Control and Cybernetics

vol. 32 (2003) No. 4

Book review:

Handbook of Brownian Motion - Facts and Formulae (Second Edition)

by

Andrei N. Borodin, Paavo Salminen

Brownian motion as well as other diffusion processes play a meaningful role in stochastic analysis. They are very important from theoretical point of view and very useful in applications. Diffusions and their local times are applied in financial mathematics, economics, engineering and stochastic optimization.

Brownian motion as a stochastic process was considered by Bachelier and Einstein at the beginning of the $20^{\text {th }}$ century. However, Wiener was the first to introduce its solid mathematical foundations. Lévy made a significant contribution to modern analysis of the process. Brownian motion is an important example of a linear diffusion, i.e. a continuous strong Markov process taking values on an interval.

The aim of the book is to give an exposition of facts and formulae associated to Brownian motion in a style of a handbook. It is divided into two parts, which are preceded by the prefaces to the first and to the second edition. Part I is devoted to theory, while Part II contains tables with numbered formulae associated to Brownian motion and other diffusions. There are appendices at the end of each part.

Part I entitled "Theory" consists of six chapters and one appendix. Chapter I is devoted to general theory of stochastic processes. Apart from basic definitions, Markov processes are considered. Particular attention is paid to the Feller and Feller-Dynkin processes. In the last part of the chapter the notion of martingale is introduced and some facts concerning theory of martingales are presented. One may find here, in particular, the Doob-Meyer decomposition for submartingales and some known martingale inequalities, such as the Burkholder-Davis-Gundy inequality.

Description of linear diffusions is the subject of Chapter II. The authors recall their characteristics, i.e. speed measure, scale function and killing measure. Moreover, basic properties of diffusions and their local times are presented. Brief review of ergodic results connected with local times of recurrent diffusions completes the chapter.

Chapter III is dedicated to readers who are especially interested in stochas-
for financial mathematics. Integration with respect to Brownian motion, the Ito and Tanaka formulae as well as the Cameron-Martin-Girsanov transformations of probability measure are basic tools in the theory of option pricing and many other fields. Apart from them, stochastic differential equations and their solutions are discussed in the chapter.

Chapter IV contains definition and basic distributional properties of Brownian motion. Besides such commonly known properties as spatial homogeneity, symmetry or time reversibility, especially important is Lévy's martingale characterization, Hölder continuity, formula for quadratic variation on intervals and property of infinite variation. Subsequently, some facts connected with Brownian local times and excursion processes are presented. Chapter IV is completed by an exposition of properties and formulae concerning processes related to Brownian motion, like Brownian bridge, Brownian motion with drift, Bessel processes and geometric Brownian motion. The last process is used for description of financial and insurance instruments. Therefore, theoretical considerations presented by the authors are useful in the analysis of various types of options. One should also emphasize a possibility of applications of geometric Brownian motion in mathematical physics.

Chapter V is dedicated to Ray-Knight theorems. Discussed results concern the Markovian character of local times. The laws of local times of Brownian motion, Brownian motion with drift and Bessel process are characterized. The last part of the chapter contains tables, which summarize the results presented.

In Chapter VI differential systems associated to Brownian motion are presented. The basic tool for finding distributions of functionals is the FeynmanKac formula. Functionals stopped at exponential time, the first exit time, inverse additive functional and the first range time are considered. The last class of functionals is especially important, since the first range time is the stopping time with many applications.

Appendix 1 is a collection of basic characteristics and facts associated with some commonly used diffusions. Besides various types of processes mentioned before, the Ornstein-Uhlenbeck as well as the radial and squared radial OrnsteinUhlenbeck processes are characterized.

Part II contains tables of distributions of functionals of Brownian motion and other related diffusions. The tables are divided into nine sections with respect to the type of diffusion, which occurs in the formulae. The authors consider functionals of diffusions with up to five types of stopping times: exponentially distributed stopping time independent of diffusion, the first hitting time of a point, the first exit time from an interval, inverse local time at a point and the first range time at a level. The structure of tables is displayed via their triple numbering system. The numbers refer to the stopping time, a functional, and the Laplace transform or to the distribution itself. The numbering system causes that the structure of tables is clear. Introduction to Part II is very useful for the readers, because it contains lists of stopping times, diffusions and functionals

Appendix 2 is a brief exposition of special functions and their properties. It is valuable, because many special functions appear the in formulae. Appendix 3 is dedicated to inverse Laplace transforms. Appendix 4 on differential equations is needful, when the Feynman-Kac formula is used. Readers who need to calculate moments of functionals of stochastic processes may use theory from Appendix 5 , which is devoted to n-fold differentiation. In the final part of the book there is a rich bibliography as well as the subject index.

This edition of the book is an extension of the previous one. It contains more than 1000 new formulae in comparison with the first edition. There are new facts and formulae connected with geometric Brownian motion, the FeynmanKac formula and the radial Ornstein-Uhlenbeck process. There are three new appendices. Some formulae from the first edition are excluded. The exclusion concerns formulae, which can be easily obtained from the other ones. The authors also wanted to avoid an additional extension of the number of pages.

Apart from the presentation of many formulae concerning functionals associated to Brownian motion and other diffusions, the advantage of this book is its theoretical part. It is very important to understand the theory related to the applied tools. Sometimes formulae need some modifications in order to adopt them to real applications. In this case it is very useful to know how they were derived. The second advantage is the presence of references to monographs for almost all generally formulated equations in Part I. Nevertheless, not every formula has a sufficient commentary concerning its specific applications. This may constitute a difficulty for a reader not acquainted with the subject. However, one can easy forget this inconvenience, because the book is written very carefully and there are no observable misprints.

From the mathematical point of view, the theory is presented very precisely, although it is not written in the classical form of definitions and theorems. The presentation is made without proofs. I agree with the opinion of the authors that such an approach would be welcome by the readers. The theoretical part of the book is also valuable as a brief review of the material about diffusions and their functionals, which should be known by students, engineers or economists using them in practice.

I think the book is very useful for readers applying Brownian motion and other diffusions.

Piotr Nowak

[^0]
Control and Cybernetics

vol. 32 (2003) No. 4

Table of contents of volume 32 (2003)
AUTHOR, title, pages

Issue 1:

C. MOROŞANU: Boundary optimal control problem for the phase-field transition system using fractional steps method, 5-32.
J.F. BONNANS, P. CHARTIER, H. ZIDANI: Discrete approximations of the Hamilton-Jacobi equation for an optimal control problem of a differential-algebraic system, 33-55.
W. KRABS, S. PICKL: Controllability of a time-discrete dynamical system with the aid of the solution of an approximation problem, 57-73.
T. KACZOREK: Holdability and stabilizability of 2D Roesser model, 75-85.
T. BANEK, E. KOZLOWSKI: On an operational model of single investment selection with information cost, 87-102.
A. WISZNIEWSKA-MATYSZKIEL: Static and dynamic equilibria in stochastic games with continuum of players, 103-126.
S.-B. YIM, J.-H. OH: A novel approach for the optimal control of autonomous underwater vehicles, 127-145.
A. SWIERNIAK, A. POLANSKI, J. ŚMIEJA, M. KIMMEL, J. RZESZOWSKAWOLNY: Asymptotic analysis of three random branching walk models arising molecular biology, 147-161.
M. EKES: General electrons modelled with infinitely many voters, 163-173.
B. JANKOWSKA: Yet another object-oriented data model and its application, 175-195.

Issue 2:

T. FUKAO, N. KENMOCHI, I. PAWLOW: Stefan problems in non-cylindrical domains arising in Czochralski process of crystal growth, 201-221.
Z. NANIEWICZ: Pseudomonotone semicorecive variational-hemivaria inequalities with unilateral growth condition, 223-244.
T. KOBAYASHI, M. OYA: Nonlinear boundary control of coupled Burgres' equations, 245-258.
J. LOVÍS̆EK: Obstacle control problem and the unilateral eigenvalue problem of an elastic pseudoplate, 259-300.
T. KACZOREK: Minimal order deadbeat functional obsevers for singular 2D linear systems, 301-311.
W.-D. CHANG, R.-C. HWANG, J.-G. HSIEH: Indirect adaptive neural controller of nonlinear svstems using autntuning nouran 212_297
L. KAWECKI: Minimization of electric and magnetic losses in the speed control of introduction motors, 329-349.
M. STUDNIARSKI, A.W.A. TAHA: Stability properties of weak sharp minima, 351-359.
M.J. ŚMIETAŃSKI: Kuhn-Tucker type optimality conditions for some class of nonsmooth programming problems, 361-376.
M. GALEWSKI: A note on a Fenchel-Young type conjugacy for convexifiable functions, 377-381.
L. WANG, W. YU, L. ZHANG: On the number of positive solutions to a class of integral equations, 383-395.
G. GIORGI: Stable and related matrices in economic theory, 397-410.
J. STAŃCZAK: Biologically inspired methods for control of evolutionary algorithms, 411-433.

Book reviews

M. ROMANIUK: Empirical Process Techniques for Dependent Data (by H. Dehling, T. Mikosh, M. Sørensen), 435-437.
I. PAWLOW: Modeling and Mechanics of Granular and Porous Materials (by G. Capriz, V.N. Ghionna, P. Giovine), 439-440.

Issue 3:

Kazimierz Malanowski's $66^{\text {th }}$ Anniversary, 447-449.
W. ALT: Approximation of optimal control problems with bound constraints by control parameterization, 451-472.
G. AVALOS, I. LASIECKA: Mechanical and thermal null controllability of thermoelastic plates and singularity of the associated mimimal energy function, 473490.
E.M. BEDNARCZUK: Order-Lipschitzian properties of multifunctions with applications to stability of efficient points, 491-502.
M. DAMBRINE, J. SOKOLOWSKI, A. ŻOCHOWSKI: On stability analysis in shape optimisation, 503-528.
A.L. DONTCHEV: Robinson's implicit function theorem, 529-541.
A.D. IOFFE: On robustness of the regularity property of maps, 543-554.
H. MAURER, N.P. OSMOLOVSKII: Second order conditions, 555-584.
B.S. MORDUKHOVICH, L. WANG: Optimal control of constrained delaydifferential inclusions with multivalued initial conditions, 585-609.
A. MYŚLIŃSKI: Shape optimization of thermoviscoelastic contact problems, 611-627.
I. PAWLOW, W.M. ZAJA̧CZKOWSKI: On diffused-interface models of shape memory alloys, 629-658.
M. PREISS, J. STOER: Methods for solving semidefinite linear complementarity problems, 659-670.
S. ROLEWICZ: On σ-porous and Φ-angle-small sets in metric spaces, 671-681.
T. ROUBIČEK, F. TRÖLTZSCH: Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations, 683-705.

Issue 4:

J.-P. PENOT: Rotundity, smoothness and duality, 711-733.
Y.-J. SUN: The eigenvalue derivatives of linear damped systems, 735-741.
S.-T. PAN: The order reduction and robust D-stability analysis of discrete uncertain time-delay systems by time-scale separation, 743-760.
P. SUCHOMSKI: Numerically robust synthesis of discrete-time H_{∞} estimators based on dual J-lossless factorisations, 761-802.
T. TERLIKOWSKI: Reachable sets concept - a general abstract analysis, 803817.
Z. NOWAK, A. STACHURSKI: Modelling and identification of voids nucleation and growth effects in porous media plastic flow, 819-849.
G. BRZYKCY, J. MARTINEK, A. MEISSNER, P. SKRZYPCZYŃSKI: Control aspects of the blackboard agent architecture for a mobile robot, 851-866.
T. BANEK, R. KULIKOWSKI: Information pricing for portfolio optimization, 867-882.
M. KAŁUSZKA: Mean-variance optimal local reinsurance contracts, 883-896.

Book reviews

P. NOWAK: Handbook of Brownian Motion - Facts and Formulae Second Edition (by A.N. Borodin, P. Salminem), 897-899.

Table of contents of volume 32 (2003), 901-903.
Alphabetical list of contributors of volume 32 (2003), 905-907.
The list of volume's referees, 909-911.

Control and Cybernetics

vol. 32 (2003) No. 4

Alphabetical list of contributors of volume 32 (2003)
FIRST AUTHOR, title, issue number, pages
W. ALT: Approximation of optimal control problems with bound constraints by control parameterization, 3, 451-472.
G. AVALOS, I. LASIECKA: Mechanical and thermal null controllability of thermoelastic plates and singularity of the associated mimimal energy function, 3, 473-490.
T. BANEK E. KOZLOWSKI : On an operational model of single investment selection with information cost, 1, 87-102.
T. BANEK, R. KULIKOWSKI: Information pricing for portfolio optimization, 4, 867-882.
E.M. BEDNARCZUK: Order-Lipschitzian properties of multifunctions with applications to stability of efficient points, 3, 491-502.
J.F. BONNANS, P. CHARTIER, H. ZIDANI: Discrete approximations of the

Hamilton-Jacobi equation for an optimal control problem of a differential-algebraic system, 1, 33-56.
G. BRZYKCY, J. MARTINEK, A. MEISSNER, P. SKRZYPCZYŃSKI: Control aspects of the blackboard agent architecture for a mobile robot, 4, 851-866.
W.D. CHANG, R.C. HWANG, J.G. HSIEH: Indirect adaptive neural controller of nonlinear systems using autotuning neuron, 2, 313-328.
M. DAMBRINE, J. SOKOŁOWSKI, A. ŻOCHOWSKI: On stability analysis in shape optimisation, 3, 503-528.
A.L. DONTCHEV: Robinson's implicit function theorem, 3, 529-542.
M. EKES: General electrons modelled with infinitely many voters, 1, 163-174.
T. FUKAO, N. KENMOCHI, I. PAWŁOW: Stefan problems in non-cylindrical domains arising in Czochralski process of crystal growth, 2, 201-222.
M. GALEWSKI: A note on a Fenchel-Young type conjugacy for convexifiable functions, 2, 377-382.
G. GIORGI: Stable and related matrices in economic theory, 2, 397-410.
A.D. IOFFE: On robustness of the regularity property of maps, 3, 543-554.
B. JANKOWSKA: Yet another object-oriented data model and its application, 1, 175-195.
T. KACZOREK: Holdability and stabilizability of 2D Roesser model, 1, 75-86.
T. KACZOREK: Minimal order deadbeat functional obsevers for singular 2D linear systems, 2, 301-312.
M. KALUSZKA: Mean-variance optimal local reinsurance contracts, 4, 883-896.
L. KAWECKI: Minimization of electric and magnetic losses in the speed control
T. KOBAYASHI, M. OYA: Nonlinear boundary control of coupled Burgres' equations, 2, 245-258.
W. KRABS, S. PICKL: Controllability of a time-discrete dynamical system with the aid of the solution of an approximation problem, 1, 57-74.
J. LOVÍŠEK: Obstacle control problem and the unilateral eigenvalue problem of an elastic pseudoplate, 2, 259-300.
H. MAURER, N.P. OSMOLOVSKII: Second order conditions, 3, 555-584.
B.S. MORDUKHOVICH, L. WANG: Optimal control of constrained delaydifferential inclusions with multivalued initial conditions, 3, 585-610.
C. MOROŞANU: Boundary optimal control problem for the phase-field transition system using fractional steps method, 1, 5-32.
A. MYŚLIŃSKI: Shape optimization of thermoviscoelastic contact problems, 3, 611-628.
Z. NANIEWICZ: Pseudomonotone semicorecive variational-hemivaria inequalities with unilateral growth condition, 2, 223-244.
Z. NOWAK, A. STACHURSKI: Modelling and identification of voids nucleation and growth effects in porous media plastic flow, 4, 819-849.
S.-T. PAN: The order reduction and robust D-stability analysis of discrete uncertain time-delay systems by time-scale separation, 4, 743-760.
I. PAWLOW, W.M. ZAJA̧CZKOWSKI: On diffused-interface models of shape memory alloys, 3, 629-658.
J.-P. PENOT: Rotundity, smoothness and duality, 4, 711-733.
M. PREISS, J. STOER: Methods for solving semidefinite linear complementarity problems, 3, 659-670.
S. ROLEWICZ: On σ-porous and Φ-angle-small sets in metric spaces, 3, 671682.
T. ROUBIČEK, F. TRÖLTZSCH: Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations, 3, 683-703.
J. STAŃCZAK: Biologically inspired methods for control of evolutionary algorithms, 2, 411-435.
M. STUDNIARSKI, A.W.A. TAHA: Stability properties of weak sharp minima, 2, 351-360.
P. SUCHOMSKI: Numerically robust synthesis of discrete-time H_{∞} estimators based on dual J-lossless factorisations, 4, 761-802.
Y.-J. SUN: The eigenvalue derivatives of linear damped systems, 4, 735-741.
A. SWIERNIAK, A. POLANSKI, J. ŚMIEJA, M. KIMMEL, J. RZESZOWSKAWOLNY: Asymptotic analysis of three random branching walk models arising molecular biology, 1, 147-162.
M.J. ŚMIETAŃSKI: Kuhn-Tucker type optimality conditions for some class of nonsmooth programming problems, 2, 361-376.
T. TERLIKOWSKI: Reachable sets concept - a general abstract analysis, 4, 803-817.
I. WANG. W. YU. L. ZHANG: On the number of positive solutions to a class
A. WISZNIEWSKA-MATYSZKIEL: Static and dynamic equilibria in stochastic games with continuum of players, 1, 103-126.
S.-B. YIM, J.H. OH: A novel approach for the optimal control of autonomous underwater vehicles, 1, 127-146.
.

[^0]: A.N. Borodin, P. Salminen: Handbook of Brownian Motion - Facts and Formulae. Second Edition. Birkhäuser Verlag, Basel-BerlinBoston, 688 pages, 2002. ISBN 3-7643-6705-9. Price: EUR 128 (hardcover).

