rrl rlPviM.inn nf X" 'T'hrrm o-hrmt th o:- n o. n <>r m o 
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The results cited above suggest that the following rule 

R(X) = a(X- b)+, (1) 

with 0 < a :::; 1, b > 0, may also be optimal in a suitable setting. In fact, by 
employing a straightforward method Kaluszka (2001) showed that the rule (1) 
is a solution of the following problem 

minimize Var(X- R(X)) 

subject to E[R(X)] = f( PRe, D[R(X)] ), 0 :S R(X) :S X, (2) 

with f being a function defining the reinsurer's premium principle. Examples 
include the following premium principles: 

expected value principle PRe = (1 + ;3)E(R), (3) 

standard deviation principle PRe= E(R) + j3D(R), (4) 

variance principle PRe= E(R) + ;3Var(R), (5) 

modified variance principle PRe= E(R) + ;3Var(R)/E(R), (6) 

mixed principle PRe= E(R) + o:D (R) + ;3Var(R), (7) 

mean value principle PRe= [E(R2 )]~ = [(ER)2 + Var(R)]~, (8) 

quadratic utility principle PRe= E(R) + c- (c2
- Var(R))~, (9) 

where R = R(X) and a:, /3, c > 0. For an overview of the premium calculation 
principles, we refer the reader to Gerber (1979), Goovaerts et al. (1984), Straub 
(1988), Embrechts et al. (1997), and Rolski et al. (1998). The result ofKaluszka 
(2001) is a generalization of the work of Gajek and Zagrodny (2000), which con
cerns optimality under standard deviation principle. By applying the involved 
convex programming method of Gajek and Zagrodny, Mazur (2000) found an 
optimal reinsurance rule under the variance principle. Kaluszka (2001) also 
showed that a combination of excess of loss and quota share contracts is op
timal for local reinsurance with reinsurer's premium per claim. Other related 
optimality results can be found in Centeno (1985), Centeno and Simoes (1991), 
Hesselager (1990), and Kaluszka(2002). We follow the most common terminol
ogy for excess of loss and stop loss rules, i.e. stop loss is an aggregate type of 
cover while excess of loss stands for individual claim amounts. 

The rule (1) is well known as a combination of stop loss and quota share 
arrangements (see Centeno, 1986, and Hesselager, 1990) . To the best of my 
knowledge, this kind of reinsurance was firs t considered in actuarial literature 
by Kahn (1961), p. 270. Unfortunately, there is no official name for it. Samson 
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it is called the change loss rule. The change loss reinsurance has been used in 
practice (see Gerathewohl , 2, 1980, 371 ; Lehrke, 1997; Schmitter , 2001 ). 

The purchase of reinsurance is a compromise between expected gain and 
security. Reinsurance reduces the cedent's risk; on the other hand, it will reduce 
the expected gain of the cedent . The aim of this paper is to derive optimal 
rules of the reinsurance provided the cedent t rades off between the variance 
and the expected value of his gains . Our approach is related to the Markowitz 
methodology of optimal portfolio. The paper is a continuation of the work of 
Kaluszka (2001) , which does not take into account the regulation of the expected 
gain of the cedent . In Section 2 we assume that the cedent is interested in 
minimizing the variance of his retained risk under a fixed expected value of the 
gain. Section 3 contains results on minimizing some meaningful functions of the 
expected gain and variance like the coefficient of variation. 

2. Regulation of expected gains of cedent 

Let X, X 1, X2, .. . be a sequence of independent and identically distributed ran
dom variables defined on a common probability space (D , S , Pr) . Let N be an 
integer valued random variable such that 0 ~ Var N < oo. Assume that N is 
independent of X , X 1 , X 2, . . . . We use X 1 , X 2 , . .. as the sequence of successive 
claims occurring in a t ime interval. N models the number of claims over that 
period . 

Consider local reinsurance with a common compensation function R , i.e . 
each claim is divided between the cedent and the reinsurer as follows: for the 
i-th claim of size X; the part R = R(Xi) is carried by the reinsurer . We assume 
that the reinsurer's premium, say PRe, is defined by g(PRe, E R) =DR with a 
nonnegative function g on { (x, y ) I x 2: y, y 2: 0} such that g(x, y) is increasing 
in x for each y . Observe that the principles (4)- (9) are included in this class. 

Suppose that the cedent wants to have an agreement which minimizes his 
risk measured by the variance of his global payment , but also wants to keep 
control of his expected gain . Moreover , the cedent is willing to pay not more 
than P for reinsurance of each claim. Hence the following problem arises 

N 

minimize Var L [X; - R(Xi )] 
i= l 

subject to DR ~ g(P, ER) , E(X- R ) = m , 0 ~ R(X ) ~ X, (10) 

where P > 0 and 0 < 1n < E X . Here and subsequently, the symbol X ~ Y 
means that the random variables X , Y are defined on (D, S, Pr) and Pr{X ~ 
Y} = 1. In order that the problem (10) have nontrivial solut ion we assume that 
D (X) > g(P, EX ). Observe that (10) is a constrained optimization problem on 
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THEOREM 2.1 a) Suppose that there exists a nonnegative real b such that 

. { g(P, EX- m) } EX- m 
mm 1• D(X- b)+ = E(X- b)+. 

Then a solution of the problem (10) is given by 

EX-m 
R*(x) = E(X _b)+ (x- b)+· 

b) There exists a nonnegative real b satisfying {11) if 

(EX- m) DX ~ g(P, EX- m)EX. 

(11) 

(12) 

(13) 

REMARK 2.1 If equality in (13) holds, then the quota share coverage R*(x) = 
(1- E~ )x is a solution of the problem (10) since b = 0 is a solution of {11). 
Moreover, if there exists a strictly positive solution, say b*, of the following 
equation EX -m = E(X -s)+ ins 2: 0, such that D(X -b*)+ ~ g(p,EX -m) , 
then the excess of loss contract R*(x ) = (x- b*)+ solves the problem (10). 

Proof of Theorem 2.1 
a) Let b be a nonnegative solution of (11) . Recall that 

N 

E L[Xi- R(Xi)] = E(N)E(X- R) , (14) 
i=l 

N 

Var L[Xi - R(Xi)] = E(N)Var(X - R) + (EX - ER) 2 Var(N) (15) 
i=l 

(see e.g. Rolski et al., 1998, Corollary 4.2 .1) . Here and subsequently, R = R(X) . 
Put 

~m(g) = {R I DR~ g(P, ER), E(X- R) = m, 0 ~ R(X) ~X} (16) 

Since X- b = (X- b)+- (b- X)+, we have 

Cov(X, R) = Cov(X- b, R) = Cov((X- b)+, R)- Cov((b- X)+, R). 

(17) 

From (17) we get 

Cov(X, R) ~ Cov((X- b)+, R) + E(R)E(b- X)+ (18) 

with equality if R(x) = 0 for 0 ~ x ~ b. From (18) and the Cauchy-Schwarz 
inequality it follows that for every R E ~m (g) 
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and (19) is attained if R(x) = c(x- b)+ for x 2 0 with a real c. Combining (15) 
with (19) yields 

N 

Var 2)Xi- R(Xi)]2 [Var X- 2D(R)D(X- b)++ Var R+ 
i=l 

-2(EX- m)E(b- X)+]EN + m2 Var N (20) 

for every R E Rm(g). Taking t = D(R)/D(X- b)+ we get 

N 

Var 2)Xi- R(Xi)] 2 [Var X- Var(X- b)++ (t- 1) 2 Var(X- b)++ 
i=l 

(21) 

for every R E Rm(g), and equality in (21) holds if R(x) = t(x- b)+ for x 2 0 
with a real t such that R E Rm (g). Since 

O < t = D(R) < g(P, ER) = g(P, EX- m) 
- D(X- b)+ - D(X- b)+ D(X- b)+ 

(22) 

the minimum of the left-hand side of (21) under constraint (22) is attained at 

. { g(P, EX- m)} 
t0 = mm 1, D(X _b)+ . (23) 

By (11), t0 =(EX- m)/ E(X- b)+ :S 1. Clearly, 0 :S R*(X) :S X and ER* = 
toE(X- b)+= EX- m so E(X- R*) = m. By (23) D(R*) = t0D(X- b)+ :S 
g(P, EX -m) = g(P, E(R*)). Hence, R* E Rm(g) and from (21) it follows that 

for every R E Rm(g) Var:Z::::~ 1 [Xi- R(Xi)] 2 Var:Z::::~ 1 [Xi- R*(Xi)], which 
completes the proof of part (a) of Theorem 2.1. 

b) Define 

EX-m 
u(s)= E(X-s)+' O:Ss<supX. (24) 

From now on, sup X = sup{b: Pr{X > b} > 0}. Denote by d+ /ds+ f(s) the 
right-hand derivative off at s and observe that 

d+ d+ roo 
ds+ E(X- s)+ = ds+ Js Pr{X > t}dt =- Pr{X > s}:::; 0 

which implies that u( ·) is a continuous increasing function on [ 0, sup X). More
over, u(s) -+ oo ass -+ supX, and 0 < u(O) < 1 because of 0 < m < EX. 
Define 

r( .~) = min [ 1 g(P, EX- m) ~ frw n <:' C <"' C ll n Y ( ') <; \ 
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Since 

Var(X- s)+ = 21~{)() Pr{X 2 u}dudt- (100 

Pr{X 2 u}du) 
2

, 

r(-) is a continuous function on [0, sup X). By (13), u(O)::; r(O), so there exists 
a nonnegative real b such that u.(b) = r(b), completing t he proof of Theorem 
2.1. • 

EXAMPLE 2.1 Suppose X is a Bernoulli claim with parameters M, p, i.e. X 
takes the value M with probability p and the value of 0 with probability q = 
1- p, where M is a positive real. Assume the reinsurer uses standard deviation 
principle, i.e. ER+(JDR =PRe ::; P, where (3 > 0 is a safety loading coefficient. 
Recall that P is an amount of money which the cedent wants to spend on the 
reinsurance per claim. A standard algebra gives 

E(X- b)+ = (M- b)p, D(X- b)+ = (M- b)y]Xj for 0::; b < M. 

From part (a) of Theorem 2.1 it follows that the excess of loss rule defined by 

R*(X) =(X- m)+ (26) 
p 

is a solution of the problem (10) with g(P, x) = (P - x) / (3 if and only if 

E~;m ::=;min{1 , P-(J~XX+m} and P<EX+(JDX. (27) 

Since 0 < m <EX, (27) holds provided 

PRe = (Mp- m)(1 + (Jjqjp)::; P < Mp(1 + (Jjqjp). 

Observe that the premium of reinsurer is a linear function of m. 
With a choice of M = $106 , p = 10- 4

, (3 = 2.3, and m = 0.4 EX = $40, 
we have PRe = $13859.3 for P 2 $13859.3 and the reinsurer has to pay $6 · 105 

provided X = $106 . 

EXAMPLE 2.2 Assume each claim has the exponential distribution with expec
tation f..L- 1 . It follows after a little algebra that 

E (X - s) + = f..L - 1 exp (- f..LS), 

Var(X- s)+ = f..L- 2 [2- exp ( -Jls)] exp ( -J.Ls). 

Assume that the reinsurer uses the variance principle (3). By Theorem 2.1 and 
Remark 2.1, the quota share coverage -~iven by R*(X) = (1-mJl)X is_ a solution 
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PRe· Moreover, if (J.L-1 - m)[l + fJ(J.L- 1 + m)] :::; P < f..l- 1 + fJJ.L- 2 then the 
following excess of loss coverage R*(X) = (x + f..L- 1ln(l- J.Lm))+ solves (10) 
and PRe = (Jl.- 1 - nt)[1 + fJ(J.L- 1 + m)J. If (J.L- 1 - m)[1 + fJ(J.L- 1 - m)] < P < 
(J.L- 1 - m)[1 + f3(J1.- 1 + m)J then a solution of (10) is the change loss coverage 
R*(X) = a(X- b)+ with 0 <a< 1, b > 0, and PRe = P , where 

= EX- m = (1- mJ.L) [p- f..L -
1 + m 1] 

a E(X- b)+ 2 fJ(Jl.- 1 - m) 2 + 

and b is the solution of the following equation 

g(P, EX- m)E(X- b)+= (EX- m)D(X- b)+, 

namely 

1 (1[P-J.L-
1

+m ]) 
b = ~In 2 fJ(f..l-1 - m)2 + 1 . 

ExAMPLE 2.3 Let X have the Pareto distribution with parameters a > 2, k > 
0, i.e. Pr{ X < x} = 1 - ( k!x )o:, x > 0. A standard algebra leads to 

ko: 1 
E(X- b)+= a- 1 (k + b)o:-1' 

ko: 
Var(X- b)+ = (a- 1)2(k + b) o:-2 [

2(a -1) _ (~)o:] 
a-2 k+b 

Remark 2.1 implies that the excess of loss rule defined by 

( ( 
k ) 1/{o:-1) ) 

R*(X)= X-k k-(a-1)m +k + 

is an optimal arrangement provided the reinsurer uses the variance principle (5) 
and the following condition holds 

2ko:/(o:-1) ( k ) 1-1/{o:-1) 
---m + 

(a- 2)(a- 1)1/(o:-1) a- 1 

+~ (-k -m)- (-k -m)2 < !:_ _ 
(3 a-1 a-1 - (3 

Let k = $2000, a = 3.5, (3 = 1/$100, m = $770, and let P = $3000 < 
EX + (3 Var X = $15733. In this case EX = $800 and the payment R(X) = 
(X - 5437.33)+ is received from the reinsurer per each claim. 

Following Koller and Dettwyler (1997) we now present a result for a larger 
class of admissible reinsurance arrangements, i.e . we assume that 0 :::; ER :::; EX 
instead of 0 :::; R(X) :::; X. Set 
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with 0 < m ~EX (see (16)). We look for a solution of the following problem 

N 

Var 2)X;- R(Xi)] = min! (29) 
i= l 

where the minimum is taken over all R in rR~ (g). 

THEOREM 2.2 Suppose the minimum of the function t --t (t- 1)2 under con
straint 0 ~ t ~ g(P, EX - m)/ D(X) is attained at t = a, where a is a real. 
Then the solution of (29) is given by 

R**(x) = a(x- EX)+ EX- m. 

Proof. In view of (15) and the Cauchy-Schwarz inequality we get 

N 

Var l:)X - R(Xi)] = E(N) [Var(X ) - 2 Cov(X, R) + Var(R)]+ 
i=l 

+(EX - ER)2 Var N ~ E(N) [D(X) - D(R)]2 + 

+(EX - ER) 2 Var N 

(30) 

(31) 

with equality if R(x) =ax+ f3 with reals o:, (3. Hence for every R E rR~(g) 

N 

Var L[X;- R(X;)] ~ (t- 1)2 E(N) Var(X) + m2 Var(N), (32) 
i=l 

where t = D(R)/ D(X) . By the assumption, the minimum of the right-hand side 
of (32) under the constraint 0 ~ t ~ g(P, EX- m)/ D(X) is attained at t =a. 
Observe that E(R**) =EX -m and Var(R**) = a2Var(X) ~ g2 (P, EX -m) = 
g2 (P, E(R**)). Therefore R** E rR~(g). By (32) with t =a, we get 

N 

Var L[X;- R(X;)] ~(a- 1)2 E(N) Var(X) + m2Var(N) = 
i=l 

N 

= E(X) Var(X- R**) +(EX- ER**)2 Var(N) = Var L[X; - R**(X;)), 
i=l 

for every R E rR~ (g). The proof is complete. • 
REMARK 2.2 If m = EX, then the rule R** is the APS reinsurance arrange-
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3. Trade off between gain and security of the cedent 

In Section 3 we assume that the cedent is interested in minimization of a function 
which depends not only on the variance of cedent's payment but also on his 
expected gain. Adopt the notation of Section 2 and recall that the aggregate of 
the ceded claims equals 2::~ 1 [Xi - R(Xi)]. 

EXAMPLE 3.1 The following criterion for balancing the risk and profits of the 
cedent can be found in the financial literature 

(33) 

where a > 0. Given a = 1, the cedent wants to minimize the second moment 
of his payment after reinsurance: 

(34) 

EXAMPLE 3. 2 From the actuarial point of view it may be of interest to solve 
the following problem 

minimi'e CV (t,[x, -R(Xi)]) 

subject to ER = f(PRe, DR), 0 ~ R ~X, (35) 

where CF(X) = DX/ EX is the coefficient of variation. The reciprocal of the 
coefficient of variation is known in the financial literature as the Sharp ratio. For 
instance, suppose that the cedent uses the standard deviation premium principle 
and wants to keep control of the claim ratio of a given period defined by 

N 

L[Xi - R(Xi)] 
i=l 

r = N(E(X- R) + (3D(X- R)) 

with (3 2': 0 (see De Vylder and Goovaerts, 1999). After a standard algebra we 
get 

Var(r) 
Var(X- R) 

[E(X- R) + (3D(X- R)F E(1/N) 

[CF(X -R)F 
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So, if the cedent is interested in minimization of the variance of the claim ratio 
then the coefficient of variation should be minimized. Other problems leading 
to minimization of the coefficient of variation of risk can be found in Hart et al. 
(1996) and Schnieper (2000) . 

EXAMPLE 3.3 As observed in Dickson and Waters (1997) an approximate way 
to minimize the cedent's probability of ruin would be to maximize the following 
approximation of the adjustment coefficient , say RA, 

R ~ 
2 

Expected profi t 
A Variance of profit 

(see also Gerber, 1979, and Straub, 1988, Chapter 5) . Hence the following 
problem arises 

minimi'e Vax t,[x,-R(X,)] (Pc,EN- Et,[x,- R(X<)]) _, 

subject to PRe = ER + (3 VarR 0 :S R(X) :S X, 

provided the reinsurer uses the principle (5). Here Pee denotes the cedent's 
premium. 

In a general setting, we minimize the target function defined by 

h ( Et,[x,- R(Xi)], Vax t,[x,- R(X,)]) 

subject to E(R(X)) = f(PRe, D(R(X)), 0 :S R(X) :S X , (36) 

where f , h : [0 , oo) x [0, oo) --+ ( -oo, oo) and h(x , y) is strictly increasing in y 
for each x. Put 

r.p(t , b)= h( EN[ EX- f(PRe, tD(X - b)+)), EN[Var X- Var(X- b)++ 

+(t- 1) 2 Var(X- b)+- 2f(PRe, tD(X- b)+)E(b- X)+]+ 

+Var N[EX- f(PRe, tD(X- b)+)] 2
) (37) 

with 0 ::; t ::; 1 and b ~ 0. 

THEOREM 3.1 a) Assume there exist reals a, b such that 
i) 0::; a::; 1, b ~ 0, 

ii) r.p(a , b)= mino<t<l r.p(t , b), 
iii) f(PRe, aD(X =b)+)= aE(X- b)+-

Then R*(X) =(X- b)+ is a solution of the problem {36). 
b) Suppose his continuous on [0, oo) 2 . Let f(PRe, 0) =PRe, let f(PRe 1 D(X)) < 
EX, and let f(PRe , t) be decreasing, concave, and differentiable in t. Then there 
exist reals a, b such that conditions (i)-(iii) are satisfied. 
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Proof. 
a) Arguments like those in the proof of Theorem 2.1 show that 

h ( Et,[x,- R(X,)], V;u- t,[x,- R(X,)]) ~ ~(t, b)~ ~(a, b), 

(38) 
for each ruleR= R(X) such that R E '!R(f), where '!R(f) = {R I ER = 
}(Pne, DR) , 0:::; R(X):::; X}. The first inequality in (38) becomes equal
ity if R(X) = t(X- b)+ with a real t such that R E '!R(f) By assumptions 
(i)-{iii), R* E '!R(f), which completes the proof of part (a) of Theorem 3.1. 

b) It is clear that for every 0 :::; a :::; 1 there is only one point, say b(a), 
such that f(Pne, aD(X - b(a))+) = aE(X - b(a))+ and the function 
a -+ b(a) is continuous (see Kaluszka, 2001, the proof of Theorem 1). 
By the Weierstrass theorem, there exists a real a such that <p( a, b( a)) = 
mino:St$1 <p(t, b(t)), as desired. 

REMARK 3.1 Let us discuss under which conditions the quota share contract is a 
solution of {36). Adopt the assumptions of Theorem 3.1{b). Assume additionally 
that h is convex and differentiable and assume PRe < EX. Then for every 
0 :::; t :::; 1 and b > 0 we have 

f(Pne, tD(X- b)+) :::; f(PRe, 0) = Pne <EX. 

In consequence, t -+ <p( t, b) is convex for each b. Furthermore, <p( t, 0) = 
h(EN[EX- f(Pne, tDX)], (t- 1)2 EN Var X+ Var N[EX- f(PRe, tDX}F). 

Denote by ao a solution of the equation f(Pne, aDX) = aEX Clearly , 
R(X) = aoX is a solution of {36) if (A) d<p(t, 0)/dtit=ao = 0. For instance, 
if the reinsurer uses the rule (4), then condition (A) is equivalent to 

hl[ EN EX 1rf3, (EN Var X+ Var N(EX)2 )1r~ ]EN (J+ 

+2h2[ EN EX 1rf3, (EN Var X+ Var N(EX)2 )1r~]1r!J((JEX Var N + 

-EN DX) = 0 

in which ht(t, s) = oh(t, s)/ot, h2 (t, s) = oh(t, s)/os and 1rf3 = 1- Pne/(EX + 
(J DX) . 

EXAMPLE 3.4 The following problem is to be solved 

N N 

minimize cxE l::)X;- R(X;)] + Var L[X;- R(X;)] 
i= l i= l 

subject to ER(X) + (JDR(X) =PRe, 0:::; R(X):::; X. (39) 

From Remark 3.1 it follows that the rule R(X) = XPne/(EX + (JDX) solves 
(39) provided 

(.) ,.., , D TH t '"\ ( 1 



894 M. KALUSZKA 

Since PRe < EX, ( 40) has a positive solution, say (30 , but the explicit formula 
for f3o is rather complicated so it will be omitted. 

EXAMPLE 3.5 Given a> 0, 

minimi'e a ( E t,[x,- R(X,)[)' + Va; t,[x,- R(X,)[ 

subject to ER + (JDR =PRe , 0 ~ R(X) ~X. ( 41) 

An easy computation shows that <p(-, b), defined by (37), attains its minimum 
over ( -oo, oo) at 

t(b) = (J(PRe- EX)[VarN + a(EN) 2
] + E(N)D(X- b)+ - (J E(b- X)+ 

[f32 (VarN + a (EN)2) + EN]D(X- b)+ 

Moreover, t(b) ~ 1 because of 

PRe = a[E(X- b)++ (JD(X- b)+]~ EX+ (JD(X- b)+· 

Consequently, if there exists a nonnegative real b* such that PRe = t(b*)[E(X
b*)+ + (JD(X- b*)+], then R*(X) = t(b*) (X- b*)+ is a solution of (41). For 
instance, if each Xi is a Bernoulli claim (see Example 2.1), and if the number 
of claims N has the Poisson distribution with mean A, then 

and 

* jpq- f3p(1 + a,\) 
b = ,\ f3 ,\jj)q [Mp + (JM ...jpq- PRe)> 0, 

q+ pq 

t(b*) = fJ(PRe- Mp)(,\ + a-\2
) + ,\(M- b*) jpq- (Jqb* 

[(32( ,\ + a,\2) + ,\)(M- b*) jpq 

provided 0 < f3 < (1 + a,\)- 1 /Pl(;.. 
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