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Abstract: A one dimensional heat equation in a semi-infinite 
medium controlled through a heat source depending on the delayed 
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1. Introduction 

The solution u of the non standard initial-boundary value problem for the heat 
equation 

{ 

Ut(X, t)- Uxx (X, t) = -F('ux(O, t)) , 
u(x, 0) = h(x) , 
u(O, t) = 0, 

X> 0, t > 0, 
X> 0, 
t > 0, 

(1) 

models the temperature in a semi-infinite slab with an initial temperature profile 
prescribed by a bounded continuous function h and with its extremum x = 0 
mantained at zero temperature. The evolution of temperatures in the slab is 
controlled by the source term -F(ux(O, t)) which depends on the heat flux at 
x = 0 through a certain control function F. Since the source term of the 
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first equation (1) reacts with the heat flux instead of the temperature u at the 
extremum, this problem differs from that one called thermostat pmblern (see 
Kenmochi and Primicerio, 1988, and the references therein). 

Basic properties of the problem (1) were studied in Villa (1996) and Tarzia 
and Villa (1990); in particular, the global existence and uniqueness of solution is 
there established for a Lipschitz-continuous control F satisfying the stabilization 
conditions 

{ 
vF(v) 2 0, 
F(O) = 0. 

v E R (2) 

For this class of control functions and for a bounded continuous initial profile 
h, it can be proved (Villa, 1986) that the solution v. to problem (1) vanishes as 
t t +co. 

Results about global existence of solutions to the nonlinear problem (1) can 
be found in Lions (1969), Racke (1992) , Klainexmann (1981), Gwinecki (1995). 

A more detailed study of problem (1) begun with the two letters of Berrone 
(1994) (whose content is partially reproduced in Berrone, Tarzia, Villa (2000), 
where well-known results on Volterra integral equations were invoked to estab
lish global existence and uniqueness of solution to problem (1 ) for continuous 
controls satisfying (2) and , in addition, the precise objective of t he control is 
envisaged. In this last regard, it must be pointed out that the solution uo cor
responding to problem (1) in the absence of control (F = 0) also converges to 
zero as t t + oo, so that the interest of a control F satisfying the stabilization 
conditions (2) is just to increase the rate of convergence to zero as t t +oo of 
t he solution up of the problem with control F. Concretely, the objective of a 
stabilizing control F was defined to be 

lim uF(x, t) = 0 
tt+oo uo(x, t) 

(3) 

for every x > 0. In was shown in Berrone, Tarzia, Villa (2000), on the one 
hand, by means of examples that not every stabilizing control F fulfills the 
control condit ion (3) and, on the other hand , that the following result providing 
sufficient conditions of controllability holds: 

THEOREM 1.1 If C\ ~ h(x) ~ c2 for two positive contants Cl, c2 and if the 
stabilization conditions (2) hold, the control F is a convex function on (0, +oo) 
and F'(o+) > 0; then cond·ition (3) holds. 

Along this paper, a variation of problem (1) is studied in which a delayed 
response of the heat source replaces the instantaneous one implicit in t he prob
lem. The choice of this variation seeks for a realistic improvement of the model 
described by (1): in a real system, the heat source supposedly reacts not in an 
instantaneous way to the heat-flux at the extremum of -the slab measured at 



Asy111ptotics of heat. equati on wit h delayed contro l in so urce te r111 7 

t ime t but to the heat-flux at an anterior time t - T. Once this delay is taken 
into account, problem (1) becomes 

{ 

·u.L(x,. t)- Ux 1:(:c, t) = -F(u.,c(O, t - T)) , 
u(:r, 0) = h(x), 
u.(O, t) = 0, 
1ix(O, t) = ¢(t), 

:c > 0, t > 0, 
X> 0, 
t > 0, 
- T :S t :S 0. 

(4) 

Note that a new condition must be imposed on ·ux(O, t) along the "past t imes" 
- T ::; t ::; 0 in order to uniquely determine the solut ion u .. 
The usual size condition 

(5) 

with C1 , C2 > 0 and 0 ::; a: < 2, is assumed to hold by the initial temperature 
profile h E C0 [0, +oo) . The case in which a: = 0 (bouncledness) and a: = 1 
(exponential growth) , in (5), will play an important role in the next sections. 

Generally speaking, the introduction of the delay T in the source term causes 
an oscillating solution and then , its asymptotic properties considerably differ 
from the solution corresponding to the case T = 0. In this way, the problem 
of controlling the asymptotic behaviour of the solutions through the function 
F becomes much more involved. In the next section, as a first step in the 
study of the changes produced by the introduction of the delay T , the problem 
( 4) is reduced to solve a Volterra integral equation with delay and some basic 
difl'erences existing between this equation and the integral equation obtained 
from (1) are pointed out. 

2 . Preliminaries 

Let us go back, for a moment , to the undelayed problem (1). The analysis of this 
model relies on the Volterra integral equation with a weakly singular (locally 
integrable) kernel 

v(t) = f(t)- t F(v(s)) ds, t > 0, 
lo J1r(t- s) 

(6) 

which is satisfied by the heat-flux at the extremum x = 0; i.e., v(t) = ux(O, t), t > 
0. The forcing function j(t) in (6) is given by 

j(t)= 1 {+oo ~e-e/(4L) h(~)d~ t>O. 
2j7ft3/2 Jo ' (7) 

Equation (6) is obtained in a standard way. Here we want only to sketch 
this procedure (for more details see Ben·one, Tarzia, Villa, 2000) . By sup
posing sufficient regularity of the coefficients and of the initial data, we see that 
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ux(x, t) :::::: v(x, t) solves the following problem 

{ 

Vt(X, t)- Vxx(x, t) = 0, 
v(x,O) = h'(x), 
Vx(O, t) = F(v(O, t)), 

X> 0, t > 0, 
X> 0, 
t > 0. 

(8) 

Problem (8) modelizes the temperature in a semi-infinite slab whose extremum is 
mdiating energy according to a general law of radiation F( v) and was extensively 
studied (Miller, 1971; Saaty, 1967). By following a standard procedure (see, for 
example, Cannon, 1984), we represent its solution ·using Green functions, thus 
oLtaining the integral equation (6) with f(t) given by (7). Then, the unique 
bounded solution of problem (1) is expressed in terms of the solution v(t) of 
equation (6). In fact, recalling that 

2 1( 2 erf( = - e-Y dy , 
1f 0 

we have: 

u(x, t) = u0 (x, t)- t erf ( ~) F(v(s)) ds, lo 2 t- s (9) 

where 

r+oo 
uo(x, t) = Jo G(x, ~' t)h(O d~ (10) 

is the (bounded) solution corresponding to problem (1) with F:::::: 0 (see Cannon, 
1984; Problem 3.3, p. 43). The kernel G under the integral sign in (10) is the 
Green function corresponding to the quarter plane and it is given by 

G(x, ~' t) = K(x- C t)- K(x + ~' t), (11) 

where K(x, t) = (47rt)-112e-x
2
/(

4 t) is the fundamental solution to the one
dimensional heat equation. 

For a constant initial temperature h:::::: h0 , equation (6) becomes 

v(t) = ~- t F(v(s)) ds, t > 0, 
.Jit lo J1r(t- s) 

(12) 

and the control objective (3) is satisfied uniformly on x > 0 if and only if the 
condition 

lim t v ( 8 ) ds = 0 
tt+oo}o J1r(t-s) 

(13) 

holds. More precisely, in Berrone (1994) and Berrone, Tarzia, Villa (2000) the 
following theorem is proved: 
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THEOREM 2.1 Let h(x) = h0 E R be the initial temperature. Then the condition 
(3) is satisfied by a contr·ol function F if and only if the soltttion v of the integral 
equation ( 6) satisfies 

lim t v(s) ds = 0. 
tt+oo Jo Jn(t- s) 

(14) 

REMARK 2.1 Let F be a stabilizing control such that the corresponding solution 
u ; with an initial datum h1 satisfies condition (3). If h2 is any function such 
tha.t 0 :S h2 :S h1 , then also the corresponding solution u2 satisfies condition 
(3). 

The cornerstone in the developments contained in Berrone, Tarzia, Villa 
(2000) is constitued by the monotonicity methods (Gripenberg, Londen, Staffans, 
1990, Chapter 20, and Miller, 1971, Chapter 4) . In particular, Theorem 1.1 
heavily rests on the following general one ensuring the positivity of the solution 
to equation (6) (Miller , 1971; p. 210). 

THEOREM 2.2 Consider the real, scalar non linear Volterra integral equation 

v(t) = f(t) -1t h(t- s)g(s, v(s)) ds . (15) 

Suppose f(t) is positive and continuous in t E [0 , +oo). Let h be positive, 
continv.ous and locally L 1 in 0 < t < +oo. Suppose g(t,v) is measurable in 
(t , v) and continuous in v, fort~ 0 and v E R, with vg(t,v) ~ 0 for all (t,v). 
If 

f(T)/ f(t) :S h(T- s)jh(t- s) 

whr:.never 0 :S s < T < t, then equation ( 15) has a solution which satisfies 
0 :S v(t) :S f(t) for all t ~ 0. 

It should be noted that Theorem 2.2 can be suitably extended to embrace 
forcing functions like f(t) = ho/.Jii, occurring in (12). 

In an analogous way as (1) leads to the integral equation (6), problem (4) can 
be reduced to solve for v(t) = ux(O, t) the following Volterra integral equation 
with delay and a weakly singular kernel: 

( ) · f( ) 1t F(v(s- T)) d v t = t - s, 
o Jn(t- s) 

(16) 

where f(t) is given by (7), with the initial condition 

v(t) = cj>(t), -T :S t :S 0. (17) 
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A:; far as the representation of the solution v,(:~:, t ) to problem (4) is concerned, 
it is eas ily seen that a formula like (9) holds: 

1t ( X ) u.(x, t) = v.o(x, t) - erf . ~ F(v(s- T)) ds, 
0 2 t - s 

(18) 

where u0 (x, t) is given by (10). 
Except for part icular selections of the control function F , equation (16) 

can not be reduced to a delay differential equation. Furthemore, the presence 
of the singular kernel (1r(t - s) )- 112 and simultaneously the possible presence 
of singular forcing functions entails the appearance of some difficult ies in the 
application of the usual "step-by-step" method to construct t he solution to an 
initial value problem for that kind of equat ions (Hale, Verduyn Lunel, 1993; 
Gyori, Ladas, 1991 ; Saaty, 1967). In fact, the forcing function f given by (7) 
may be singular at t = 0 for certain initial temperature profiles h (v .g., when 
h = h0 is constant !) and therefore, divergent integrals can appear in the "step
by-step" construction of the solution to (16) provided that a rapidly increasing, 
s;.y superlinear , control function F is prescribed. Summarizing, solutions of 
problem ( 4) present a blow-up after a finite t ime unless some restrictions are 
imposed on data.. But what has more important consequences for the analysis 
of the control problem is the fact that , even if suitable hypotheses on data 
ensuring global existence of the solution are assumed, a result like Theorem 2.2 
is no longer valid for the solution of equation (16) . In general , the solution 
to (16) changes sign so that no extension to equation (16) is possible for the 
monotonicity techniques successfully applied in studying (1). As we will see in 
a forth coming section , solu tions of (16) are oscillat ory even in t he most simple 
situat ion furnished by linear controls F(v) = >.v. 

In order to partially overcome this difficulty, a different control objective is 
proposed; namely, the quotient of t emperatures in (3) is now replaced by less 
restrictive conditions on mean temperatures . Thus, we look for conditions on 
t!1e control function F ensuring the existence of the limi t limti+oo U:( t), where 

U:(t) = Jim - u. (~ , t) d~ , t > 0, ( 
1 ;·X ) 

xt +oo X 0 
(19) 

provided that there exists the limit limti+oo u0 ( t) with 

(
1 ;·X ) U:o(t) = lim --:- uo(~, t) d~ , t > 0. 

xt+ oo X 0 

(20) 

The paper is organized as follows. In Section 3 basic resul ts on existence and 
uniqueness for the solution to (16) are proved. A theorem furnishing estimates 
for the solution to problem in the case of a monotone control as well as a result on 
€:-c istence and uniqueness for the solu tion to ( 4) is also given there. In Section 4, 
we consider the moblem of controlling mean temperatures through the function 
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F. In the first place, some hypotheses arc made on the ini t ial profile h entailing 
tL e existence of the limit (20) . After this, sorne conditions that guara.ntee the 
existence of limits (19) arc found. A subsection is then devoted to the case 
of a linear control , a case in which the Laplace transform becomes a useful 
tool. Monotone controls are considered in the final subsection, where a class of 
suitable controls being able to stabilize mean temperatures is specified. 

3. Basic results 

Iu this section we study the basic properties of the problem (16)-(17) where f 
is given by (7). At the end of the sect ion, an existence and uniqueness result 
for problem (4) will be deri ved frorn these properties. 

To begin with, we recall some simple remarks on the behaviour of the forcing 
fun ction f. For a proof we refer to Benone (1994) aud Benone, Tarzia, Villa 
(2000) . 

T m:o R8M 3. 1 Let h be a bo·uncled f unction and f given by (7). Th en we have 

(21) 

MoTe geneTally , if foT a positive constant cl we have \h(:r)\ < CJ:'I: 0
, :l: > 0, 

a 2: 0 then there C.Tists another positive contant C'2 S'ltCh that 

If h E C0 [0 , + oo), then we have 

lim [lrif(t )] = h(O). 
t .j.O 

HtTthennor·e, if h E C1 ,a [0 , +oo), then there exists a positive constant C s·uch 
that 

lirif(t) - h(O) I::; lri (lh'(O)\ + Ct'I)) t > 0. 

Now , a result on global existence and uniqueness of the solution to the initial 
value problem (16)-(17) is proved. The assumptions we made on data cover the 
case of a forcing function having a weak singularity at the origin. In the sequel 
of the paper we turn around the basic setting fixed by these assumptions. 

THEOREM 3.2 Assume that the following conditions are satisfi ed by the data of 
the initial valv.e problem (16)-(17): 

i) rp E C0[-T, 0] ; 
ii) .f E C0 (0, +oo) n LP(O, 1) , (1 :::; p:::; +oo); 
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iii) there exist two constants C > 0 and 0 :::; a :::; 1 such that 

IF(v)[ :<:::: C [v[ a, v E R. (22) 

Th en, there exists a unique function v defined on [ -T, +oo) solving ( 16)- (17) 
which is continuous at every point t E [ -T, +oo) with the possible exception of 
a discrete set of points of the form t = nT, n E N 0 . 

Proof. The proof follows from a "step-by-step" construction of the solution like 
that employed to show existence and uniqueness of solution to a delay differential 
equation (Gyori, Ladas, 1991 ; Hale, Verduyn Lunel, 1993; Saaty, 1967). 

Assuming that t E ((n- 1)T, nTJ for a certain n E N 0 and splitting the 
integral in (16), we can write 

v(t) = f(t) _ '\'n - 1 rkT F(v(s - r)) ds 
L-k=1 J(k - 1)r yf1r(t -s) 

rt F(v(s-r)) d (( 1) J + J 1( - I) ~ s, t E n- T, nT, 
n T V 7r(t-s) 

(23) 

Introducing the notation Vn(t) = v(t + m) , t E (-T,O], (n E N 0 ) , in equation 
(23), we obtain 

Vn(t) = f(t + m)- 2:~.:::: 1 t F(vk_i(s)) ds 
k-1 -T yf1r(t-s+(n-k)r) 

+ Jt F(v,._i(s)) ds t E (-T OJ. 
- T V7r(t -s) ' ' 

(24) 

Now, starting from vo = ¢ and iteratively using expression (24), a sequence 
{ Vr, } ~~ of functions defined on the interval ( - T, OJ is constructed. Every func
tion of this sequence turns out to be continuous; furthermore, for every n E N 0 , 

there exists Pn 2: 1 such that Vn E LP" ( - T, 0) . Both assertions will now be 
proved by induction. In fact , v0 = ¢ is continuous in [ - T , OJ by hypotheses i) 
and assuming that vk E LPk ( -T, 0) is continuous on ( -T, 0], k = 0, 1, ... , n- 1, 
from (24) we deduce 

[vn(t) [ :<::; Mn + ds , t E ( -T, OJ, 1f
t F(vn- l (s)) I 

-r J1r(t- s) 
(25) 

where Mn is a positive constant. The integral of the second member of (25) is 
the convolution product of Fovn_ 1 E LP,.-J/a(-T,O) (Fovn_ 1 E L00 (-T,0), 
provided that a = 0) and t H (1rt)- 112 E L 1 ( -T, 0). Since _ a_ + 1 2: 1, the 

Pu-1 

Young 's theorem (Wheeden, Zygmund, 1977; p. 146) ensures that , as a function 
oft, this integral belongs to LP" ( -T, 0) , with 

Pn = { (
_ C> + 1-1)-

1 
= ~, 

Pn-1 0 
O<a :<::;l 

a = 0, +oo , 
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and , in view of the inductive hypothesis, it turns out to be a continuous function 
as well. 

To end the proof, a function v is constructed by "gluing" the tracts Vn one 
each other. Formally, for every n E N 0 and t E ((n- 1)7, n7], we define 

v(t) = Vn(t- m) . 

Of course, we also set v( -7) = vo ( -7). It is not difficult to see that this function 
is the unique solution to the initial value problem (16)-(17) and that it has the 
regularity specified in the statement of the theorem. • 

Remark that the solution to the initial value problem (16 )- (17), constructed 
in Theorem (3.2) is left-continuous on [- 7, +oo). However, finite discontinuities 
at points t = n7, n E N 0 , can really appear. This is obviously true for t = 0 
when the forcing function f is singular at t = 0, but this singularity can be 
"dragged to the right" in the step-by-step process of construction: the case 
corresponding to a linear control function F( v) = >.v and to the forcing function 
f(t) = ho / Jii illustrates this fact . For simplicity, assume that the initial data 
¢ = 0; then we have 

{ 
0 t E [-T, 0] 

v(t) = h~/Jii, t E (0, 7] 

and, fortE (7, 27], 

v( t) ho .Aho Jt ds 

Jii Jr T vs::T ..;r=s 
~-.Aho. 
Jii 

Thus, t = 7 is a point of discontinuity of the solution v and it is easy to see that 
there are no other discontinuities. Indeed, the same behaviour is generally ex
hibited by the solution of problem (16)-(17) corresponding to a forcing function 
f satisfying lf (t) l :::; Mt- 1 , 0 < t < 1, and to a Lipschitz-continuous control 
function F with F(O) = 0. 

REMARK 3.1 We emphasize the fact that restriction {22) on the control function 
F can be omitted from the statement of Theorem (3. 2) provided that the forcing 
fun ction f is continuous from the right at t = 0 ; i.e., for f E C0 [0 , + oo). In 
fact , every integral in (24} turns out to be convergent and the "step-by-step" 
construction works in this case furnishing a solution v continuous on (0, + oo). 
Note that if his continuous and ih(x )i :::; Cxa with ex> 1 or if hE C1•a [O, +oo) 
and h(O) = h'(O) = 0, then Theorem (3.1) ensures that f E C0 [0, + oo) and 
j(O) = 0. 

REMARK 3.2 Observe that if we take assumptions i) and ii) of Theorem 3.2, 
but we omit iii) , i.e. we do not consider anu qrowth assumvtion on F . Theorem 
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3.2 is false , as is shown by taking h(x) = ho > 0 and F(v) = v3
, ¢(t) any 

continuo·us funcl;ion on [ - T , 0]. By cunstructin.g "s tep-by-step" t.he sol'll.tion v( t), 
for t E (0 , T] we find 

__ ho ;·t [¢(s - T)j3 
v ( t) = v1 ( t) = c; - _ _ ds 

V 1rf , 0 j II ( f - S) 

and, for· t E (7, 2T], 

() - (-) ho j'T ¢3
(s - T)d ~tv{(s - T)l v t = '02 t = -- - .s - ( s . 

Jii o j1r(t- s) . T j1r(t - s) 
(26) 

Replacing e:rpression of v1 ( t) in (26) we see that one of the terms in the Tesv.lting 
eJ.pression is gi·uen by 

J
t h3 ;·t-T h3 0 

ds = ~ 0 
ds = +oo, 

T ( j1r(s - T)) 3j1r(t- s) . o j1r(t- T- s) 

which shows that the solution exhibits a. blow-up at t = T. 

Our next result provides a way of obta ining estimates for the solution to t he 
ini t ial value problem (16)- (17) when the cont rol function is non-decreasing and 
f E C0 (0, +oo) n LP(O, 1) (compare with Saaty, 1967, p. 280; vVa lter , 1970, p . 
.38). 

THEOREM .3.3 Let v be the solution to p-ro/Jlem {16) - (17) with data satisfying, 
apart .from condit·ions i) and ii ) of TheoTem. 3. 2, the .following ones: 
iii) F is Holder-continMv.s with exponent 0 :::; o: :::; 1, F(O) = 0 o.nd F(n) :::; 

F( v) wheneve-r 1l :::; v . 
Furthenrw-re, let vl) 'V2 ue two real fun ctions defined o·n [ -T, + oo) u:nd e·uerywhc:r-e 
continv.ous w-ith the possible exception. of points of the fonn t = n T , such that 
iv) vJ( t ):::; ¢(t):::; v2 (t), I E [-7, 0]. 
v) for 0 < T :::; +oo the inequalities 

{ 

111 (t) :::; J(t) - p F(v2(s-T)) ds 
0 )'rr(t-s ) ] , t E (0, T; 

vz(t) 2 J(t)- J~ F);tSt cis 1f(t -s ) 

o.re satisfied. Then the inequalities 

hnlrl nl.~n fnr t t= (0. Tl . 

(27) 

(28) 
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P!'oof. First note that assumptions iii) contains conditions iii) of Theorem 3.2, 
so the existence of a unique solution v to problem (16)-(17) is ensured. Now, 
the proof proceeds by induction. Take for instance the case in which T = +oo. 
If t E (0, T], from iii), iv) and v) we obtain 

Vl (t) :S f(t) - ~~ F(v2(s - r)) ds :S f(t)- ~~ F(¢(s - r))' 
0 ..j1r(t - s) 0 ..j1r( t-s) 

and 

v2( t) 2': f(t)- t F(vt(s -r )) ds 2': f(t)- ~~ F(¢(s-r)) ds = v(t). 
0 ..j?T (t-s) 0 ..j?T (t - s) 

Then, assuming that inequalities (28) hold fort E [-T, nT), a new application 
of iii) and v) shows that they hold also fortE [-T, (n + 1)T). This completes 
the induction. 

When T < +oo, there exists N E N such that T E ((N - 1)T, NT] and we 
arrive to the conclusion by finite induction. • 

Observe that this result can be extended to general monotone control func
tions F when f E C0 [0 , + oo) . A criterion for positivity of the solution for 
problem (16)-(17) is furnished by the following Corollary of Theorem 3.3. 

COROLLARY 3.1 If, apart from the conditions i) and ii) of Theorem 3.2 and iii ) 
of Theorem 8.3, there exists a non-negative function p such that 

i) 0 :S ¢(t) :S p(t), t E [-T,O]; 
ii) fort > 0, 

rt F(p(s- T)) ds -~ f(t) :::; p(t); 
Jo J1r(t- s) 

then, the inequalities 

0 :S v(t) :S p(t), t > 0, 

hold for the solution v(t) to problem {16)-(17). 

(29) 

Proof. Since inequalities (29) are inequalities (27) with v1 = 0 and v2 = p, the 
proof immediately follows from Theorem 3.3. • 

Conditions i) and ii) of Corollary 3.1 naturally lead us to consider the solu-
tion p to the problem 

{ 

p(t) = <p(t) + ~t F(p(s-r)) ds, t > 0 
0 ..j1r(t- s) 

p(t) = cp(t), -T :S t :S 0, 
(30) 

for non-negative functions ¢ and <p. In terms of the function <p and the solution 
p , the inequalities (29) take the form 

v(t)- Ci'(t) < f(t) < v(t) , t > 0. 



16 L . BERRONE, P. MANNUCCJ 

We finish this section with a result on existence and uniqueness of solu tion to 
problem (4) which is based on Theorem (3.2). 

T IIEOREM 3.4 Assmne that the following condit1:ons 

i) rp E C0[- T, 0]; 
ii) h is a bounded continv.o1tS fv.nction on (0, +oo); 
iii ) there e.rist two constants C > 0 and 0 :S a :S 1 such that IF (v ) I < 

C jvj" , v E R, 

an:; fa(filled by the data of the problem (4). Then, the p·roblem has a v.nique 
b01mded solution with the following regula-rity: v.(x , t) , 1.1. x(x , t), u,c,Jr, t) E 
C0 (R+ X (0 , T)) , for all T > 0, v.,(x, t) E C0 (R+ X (0, T)), w-ith the possi
b!,e exception of a discr-ete set of points of the form t = TI.T, n E No. 

Pmo.f. It is deduced from condition ii) and es timate (21) that condition ii) of 
Theorem 3.2 is satisfied. This fact, together with conditions i) and ii), enable 
us to conclude that Theorem 3.2 is applicable and then, a unique global solut ion 
v exists for equation (1G). In this way, the unique bounded solu tion to Problem 
4 is given in terms of v by formula (18). • 

4. Controlling mean temperatures 

As stated in the introduct ion, we look for conditions on the function Fin order 
to control, when possible, mean temperatures of the slab. Concretely, we would 
like to define 

u(t) = lim - v(~ , t) d~ ' ( 
1 1:c ) 

xt+oo X 0 
uo(t) = lim (~ t ' uo(~ , t) d~) ' t > 0, 

xxl+oo X ./0 

(.31 ) 

where ·u. and u0 are the solutions of problem ( 4) with control function F and 
F = 0, respectively. However, the limits (31) do not exist in general and a 
preliminary study of thent is to be our fi rst order of business. 

4.1. Mean temperatures 

First of all, we rewrite expression (10) for 11.0 in the alternative forms 

v.o(x, t) 
r +oo ; ·+oo 

,/_ oo K(x- ~ ' t)h(O d~ = -oo K(~ , t)h(x - 0 d~ 

/

·+ oo 
__ K(C t)h(x + 0 cl~, (32) 
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wh8rc h is the odd extension of h to R . From the first and the last uwmber of 
(32) we derive 

/
·+oo I\ ('1) 1 t ) ( ~ ; ··' h(~ + '1)) d~) dt) 

· - oo :1, 0 

j·+oo ( 1 l :r:+11 _ ) 
I\('tJ , t) -: h(O d~ dtJ . 

-oo X, "~I 
(33) 

Now, for a locally integrable funct ion h : R --t R, we define its .. means from the 
right" as 

( 
1 1"1J+x ) lim sup -: h(O cl~ , 

cul+oo .(. '1 
(34) 

i\!J h('t) ) (
1 j •"I/+X ) 

lim inf -: h( 0 cl~ . 
.cl+oo .c 'I) 

(.35) 

T he means (from the right) Mh and Mh will be called superior and 'inferior 
mean (/rom the right) of h, respectively, and as it will be immediately seen , t hey 
do not really depend on 17 ; i. e., they a re (possibly infinite) constants. In fact , 
for 1), T/o E R, we have 

Mh('t) + 't)o) 
1 1 "'1+"1Jo+cc 

lim sup- h(() cl~ 
xl+oo X "IJ+"IJo 

lim sup - 0
- -· -- h( 0 cl~ - - h(() cl~ 

(

I) + X 1 l -ri+7J(I+cc 1 l "IJ+7l" ) 

ccl+oo X 'l)o + X . 71 X . 1J 

( 
1 1 '1) -1-7Jo+x ) 

= lim sup -- h(() cl~ 
xt+oo 'l)o + X -r1 

Mh('tJ), 

and a similar calculation holds with M h instead of M h. A chain of inequalities 
involving means from the right is provided by the following result. 

LEMMA 4. 1 For every locally integrable real funt ion h satisfying the growth con
dition {5) , the inequalities 

liminf h(x)::; lVIh::; Mv.o(-, t) ::; Muo (-, t) ::; M h ::; lim sup h(x) (36) 
xl+oo xl +oo 

hold fo r every t > 0. 

Proof. From the defini t ion, we see that 

1\Ih::; M h, (37) 
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for every locally integrable function h. Moreover , inequality (37) can be enlarged 
by observing that 

M h = lim sup 1
1 

h(x0d~:::; limsuph(x) 
xt+oo 0 xt+oo 

(38) 

and , similarly, 

Mh 2: liminf h(x). 
xt+oo 

(39) 

Take for instance the inequality (38) . The inequality is trivially true when 
limsupxt+oo h(x) = +oo and therefore , we can assume that limsupxt+oo h(:c) = 
L < +oo. For a given c > 0 there exists an xo > 0 such that h(:c) < L + c for 
every x > Xo, so that 

11x - h(O d~ = 
X 0 

1 ro 1 ;·X 
~.fo h(O d~+ ~ xo h(Od~ 

11xo ( X ) - h(Od~+ 1-:...Q (L+ c) , 
X 0 X 

< 

whence 

11x limsup- h(Od~:::;L+ c: . 
xt+oo X 0 

This proves inequality (38) and the proof of (39) is similar. In short, we can 
write 

liminf h(x):::; M h :::; M h :::; lim suph(x). 
:ct+oo xt+oo 

( 40) 

Now, recalling that ]( 2: 0 and J~: K(17 , t) d1] = 1 and then taking oscillation 
limits in (33), an argument as the previous one produces 

M h :::; M uo(-, t) :::; Mu0 (-, t) :::; M h. ( 41) 

• 
REMARK 4.1 The following simple example shows that ineq·ualities in the chain 
(86) can be strict. Let h (x) = sin x + xcosx; then, for every t > 0, we obtain 

lim inf h(x) - oo < -1 = M h < - e- 1
• = Mu0 (- , t) 

xt+oo 

< e-t = Mu0 (-, t) < 1 = Mh < + oo =lim sup h(x) . 
xt+oo 
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REMARK 4.2 From Lemma 4. 1, several sufficient conditions ens·uring the ex
istence of uo(t) = limxt+oo (~guo(~ , t) d~) can be deduced. This occurs, for 
example, when the condition -oo < M h = M h < +oo or the stronger one 
lh( +oo) I < +oo hold. Under the first assumption, we find 

u0 (t)::::: u0 ::::: lim (~ t h(O d~) =: : Mh, (42) 
xt+oo X Jo 

while the identity u0 ( t) = uo = h( +oo) is true under the second one. Note 
that, since h E C0 [0 , +oo), the boundedness of h is implied by the condition 
lh(+oo)l < +oo. For an initial temperature profile hE Ll(R+) , we have uo( t) ::::: 

limxt+oo ~~ fox h(Od~l :S: limxt+oo ( ~ fo+oo lh (O I d~) = 0. On the other hand, 

for a constant initial profile h(x) = ho we have -oo < h( +oo) = ho < + oo and 
therefore uo(t) = ho > 0. 

Indeed, what motivate our consideration of mean temperatures is the pos
s~bility of recovering control conditions so simple as was (13) in the absence of 
delay. In clarifying this claim, now we show a series of useful expressions for 

u(t) = lim - u(C t) d~ (11"' ) xt+oo X 0 

in terms of solution v(t) of equation (16). 

THEOREM 4 .1 Aswme that the initial temperature h satisfies IM hi < + oo, 
where M is defined in (42). Then, for every t > 0 we have 
i) 

u(t) = Uo -lot F(v(s- T)) ds 

and 
ii) 

-( ) - 1t f(s) d 1t v(s) u t = uo- s + 
o )1r(t- s) o )1r(t - s) 

Proof We integrate both members of the representation formula (18) to obtain 

tu0 (~ , t)d~- t f terf( J=s)F(v(s -T)) dsd~ 
l o l o l o 2 t - s 

fo x uo(~, t) d~ -lot (fo x erf CJ=s) d~) F(v(s- T)) ds, 

whence , taking into account that 

lim (~ t erf ( J=s) d~) = 1, 
xt+oo X } 0 2 t - s 
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and that lim ct+oo (x- 1 J;: tLo(~, t) cl~ ) = uo, we derive expression i). 

Next, by applying the Abel t ransformation, v(t) 4 J~ ~cls, (Cannon, 
rr(t - s) 

1984; Miller , 1971 ), to both members of (16) we get 

v 
8 

ds = s cls - F ( v ( s - T)) cls , t > 0. j ·t ( ) /'t !( ) ; ·1. 
o 'vh(t - s) . o j1r(t- s) o 

(43) 

E--cpression ii) is quickly derived from (43) and expression i). • 
R EMARK 4.3 From i ) of Theorem (4.1) and Remark (4 .2) we obtain some sur 
jicient COnditions joT the existence of u(t ). 

It is our aim to discuss the behaviour when t t +oo of expression ii) of the 
previous theorem. In the first place, a calculation involving Laplace t ransforms 
shows that 

1t f (s) 
----r====== cls 

o j1r(t- s) 1t 1 (--==-1~· 1+oo ~e-e/(4s) h(0d.~) ds 
o j1r(t - s) 2.,fos312 

0 · 

2 1 +oo K(~, t) h(O cl~. (44) 

Now, by integrating by parts and making a suitable change of variable, we obtain 

1
+oo 

2 
0 

K(~, t) h(O cl~ = 

and assuming that there exists Mh = u0 , the dominated convergence theorem 
gives 

lim ( 2 1 +oo K(~, t ) h (~) cl~) = 
tt+oo 0 

4 ; ·+oo . 2 
( 1 (;·2Vt~ ) ) r;;; ee-~ lim -r; h(1J) cl1] cl~ 

V 7r 0 tt+oo 2 V t~ 0 

( 45) 
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From Tbemem 4. 1 and (44), (45) we sec that 

uo - liminf (' F(v(s - T)) ds = lim sup t' v(s) cis 
l1+oo .fo tt+oo .fo Jn( t - s) 

;:md 

!·t 11. v(s) clc·, u0 - lim sup F(v(s- T))cls= liminf " 
tt+oo . o tt+oo o Jrr(t- s) 

in particular, the two limits 

lim { L F(v(s)) cis , 
t.t+oo ./0 

lim c s J·t. v(s) l 

I.Hoo o Jn(t - s) 
(46) 

exist or cease to exist in a simultaneous way. Note that the existence of the first 
limit is the same as the existence of J

0
+ oo F(v(s)) cls as an improper integral. 

Since condit ion (2) is supposed to be satisfi ed by the control function F, a. 
sufficient condition ensuring the existence of J

0
+ oo F(v(s)) cis is that the solution 

v(t) to equation (16) should be ultimately positive (negative) ; i. e. , that there 
exists a 1.0 2: 0 such that v(t) 2: 0 (-=:; 0) fort > t0 . 

Summarizing the previous discussion, we state the following: 

THEOREM 4 .2 Ass'Ume that there exists one of the limits (4 6) ; then , there exist 
the other one and the equalities 

lim u(t) 
l.t+ oo 

uo- j_
0

7 

F (¢ (s)) ds- .l+oo F(v(s)) cis 

. ~ t. v(s) 
Inn ds 

Lt+oo. o Jn(t - s) 

hold for the limit of the mean ternpemture u(t) . A su.fjic'l:ent cond·ition in OTde·r 
that t.he lim·its (4 6) exist ·is that the solution v(t) to errnat.ion {16) should ue 
v.ltimo.tely positive (negative) . 

Proof. See the discussion above. • 

If the solution v(t) does not change sign for t > t0 then , from Theorem 4.2 , 
the existence of (possible infi nite) limi ts of t he mean temperature u(t) is ensured 
and we can say that the control exhibits a satisfactory behaviour. Now , assume 
that v( t ) 2: 0 fort > t0 ; then , for t 2: 2t0 , we have 

v( t) < llhlloo - ('" F(v(s - T)) cis 
Jii .fo Jn(t - s) 

llhll 1 ;· to ;;; + IF (v(s- T))l cis 
vnt Jn(t- to) o 

< 

< 
llhlloo + J2 ]~0 IF(v(s- T))l ds 
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Hence, the behaviour of an ultimately positive solution v(t) of equation (16) 
is controlled, for t sufficiently large, by a function of the form CC1 12 ) ( c > 
0). Next we prove that limtt+oo u(t) exists provided that the solution v(t) to 
equation (16) decreases in a sufficiently rapid way when t -7 + oo . 

T HEOREM 4.3 Let C > 0 and 0:::; b < 1/2 be two constants such that 

c 
iv(t)i :::; tHl/2 , t >to; 

then, 

i) if b > 0, then limtt+oo u(t) = 0; 
ii) if b = 0, then lim inftt+oo u(t) and lim SUPtt+oo u(t) are both finite. Further

more, if limtt+oo ( v'tv(t)) =Co , then 

lim u(t) = VJiCo. 
tt+oo 

Proof. Since the solution v(t) is piecewise continuous for t > T and integrable 

in (0, T), we have J;o iv( s) I ds < +oo and therefore, for t > t0, we can write 

I 
t v(s) d I 

lo J1r(t- s) 
8 < to lv(s)l ds + jt iv(s) i ds 

lo J1r(t- s) to J1r(t- s) 

< 
J;o lv(s) l ds C jt ds 
~==;======;=-+-
J1f(t- to) ft to sb+l/2(t- s) l/2 

< J;o lv(s)l ds C 1t ds 
~==;======;=-+-
J1f(t- t0 ) ft o sH1 / 2 (t- s)l/2 

J;o lv(s)l ds CB(1/2- b, 1/2) 
~==;======;=-+--'---'---::=---;-..:........:__:_ 
J1r(t- t0 ) ftt 6 

( 4 7) 

where B denotes the Beta function . 

Now , if 0 < b < 1/2, the inequalities (47) show that 

lim t v(s ) ds = 0 
tt+oo Jo J1r(t- s) 

and the result follows from Theorem 4.2. When b = 0, inequalities (47) imply 

the boundedness of t he integral J; ~- ds for t -7 + oo and hence, by using 
7r{t-s) 

rnL - - -- - --- A 1 !!\ ... ..... :_c .... .... ~\... ..... h"~·9"'\rl .... .....1r.n t'H'' ,.....f ;:;-;(+\ .,.Hhon + ~ -Lf""'V"'\ 
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Finally, assuming that lim tt+oo (/tv( t) ) = C0 , for 0 < to < t , we have 

I 
j. 

1 
--;=v::;:=( 5 )===;: ds - J7i Co I = 

o J1r(t- s) 

1
1
• v(s) 11

' ds 
--;::::;=:==;::: ds - Co 

o J1r(t- s) o .JSJ1r(t- s) 

< 1
10 

lv(s)- C0 / .JSI d 11 
I.JSv(s)- Col l 

s + cs 
o J1r(t- s) to .JSJ1r(t- s) 

< 
1 ;· to ;·t I.JSv(s) - Col lv(s) -Co/ Jsl ds + ds. 

j1r(t- to) . o Lo JSJ7r(t- s) 

23 

Hence, fixing an E. > 0 and taking to > 0 such that I.JSv( s) - Co I < E. / .fii, we 
obtain 

:it. v(s) l '-C' I 
~=;:'='=:::=;::: ( s - v 7r 0 = 

.o J1r(t-s) 

< 1 1to I Co I It ds v ( s) - - ds + E. ---==---;==;:::== 
j1r(t- to) o Vs . 1.0 JT.SJ1r(t- s) 

< 1 1to I Co I 11

• ds v(s)- - ds +E. --;::=---;:::==;:-=~ 
J1r(t - to) o Vs o /1TsJ1r(t- s) 

1 110 

I Co I v ( s) - - ds + c, 
j1r(t - to) o Vs 

and therefore 

lim IJ·t. v(s) cls - ..fiiCo l < E 
t:l+oo o J1r(t- s) -

hence our claim follows by t he arbitrariness of E. • 
All the material in this subsection was oriented to provide a sui table ob

jective for the control F. As it will be seen in the next subsection , solut ions 
v( t ) to problem (16)-(17) may be oscillatory even fo r a linear control function. 
This "bad behaviour" causes the mean temp erature u(t ) to oscillate so that the 
existence of lim tt+oo u(t ) can not be expected in general. Then, a reasonable 
condit ion to be satisfi ed by a given cont rol function F is just to ensure the 
existence of such a limit of the mean temperatures of the slab . The main devel
opments of the two remaining section are aimed to find sufficient condi t ions in 
order for this ob jective to be satisfi ed. 

4 .2 . T he linear control funct ion 

For a linear control function F, equation (1 6) can be solved by means of the 
Lao!<JCP fT rlllsfrwrn Tn th o corn ool w n n l,n .. . <- 1,- • -- - ---- ' 
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tr::~.nsformation are useful in studying the associated control problem. 
After setting F(v) == AV, v E R, (A> 0), the initial value problem (16)-(17) 

becomes 

{ 

v (t) == f(t)- A ftt v (s-r) ds, t > 0, 
0 y'rr(t-s) 

v(t) == ¢(t), -T ~ t ~ 0. 
( 48) 

To solve ( 48), Laplace transform can be used like in solving an initial value prob
lem for linear delay differential equations (Hale, Verduyn Lunel, 1993; Gyori , 
Ladas, 1991; Saaty, 1967) . As a first step in proving this claim, the follow
ing lemma provides an estimate for the solution v to problem (16)-(17) for a 
Lipschitz continuous control function F . 

LEMMA 4.2 Let v be the solution to the initial value problem, F being a Lipschitz 
continuous function with Lipschitz constant L , h bounded- continuous on [0 , +oo) 
and ¢ E C0 [ -T, OJ. Then v satisfies the following inequality 

( 49) 

where A, B are two suitable positive constants. 

Proof. Suppose that h is a bounded continuous function on [0, +oo) and that 
!F(v)! ~ L!v!. From (16) and (21) we first deduce 

!v(t)! < l!hll oo + 1t \F(¢(s- T))! ds 
Jii o )1r(t- s) 

l!hll oo 2£ 
< r::; + ;;;;: 11¢1! 00 /7, 0 < t ~ T. 

v 7ft v 7f 
(50) 

Moreover, fort> 0 we have 

!v(t)! < l!hll oo + L 1t !v(s- T)! ds 
- Jii o )1r(t- s) 

(51) 

and, after applying the Abel transformation to both members of this inequality, 
we arrive at the estimate 

1t !v(s)! ds ~ l!hll oo + L 1t lv(s- T)! ds, t > 0, 
o )1r(t- s) o 
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t' -T lv(s) l ds ~ llhlloo + L (' -T lv(s- T) l ds, t > T. (52) 
lo j1r(t -T - s) lo 

Fort > T, we conclude from (51) and (52) that 

lv(t) l < llhll oo + L r l¢(s - T) l ds + L 1t-T lv(s- T)l ds 
- J1fi lo j1r(t - s) o j1r(t- T- s) 

< II~ + ~ ll ¢11oo IT + L (11hlloo + L 1t-T lv(s- T) l ds ) 

< I I~+~ ll¢11 oo IT + L (11hl loo + L 1t lv(s- T) l ds ) 

< I I~ + ~ ll¢11 oo IT+ L (11hll oo + L ll¢11oo T + L .{ lv(s) l ds) · 

(53) 

Inequalities (50) and (53) show that there exist two positive constants A, B 
such tha t 

A .1t lv(t)l ~ Vt + B + L2 

0 
lv(s) l ds, t > 0, 

and applying Gronwall's Lemma we finally obtain the result. • 

Now we prove that a Laplace t ransform is admi tted by the solutions to (48). 

T HEOREM 4.4 Let v be the soltdion to the initial value problem (48) with h 
bounded-contimta7tS on [O,+oo) and¢ E C0 [-T,0]. Then v admits a Laplace 
tranfonn . 

Proof. To the solut ion v of the initial value problem ( 48) we apply the result 
of Lemma (4.2). Thus, inequality (49) holds for t he solu t ion v(t ), whence we 
deduce that v is locally L 1 on [0, + oo) as well as an exponent ial growth of v 
when t i +oo . In this way, t he existence of the Laplace transform of the solu tion 
v to problem ( 48) turns out to be a consequence of a well know existence result 
for this transform. • 

v 
As usual, we denote by g and g t he Laplace transform and the inverse Laplace 

t ransform of the function g, respectively. In order to compute v, we proceed to 
t ransform ( 48) as follows: 

A - Ts (/·0 ) v(s) = f(s) - :rs • -T ¢(t)e-St dt + v(s) l 
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whence 

f( s) - >. e-" J0 cp(t )e - st dt 
~( ) Vs -T 
V S = 

1 
>.e r.- , S > 0. 

+ Vs 

In particular , for h bounded-continuous on [0, +oo), the inequality lf(s)l < 

llhllco /v's shows that the transform f(s) converges at least for s > 0. Thus we 
find 

~ [(s)- >.e;; • f~r cp(t)e- st dt Js[(s)- ,\e-rsf~r cp(t)e-st dt 
v(s) = = s > 0 1 + ). e r • v's + .X.e- TS l , 

Vs 
(54) 

Let us illustrate with some simple examples how the expression of the Laplace 
transform v given by (54) can be used to compute the solution v. 

In the case h(x) = h0 , ¢(t) ~ 0, we have f(t) = h0 j,fit and (54) gives 

} ( -rs) -1 

v(s) = ~ 1 + .\ ey's (55) 

To compute the inverse transform of the second member of (55) we proceed in 
a formal way as follows: 

Then , taking into account that (s-Cn+ 1)12 ) v (t) = tCn- 1)/ 2 ;r ((n + 1) /2) and 

(e-nr 5
) v (t) = J(t- nr), n?: 0, the convolution theorem enables us to write 

v(t) = 
+ oo ( -A)n 

( )

v 

ho ~ s(n+l)/2 e-nrs (t) 

+ oo ( -A)nt(n-1)/2 

ho ~ r ((n + 1) /2) * J(t- m) 

~ ( -A)n ( , )(n-1)/2 ( ) 
ho~r((n+l)/2 ) t-nr Ht-m (56) 

where H(t) is the Heaviside step function. Of course, the validity of expression 
(."inl m;:w he tested bv direct substitution in equation (48). Now, attending to 
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the values v(Nr) of the solution v(t) at the points tN = Nr , N EN, from (56) 
we deduce 

v(Nr) 
NL-1 (- A)n ( (n - 1)/2 

ho r ( ( ) I ) NT - ·n T) n + 1 2 
n=O 

~ I:l ( -AJT)n (N - n)(n- 1}/2. 

JT r((n+1)12) 
n=O 

For every A > 0, numerical experiences reveal that the behaviour of the scqueuce 
{ v( N r)} is oscillatory. It should be emphasized that this oscillatory behaviour 
does not occur in the absence of delay ( r = 0). In fact , it was proved in Berrone, 
Tarzia, Villa (2000) that the inequalities 0 ~ v(t) ~11M, t > 0, arc satisfied 
by the solution to the problem with r = 0. Now, using (55) we can compute 

1t v(s) d 
.s 

o J1r(t- s) 
= (~ v(s)) v (t) 

(':0 (1 +A e;,' ) _, ) v (t) 

h (~. oo (- A)n e-nrs )v (t) 
0 L...t sn/2+1 

n =O 

+oo (-A)" 
ho L r ( I ) (t- nr)"

12 
H(t- m), 

n 2 + 1 
n =O 

so that the behaviour of this integral when t i + oo is oscillatory as well. 
In the previous subsection we have seen that an ultimately positive solution 

v(t) of equation (16) is bounded from above by a. function of the form Cc 112 

and, by Theorem 4.3 , this fact entails that the oscillation limits of the mean 
temperature u(t) are both finit e. As the following theorem shows, the situation 
is better when the control function is linear. 

THEOREM 4.5 Suppose that the initial temperature h satisfies IMhl < +oo and 
that the contml is a linear fun ction F(v) = AV, (A > 0). rr the sol·ation v (t) to 
problem (48) ·is ultimately positive, then · 

lim u(t) = 0. 
tt+oo 

Proof. From Theorem (4 .2), we see that it is sufficient to prove that 

l. 1t v(s) d 0 
ln1 s = . 

tt+ oo o j1f(t- s) 
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Suppose that v(t) ~ 0, fort > to. From (48) we obtain that , if t > max{to,T}, 

0 < v ( t) = f ( t) - A - ds 1t v(s T) 

o J1r(t - s) 
(5 7) 

f(t)- A 1r ¢(s- T) - A 1t-r v(s ) 
o J1r(t-s) o J7r(t-T-s) 

(58) 

Taking into account that f(t) -+ 0 and J; ~ -+ 0, if t t oo, we obtain 
7r{t - s) 

1t v(s) 
lim sup ds < 0. 

tt+oo o J1r(t- s) -
(59) 

Mcreover 

1t v(s) 1to v(s) d it v(s) d 
---r::::;'=='===c= ds = s + s, 

o J1r(t- s) o J1r(t- s) to J1r (t- s) 
(60) 

The first integral on the right hand side of (60) tends to zero if t t +oo, the 
second one is a positive function oft, hence 

lim inf 1 1 

v ( 
8

) ds > 0, 
tt+oo o J1r(t- s) -

which, together (59), gives the result. • 
Next, Corollary 3.1 is combined with the previous theorem in order to obtain 

a precise result of controllability. 

THEOREM 4.6 Suppose, apart from the assumptions of Theorem 4-5, that 

i) ¢(t) ~ 0, -T :S t :S 0, and 
ii) p(t)- cp(t ) :S f(t) :S p(t), t > 0, where p(t) solves the problem 

{ 

p(t) = cp(t) + A fc 1 
p(s-r) ds, t > 0, 

0 V " (t -s) 

p(t) = cp(t), -T :S t :S 0, 

for a given positive function cp. 

Then we have 

lim u(t) = 0. 
tt+oo 

(61) 

Proof. From the remark after the proof of Corollary 3.1 and from conditions 
i) and ii), we see that the solution v(t ) to (48) is non-negative for t > 0 and 

. -· . ,, ,, . 
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4.:!. Nonlinear monotone controls 

In this last subsection, a concrete class of control functions is identified which 
allows a suitable control of mean temperatures in problem (4). The method 
we use in identifying this class is mainly based on the estimates furnished by 
Theorem 3.3 for the solutions to equation (16) and, even if our developments 
seem to be of a very specific nature , they admit an ample generalization. 

As it was seen in the example after Theorem 4.4, the solutions to equation 
(16) may present great amplitude oscillations and it was this fact what destroy 
any attemp to control the mean temperatures of the slab. In order to avoid 
ascillations, we implement a twofold strategy. On the one hand , we impose on 
the control function F the condition of reacting only when a certain "threshold 
fb.x" Vo is exceeded, i.e.: 

i) F(v) = 0 if lvl :::; Vo. 

On the other hand, we ask ofF to satisfy a condition of "saturation", i.e., 

ii) F is a bounded function: IF(v)l:::; M, v E R. 

Indeed, these conditions should be as a rule fulfilled by realistic controls, so 
that we consider the class F(v0 , M) of continuous control functions F with F 
non-decreasing, vF(v) 2': 0, v E R, and satisfying conditions i) and ii) above. 

Our claim of controllability rests on the following lemma. 

LEMMA 4.3 Let FE F(vo, M) be where v0 and M are positive constants such 
that 1rv6 - 16T M 2 > 0 and let h be a bounded function with 

then there exists a positive constant A such that 

A 
lv(t)l :S v:;ri' t > 0, 

for the corresponding solution v(t) to problem (16)-(17). 

Proof. Let us define two functions v1 and v2 as follows: 

{ 
cp( t) , 

vi(t) = -A/.Jii, 
-T :::; t:::; 0 ( ) _ { cp(t) , 
t > 0 ' Vz t - A/v;i, 

-T :S t :S 0 
t > 0 

(62) 

where A is a positive constant. We have to determine a suitable value for A so 
that the inequalities 

v1 (t) :::; v(t) :::; v2 (t), t > 0, 

hold for the solution v(t) to problem (16)-(17). 
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By Theorem 3.3, it is sufficient to show that 

{ 

_ _A_ < j(t) _ Jct F(v2(s-T)) ds 
v7ri - 0 .j1r(t-s ) 

_A_ > j(t) _ Jc t F( v1(s-T)) ds ' t > 0. 
Jiri - 0 .jrr(t - s) 

(63) 

Now, taking into account that his bounded and using Theorem 3.1, it is not 
difficult to see that inequalities (63) will be satisfied provided that 

~ > llhll oo + M j·l. ds 0 < t < T 
Jit - Jit o J1r(t- s)' - ' 

and 

A llhll oo 111 1T ds -- > -- + ~ t > T, 
Jit - Jit o Jn(t- s)' 

where 

A2 
T=T+-2 

nvo 

is the smallest positive constant such that 

F(vi(t- T)) = 0, t 2 T ,i = 1,2. 

(64) 

(65) 

(66) 

Note that also the other properties of the control function F have been employed 
in reducing inequa.lities (63) to the simpler ones (64) and (65) . 

Now, a simple computation show us that (64) and (65) are both fulfilled 
provided that 

A 2 iihii oo + 2MT 

or , from (66), 

( A2) 
A 2 llhll oo + 2M T + nv6 . 

The existence of a positive constant A satisfying this last inequality is guaran
teed by the hypotheses (62). In fact, the quadratic equation 

A= iihli oo +2M (T + A22) 
1fVo 

has a positive solution provided that its discriminant 

2M 
1-4-2 (iihiioo + 2MT) 2 0; 

nvo 

i.e. , llhll oo ~ nv5/ (8M)- 2TM . This completes the proof. 

WP ::trP nnw ::t.hl P tn state our main result . 

(67) 

• 
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THEOREM 4 . 7 Assume that the hypotheses of Lemma 4.3 hold for a given initial 
temperature profile h such that JMhJ < +oo . Then, the mean temperature u(t) 
satisfi es 

lim u(t) = Uo - {T F(v(s- T)) ds 
tt+oo Jo 

where T is given by expression (66) (in which A can be taken as the smallest 
root of equation (61)) . 

Proof. From Lemma 4.3 we obtain Jv(t)J ~ A/..fift, t > 0, and therefore , 
F(v(t- T)) = 0, t ~ T = T + A2 / (1rv6) . Then, using Theorem 4.1 , we obtain 

lim u(t) = lim (uo- t F(v(s- i)) ds) = Uo- { T F(v(s - T)) ds. 
tt+oo tt+oo Jo Jo 

• 
By means of this result we can give a class of control functions F( v) which 

guarantees, under suitable assumptions on the initial datum h(x) the existence 
of the limit , as t -+ + oo, of t he mean temperatures. 
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