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Abstract: This paper focuses on the connection between sliding 
motions and low frequency modes of high-gain feedback systems in 
an infinite dimensional framework. 
We study a particular class of abstract control systems in a Hilbert 
space setting and analyse their high-gain behaviour through singular 
perturbations. We show that the "slow" motion derived from the 
reduced model approximates the evolution of the closed loop after 
a fast transient. Moreover we prove a relation between this slow 
component of the high-gain feedback system and sliding motions, in 
the spirit of the analogous result in the finite dimensional setting by 
Young, Kokotovic and Utkin (Young et al., 1977). 
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1. Introduction 

Sliding mode techniques can be considered at present as a somewhat classical 
tool for the control of systems governed by ordinary differential equations. Their 
appealing features of order reduction and robustness have contributed to both 
their theoretical investigation and engineering application . The literature on the 
subject is wide and covers numerous aspects of these two fields (for an overview 
see for example Utkin, 1992). 

The robustness properties with respect to unmodeled external disturbances 
these methods can guarantee, have increased the interest of researchers in their 
extension to the infinite dimensional setting, see Orlov and Utkin (1982, 1987, 
1!198), Orlov (1983, 2000), Utkin (1990) . As for the early developments of the 
finite dimensional theory, the first mathematical obstacle to overcome is the 
rlt:\f1niti n n 'Jon rl ; ..,... ._ ,..._...,._,.. .._ ... .._! -- _r J 1 
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approach means also choosing a state discontinuous feedback. This control is 
designed in order to make a chosen manifold globally attractive and so, after 
a reaching stage, to give rise to a constrained evolu tion. This choice implies 
the difficulty of giving a defini tion of solution for the closed loop dynamical 
system. The first answer to this problem was given in Orlov and Utkin (1987) , 
where the validity of the sliding motion was related to a property of approx
imability through continuous controls. The study there, however, was limited 
to 3emilinear parabolic systems. Later t he same approach has been shown in 
Orlov (2000) to be successful for a wider class of infinite dimensional systems. 
In Levaggi (2002a,b) the sliding mode validation was instead carried out using a 
generalized solution concept derived by the definition of a differential inclusion. 

The study of the mathematical found ations of sliding mode control for in
finite dimensional systems has thus received some attention, although it lacks 
the depth of investigation given to the finite dimensional one. This paper places 
itself in this framework, showing the extension of a particular result valid for fi 
nite dimensional linear time-invariant control systems to a Hilbert space setting. 
This appeared in the paper by Young, Kokotovic and Utkin (1977), showing a 
relationship between linear high-gain feedback systems and sliding motions. Us
ing singular perturbation theory the authors showed that, under some stability 
assumption, as the gain tends to infinity the system acquires a mode separation 
property. The evolution is in fact the superposition of an asymptotically stable 
fast transient and a slow component. Moreover, the motion of the slow sub
system coincides with the evolution of the equivalent cont rol system on a well 
chosen sliding surface. 

Here we will present a class of infinite dimensional systems to which these 
results can be extended. We will analyse high-gain systems of the type 

{ 
:h = Aux1 + A 12x2, 

±2 = A21X1 + A22X2 + B2u, 

All operators will be supposed linear and bounded, apart from An and A22, 
which are the generators of strongly continuous semigroups on Hilbert spaces 
li1 and H 2 . Just as in the fini te dimensional case, when the gain k tends to 
infinity, the feedback system becomes singularly perturbed. For f..L = 1/ k we end 
up with a system in the form 

{ 
± 1 = A n x1 + A12x2, (1) 
f..L X2 = A~l Xl + A~2X2, 

where for any p,, A~2 still generates a Co-semigroup, while A~1 is bounded. 
We prove that, under some uniform exponential stability assumption , if t he 

reduced order model (corresponding to p, = 0) has a unique solution, then it 
approximates the evolution of (1) asp,~ 0, away from t = 0. This new singular 
p8rturbation result is shown in Section 2. 

As we said before, the sliding mode concept can be extended to the infinite 
,. ~- --- 1 - - ..... l-. 1 .... ..., ........ 
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enjoys the approximability property needed to make sense of the sliding motion . 
More precisely, we show that any feasible t rajectory of the control system which 
in a specified sense evolves near the sliding constraint, uniformly approximates 
the sliding mode. The relation proved in Young, Kokotovic and Utkin (1977) 
with the high-gain slow motion is then generalized to this new setting. 

In Section 4 we present an example of a controlled heat equation that fi ts into 
our scheme. We also show how to build the high-gain feedback (and thus the 
sliding surface) in order to satisfy the hypotheses needed to apply our pertur
bation theorem. The same goal is accomplished in Section 5, where we present 
a disturbance rejection problem for the out put of a wave equation. 

In both cases presented in Sections 4 and 5, the sliding mode can also be 
substantiated using the results from Orlov and Utkin (1998) and Orlov (2000), 
respectively. Here we show, in a different setting, under what conditions the 
constrained motion coincides with the slowly varying component of an high
gain feedback system. 

2 . A convergence result for singularly perturbed systems 

Let us be given the following infinite dimensional control system 

{ 
X1 = Aux1 + A12X2 , 
x2 = A21x1 + A22X2 + B 2u , 

X1 (0) = X1,0 
X2 (0) = X2,0, 

u E U (2) 

where for i = 1, 2 Aii : D (Aii) C Hi -t Hi is the generator of a Ca-semigroup 
Si ( t ), t 2:: 0 on the Hilbert space Hi and Aij : H1 -t Hi is a continuous linear 
operator for j f- i. The control space U is assumed to be an Hilbert space and 
the operator B2 : U -t H2 is linear and bounded. From now on we will always 
suppose that these structural hypotheses hold. When referring to the control 
system (2), the above properties will all have to be taken into account, even if 
not explicitly mentioned. Let Ci : Hi -t U i = 1, 2 be two linear continuous 
operators, k > 0 and set 

u(x t , x2 ) = k(C1x1 + C2x2 ). 

Calling J-t = t the closed loop system becomes 

X1 (0) = X1,0 
x2 (0) = x2,0 · 

(3) 

Mild solutions of this differential system are well defined since An is the 
generator of a strongly continuous semigroup on H1 by hypothesis , while the 
following classical perturbation result shows that J-LA 22 + B2C2 generates a Co
semigroup on H2. 

THEOREM 2.1 (Pazy, 1983, p. 76) Let X be a Banach space and A the infinites
imal generator of a strongly continuous semigroup T( t) , t 2:: 0 on X. If B is a 
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bounded linear- opemtor· on X , then A+ B genemtes a Co -semigr-oup S ( t) , t 2: 0 
on X satisfying 

S(t)x = T(t) x +fat T (t - s) BS(s)x cis, \:lx EX. (4) 

Mo r-eover-, ifT(-) is a compact semigmup, so isS(-) . 

When the gain k tends to infinity, the parameter J..L in (3) tends to zero, giving 
therefore rise to a singularly perturbed equation . If J..L = 0 the second equation 
in (3) is transformed into the following operator equation 

If the operator B2C2 : H2 -+ H2 is continuously invertible the unique solution 
is 

with x1 solving the differential equation 

{ 
iJ =[An - A12(B2C2 )- 1 B2C1JY 
y(O) = X1,0 . 

(5) 

(6) 

Note that under the given hypotheses P = -A12(B2C2 )- 1 B2 C1 is a bounded 
linear operator from H 1 into itself, therefore, by Theorem 2.1 , Au + P still 
generates a strongly continuous semigroup 51 ( t) , t 2: 0 on H 1 . Thus, by substi
tuting J..L = 0 into (3) we get the following evolution 

(7) 

We want to prove that, under some regularity assumptions, the motion of the 
singularly perturbed system (3) is the superposition of the slow motion (7) and 
a fast transient. To this end let us introduce the following definition. 

D EF INITIO N 2.1 (Krein, 1971 , p. 284) A fami ly of functions {f11 (t) : 0 < f..L :S 
Ji, t E [0 , T]} tends to zer-o as J..L -+ 0 almost unifor-mly on (0 , T] if for- any c; > 0 
ther-e exis t o< > 0, t< > 0 such that 

llf~-'( t)ll < E , \:lj..t < 0<, t E [J..Lt<, T]. 

A simple instance of such a family is given by f~-'(t) = exp( - at/ J..L) , a > 0. 
Noce also that the almost uniform convergence on (0, T] implies the uniform 
cc.,nvergence on [t0 , T] for any t0 > 0 but the converse is not always true (e.g. 
take fu(t) = J..L- 1 exp(-at/J..L)). 
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THEOREM 2.2 Let us suppose that B2C2 is continuously invertible, x2(t) E 
V( A 22 ) for almost all t and that there exists p > 1 such that the function 
f(t) = A22 x2 (t) belongs to £P(O, T; H2) for all T > 0. Calling Kll(t), t 2': 0 
the semigroup generated by J-LA 22 + B2C2 , let us assume that, for all sufficiently 
small J-L , the following holds: 

IIK!l(t) ll ~ Mew,,t, with w* =sup wll < 0. (8) 
/.l 

Then, if (x;," , x~) is the mild solution of the singularly perturbed system {3}, as 
J-L -7 0 the following convergence result holds: for any T > 0 one has ll xi(t) -
i t ( t) II -7 0 uniformly on [0 , T], while ll x~ ( t) - x2 ( t) II -7 0 almost uniformly on 
(O,T]. 

Proof. Let us call xll = xi - x1 and zll = x~ - x2. From (3), (5) and (6) xll 
solves the following differential equation 

{ 
x = Aux + A12zll (9) 
x(O) = 0, 

therefore the following holds 

XJl.(t) = lot sl (t- s)Al2 z!l(s) ds, (10) 

and the convergence properties of xll in the thesis depend on those of zw Now, 
from the second equation in (3) we have 

x~ (t) = Kll (~) x2,o +~lot Kll c: s) (J-LA21 + B2Ct)x;_"(s) ds, 

since if J-LA22 + B2C2 generates the semigroup Kll(-), then 7JJ-LA22 + B2C2) 
generates K J.L ( t), t 2': 0. We can then write 

zll(t) = Kll (~) [x2,o- x2 (0)] + Kll (~) x2(0)- x2(t) 

+~lot Kll c J-L 
8

) (J-LA2t + B2Ct) xJ.L(s) ds 

+~lot Kll C:s) (J-LA2t +B2Ct) x1(s)ds. 

Let us split the sum in the last integral. Recall that B2C1x1 + B2C2x2 = 0 
and by hypothesis x2 takes values in V(A22 ), with f(s) = A22x2(s) p-integrable 
with p > 1. Therefore we have 

~ lotKil (t: 8 ) B2Ct x1(s)ds =lot Kll (t: 8
) A22x2(s)ds 

-~ t Kll e ~ 8 ) (B2C2 + J-LA22)x2(s) ds. 
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The second integral on the right-hand side can now be integrated and we get 

1 t (t- s) P, lo I<~' ----;- B2C1 x1 (s) ds = xz (t) - I<~' (~) x2 (0) 

+ 1 t I<~' c : s) f ( s) ds. 

Thus we obtain 

zp, (t) = /{~' (~) zp,(O) +~lo t I<,, c: 8
) (f.LA21 + B2CI) Xp,(s) ds 

+ lo t f{~' C:s)f(s)ds + lo
1

Kp,C:
8

)A21x1(s )ds. 

Plu.gging (10) into the above equation we get 

Zp, (t) = /{~' (~) Zp, (O) (11) 

+ ~lot I<p, c f.ls) (f.LA21 + B2CJ) lo s s l (s- T)AJ 2Zp,(T)dT ds (12) 

+ lot I<~' C: 8
) [f(s ) + A21 xi(s)] ds. (13) 

Let us first study the term (12) . By the continuity properties of/{~' ' A21, BzC1 

and Fubini 's theorem this in~egral is equal to 

~lot dT lt I<~' C f.l 
8

) (f.iA21 + B2CI)S1 (s - T)A12zp, (T) ds 

lit = - W~'(t , T)zp,(T) dT , 
f.l 0 

where for fixed f.L , t and T E [0 , t], for any v E H2 we define the linear operator 

Wp, (t ,T)v = l t I<~' C: 8 ) (f.LA2l + B2CI)S1(s - T)A1 2vds. 

We now prove that it is bounded and give an estimation of its norm. As 51(-) is 
a C0-semigroup on H1, there exist a constant N > 0 and a real number a such 
that IIS1(t)il :<:::Neat for all t. Therefore, by (8) we get 

IIWp, (t ,T)vll :<::: M N(MIIA21 II + IIB2C1II) IIAdlll vlllt e=if-(t - s)ecx(s- T) ds. 

Evaluating the integral and using (8) , for all sufficiently small f.l we thus obtain 

< const ll vll f.l (ecx(t - T) - e ~:· (t-T) ) 
f.LO: -w* 

< constllvll f.l , _q(t) (14) 
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with g(t) = max{1 , eat}. From (8) we get the following bound for the right-hand 
si r!e of ( 11) 

(15) 

Let us now study the integral in (13). As x1 is continuous, A21 is bounded and 
by hypothesis 1 E LP with p > 1, we also have h = 1 + A21x1 E LP(O, T). Thus 
by (8) and Holder inequality we get 

< J\!II Ihll r (1 t e~ (t- s )qds) 1/q 

< Mllhll r (-f..L- (1 - e ~;· qt)) l f q 
-qwl-' 

< M llhllr 1/q 

~f..L (16) 

(here 1/ q + 1/ p = 1 and q < oo). Applying the bounds (14) , (15) and (16) , to 
relation (11)- (13) we obtain 

l l z~-' (t)l l :S const [e < 1 + J..Ll f q + g(t) . t ll z~-' (T) I I dT] . 
f-L O: - w• Jo 

Setting for simplicity 11-'(t ) = exp(w* t / J-L) + J..Ll / q , by Gronwall 's Lemma (Laksh
mikantham and Leela, 1969, Cor. 1.9.1) we have 

ll z,,(t) ll < const[1~-'(t) + g(t) 1t 11-'(s) e(t -s) g(t) ds] 

< const[1~-' (t) + g(t)etg(t) 1 t 11-'(s ) ds]. 

Obviously 11-'(t) -+ 0 for 11· -+ 0 whenever t ::J. 0, while the integral converges to 
zero for all t. The uniformity stated in our result has only to be proved for the 
term ew' t f ~-' and this is straightforward. • 

REMARK 2.1 (FINITE DIMENSIO NAL CONTROL) As for the applicability of this 
result, an important remark about finite dimensional control should be made. 
Assume that our system is in the form (2) and dim U = m. Then also B2(U) 
is a finit e dimensional space. Without loss of generality we can assume that its 
dimension is still1n , so that B 2 is surjective (otherwise we could reason on a 
subspace of U as the control space). In order to apply our singular perturbation 
result, we need the invertibility of the operator B2C2 : H2 -+ B2 (U) , thus we 
must have dim H 2 = m. In this case the operator A22 is itself continuous and 
the hypotheses of Theorem 2.2 are satisfied whenever the matrix representing 
n n 
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It also has to be noted that in this framework the overall dynamical system 
on H 1 EB H2 has the property that the image of the input operator belongs to 
the domain of the the semigroup generator. The following Proposition shows a 
form of converse result. 

PROPOSITION 2.1 Given a general abstract control system in the for·m 

{ 
i(t ) = Ax(t) + Btt 
x(O) = xo 

on a Hilbert space H , with generator A , linear continuous input operator B and 
dim U = dim B(U) = m, if B(U) C V (A) then the system can be put into joTm 
(2). 

Proof. Calling H2 = B(U) and H1 any of its complements, the projections 
Pi on Hi along Hj, i,j = 1, 2 have the following properties: P1 + Pz = I , 
P2 (H) C V(A) and PJ(V(A)) C V(A ) because V (A) is a subspace. Thus the 
operators Aij = Pi APj are well defined on V(A), Au is a generator on H 1 and 
so P1 B = 0. As H2 is finite dimensional we obviously have that A12 and A22 

are continuous. As for A21 , its continuity on H1 is equivalent to that of P2 A 
on H , since Az1 = PzA - A22 . Using the Riesz representation theorem it is not 
difficult to prove that this condition is satisfied if and only if the space H/- is 
contained in V(A*). In fact if P2 A is continuous, it admits an extension to H 
and for any fixed z E H the operator x H (P2 Ax, z) is a functional. Thus using 
Riesz theorem OJ!e gets 

Vx E D(A) , Vz E H :J w s.t . (x, w) = (P2 Ax, z ) =(Ax, P; z) , 

i.e. w E D(A* ) and w = A* P-2 z . This is possible only if Im P2 C D(A*) , but 
Irn P2 = (ker P2)1. and the previous statement is proved. Since dim H2 = ·m it 
is always possible to choose a complement H1 satisfying this property. • 

An example of application of these results is given in Section 5. 

3. Sliding modes approximability 

In · this Sect ion we introduce sliding modes and prove the approximation result 
pointed out in the introduction. Just as in the finite dimensional case (Young, 
Kokotovic and Utkin , 1977) for the class of systems under consideration, the 
interpret ation of the sliding mode as the "slow" motion of a high-gain feedback 
system as the gain tends to infinity will easily come by. 

Let us be given a control system of the form (2); for simplicity we suppose 
B2 invertible (see, however , Remark 3.1) . Now let Ci :Hi -+ U be two linear, 
continuous operators and set 
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Let us suppose that we can restrict the trajectory of system (2) to t he 
manifoldS , that is- we can induce a sliding motion on S. Swill be then called 
a sliding manifold. How to do this in the case of a finite dimensional system 
through a discontinuous control law is by now well known (Utkin , 1992). The 
sliding mode cont rol technique can also be extended to the infinite dimensional 
case, under some regularity assumptions . Here we will show how the equivalent 
control method extends to the particular case we are studying. 

As in the finite dimensional case, the sliding mode existence requires the 
invertibility of operator C2B2 . Thus, if B2 is an isomorphism, the same will 
hold for c2 and the manifold s will be given by 

S={(x~,-C;- 1 C1xl) : x1EH1}. (17) 

If a sliding mode takes place on S the equation of motion of the sliding trajectory 
will therefore be given by 

{
. ~~:[All_;- A~2C2 1 Cl]x1 (18) 

x2 - -C2 C1x1, 

which is just the same as (6), (7). The pair (x 1 C), x2 C)) will be referred to as 
the sliding motion. 

One can easily show that t his system can also be found through a formal 
application of the equivalent control method . In Levaggi (2002a,b) two different 
sets of regularity assumptions are shown to be sufficient to make this method 
rigorous, by generalizing the solut ion concept to infinite dimensional differen
t ial equations with discontinuous right-hand side. The sliding motion is then 
interpreted as a generalized solution which is viable on the constraint S. 

Another way of validating the equivalent control method consists in showing 
that all tra jectories obtained using continuous controls which are able to bound 
ti1e state evolution in a boundary layer of the sliding manifold (real sliding 
modes), converge to the equation of motion produced by the equivalent control 
(ideal sliding mode). This approach can be found in both Orlov and Utkin 
(1998) and Orlov (2000): in the first one the result is proved under some com
pactness hypothesis on the semigroup governing the evolut ion . In Orlov (2000) 
the setting is rather general: no special regularity has to be ~ssumed about the 
unbounded operators , although the definition of the boundary layer about S is 
given in t he norm on the domain of the generator. 

In the following proposition we show that the structure of our control system 
(2) allows us to simplify the proof of this result. The distance of the real sliding 
modes from the sliding surface is measured in t he state space norm. 

PROPOSITION 3.1 Suppose that the operator B2 in (2) is invertible and the 

manifold S in (17) is a sliding manifold for (2). For any o > 0 let (x\~6, x~~b) 
be a couple of initial values in H1 EB H2 and u0 be any control law such that 

{ 
y =Ally+ A12 z, y(O) = x~8b (19) 

i = A21Y + A22 z + B2uo, z(O) = x~~b 
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admits a unique strong solution (xl0
) , x~8)). Suppose that us is chosen in such 

a way that 

(20) 

tends to zero as o tends to zero, unifor-mly on [0 , T] for any T > 0. If xi~b -+ 

it (0) for-o -+ 0, then (xlo), x~o) ) converges to the sliding motion (18) as o tends 
to zero, uniformly on compact subsets of [0, +oo). 
Moreover, if s0 tends to zero uniformly on [O , + oo) and the semigmup S1 (t), 
t > 0 generated by Au - A12C;1 C1 is exponentially stable, the conver-gence of 

( (s) ( s l) . . + [0 - ) xt , x2 zs um1orm on , +oo . 

Proof. From (19) we have x~o) = c;t [s o - Ct :Yl0) ] and by (17), (18) we can 
write 

so that 

Auxlo) + A12x~o)- [An- At2C2tCt]i t( t) 

[Au - At2C2tCt](xl0
l - xl)(t) + At2 C:l 1 sc~( t), 

(xlo)- xt) (t) = SJ(t)[xio) (0)- it (0)] + 11 

St (t- s)At2C2 1 sa(s) ds. 

Thus, if II St(t) ll :::; M ew 1 t for all t 2 0 we get 

ll(xio)_ i t)(t)ll < Mewd ll xl0)(0)- i t(O)II 

+MIIAt2 IIII C2 1 II (sup ll so(s) ll) t ew t( t-sl ds. 
sE[O,t] Jo 

Therefore, if ll xi0\ 0) - it (0) II -+ 0 for o -+ 0 and S 0 tends to zero uniformly 

in [0 , T] for all T > 0, we have proved the uniform convergence of xio) to i 1 

on compact subsets of [0 , + oo) . Moreover, if we have uniform convergence on 

[0 , + oo ) for so and Wt < 0, then ll xl0)- it II tends to zero uniformly on [0 , + oo) 
as o goes to zero. As 

the proof is completed. • 
REMARK 3. 1 Th e invertibility hypothesis imposed in this Section on B2 has the 
advantage of simplifying furth er formttlas, but is unnecessary to get the stated 
nosults. In fa ct it would be suffi cient to require the invertibility of both B2 C2 

and C2 B2 , which are the nonsingularity conditions needed respectively to get 
( 5) and to apply the equivalent control method. For example, let us show how to 
exvress the sliding motion in the general case. Any couple (x1 , x2 ) E S obviously 
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satisfi es B2C1 x 1 + B2C2x2 = 0, which is equivalent to x2 = - (B2 C2 )- 1 B2C1x1 . 

The invertibility of C2 B2 implies that B2 has to be injective and thus S = 
{(x1,- (B2C2)- 1B2C1x!) : x1 E HI} as wanted. 

Proposition 3.1 has also the following physical interpretation: due to small 
imperfections e.g. in either the sensors or the actuators, ideal sliding modes 
cannot be realized by real-life control devices. However , if the real control law 
u0 is able to constrain the motion in a boundary layer of the manifold S, the 
real trajectory will preserve the properties of the ideal one. Moreover , in the 
limit , as the amount b of the imperfections tends to zero , the sliding motion will 
be realized. 

C OROLLARY 3.1 Given a control system satisfying the hypotheses of {2) , let 
Ci : Hi -+ U, i = 1, 2 be two linear continuous operators. Suppose B2C2 and 
c2 B2 are continuously invertible and a sliding mode exists on s = { (X]' X2) E 
H1 EB H 2 : C1x1 + C2x2 = 0} . Then if the hypotheses of Theorem 2.2 hold, the 
sliding motion can be interpreted as the limit slow mode of a high -gain feedback 
system as the gain tends to infinity. 

4 . Application to a heat equat ion 

In this section we are going to present a control example which fits into our 
fr amework. In Orlov and Utkin (1998) this system is stabilized by the applica
tion of a discontinuous control inducing a sliding motion on a suitably chosen 
surface S. Here we show that for a suitable choice of the sliding manifold the 
hypotheses of Theorem 2.2 are satisfied and thus the constrained motion can 
be interpreted as the the slowly varying component of a singularly per turbed 
system. 

Let us be given the following boundary value problem 

{ 

~~= ~ +DQ+Fu(y) y E(0,1) , t > O 

EJ Q (0 t) = EJQ (1 t) = 0 t >_ 0 
EJy ' EJy ' 

Q(y , 0) = Qo(Y ) y E [0, 1] 

(21) 

where Q(y, t ) E lR1
'", u E L2 (0, 1; JRm), D E Mn(IR ) and F E Mnxm (IR ) wi th 

rn < n. The physical problem consists in the heating of n similar objects using 
rn sources. The matrix D represents both the heat exchange between the objects 
and the environment. 

Without loss of generality we can suppose that the constant matrix F has 
maximal rank m . In fact it is always possible to find a full rank matrix F' 
and a subspace U' of IRm such that for any u E JRm there exists u' E U' with 
Fu = F'u' and rank F ' = dim U'. 

We restrict the analysis to a family of candidate sliding manifolds, more 
precisely we will call 

S = { Q E IRn : G Q = 0} , 
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with G a fixed but arbitrary m x n real matrix such that G F is invertible. The 
right choice for G will be carried out in the sequel. As rank F = m there exists 
a nonsingular matrix M E Mn(IR) such that 

MF=[~2 ], with F2 E Mrn(IR), det F2 -j:. 0. 

Setting Q = M Q, we get 

8Q 
at 

8Q ()2 Q 
M--af: = M[

0
y2 + DQ + Fu] 

0
2Q -1 - [ 0 ] = oy2 + M D M Q + F

2 
u. 

We now split vector Q E IRn as Q = ( Q1, Q2) with Ql E m n-rn and Q2 E lRrn. 
Using the identity above and substitut ing into (21) we obtain 

(22) 

where the blocks D i j correspond to the following decomposition 

in accordance with the above splitting of mn. Moreover using the same block 
form we have 

GF = GM- 1M F = [G1 G2] [ ~2 ] = G2F2 , 

G1 E Nirn xn- rn( IR), G2 E Mmxrn(IR), so that the invertibility of both GF and 
F2 is equivalent to det G2 -:f. 0. Therefore 

S={(QI,Q2) ElRn: G1Q1+G2Q2=0} 

= {(Ql , Q2) : Q2 = -G21GIQI}. (23) 

We are now ready to restate our problem into the infinite dimensional setting 
we discussed before. In fact calling H1 = L2 (0, 1; m n- rn), H 2 = L2 (0, 1; IRrn) , 
U = H2 we obtain a control system of type (2) with 

Aux1 = x~ + Du x1, 
Al2X2 = Dl2X2, 
A22X2 = X~ + D22X2, 
A21x1 = D21 x1, 
B2u = F2u, 

V(Au) = {x E H 2(0,1; m n-rn) : x'(O) = x'(1) = 0} 
\:/x2 E H 2 
V(A22) = {z E H 2(0, 1; IRrn) : z'(O) = z'(1) = 0} 
\:/x1 E H1 
\:/u E U. 
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T':le initial values (x1,o, x2,o) will be given by MQo(y) = (Qo,l (y) , Qo,2(y)). 
· The second derivative operator is the generator of a compact semigroup on 

either V(An) or V(A22 ), therefore by the Rille-Phillips perturbation Theorem 
2.1 both A11 and A22 generate a compact Co-semigroup (on H1 and H2 re
spectively). The proofs of the continuity of A12 , A21 and B2 are trivial. In 
accordance with the setting of Section 2, the operators C1 and C2 will be given 
by C1x1 = G1x1 and C2x2 = G2x2, respectively. The invertibility of operator 
B2 C2 is of course an obvious consequence of the nonsingularity of both G2 and 
F2. From (6) and (7), the solution (x1,x2) of the reduced order system will 
satisfy 

{ 
~1 = [An_-;- A~2G2 1 G1]x 1 
x2 = -G2 G1x1 

which in terms of the variable Q becomes 

(24) 

(25) 

We are now going to show how the hypotheses required to apply Theorem 
2.2 can be satisfied through a suitable choice of the matrix G, or equivalently the 
couple G1, G2. Let us start by studying the spectral properties of the singularly 
perturbed operator 

(26) 

From the Rille-Phillips theorem, AJ.L generates a compact Co-semigroup on H2, 
therefore it satisfies the spectrum determined growth assumption (Curtain and 
Pritchard , 1978). This means that the semigroup type can be computed through 
the real part of its eigenvalues . Let us suppose that >.. J.L E (C is an eigenvalue of 
A11. , i.e . that there exists a vector v E H 2 (0 , l;CCm) , v'(O) = v'(l) = 0, v i= 0 
such that 

(27) 

We are interested in the behaviour of the real part of the >.. 11 -s as the parameter 
J.l tends to zero. From (27) one expects that in the limit only the eigenvalues of 
matrix F2G2 do play a role. In fact it is not difficult to prove (see the Appendix) 
ti1at if F2G2 is Hurwitz there exist constants c1, c2 > 0 such that 

R e >.. J.L ~ c1 (J.L C2- ~). 
Therefore we have Re ).. J.L < 0 for all J.l < (2 c2 ) -

1. Remember that G2 is not 
given by the problem, but it belongs to our control tools. Thus, if we choose 
this matrix in order to place the eigenvalues of F2G2 in the left half plane, there 
exists a range of u, for which (8) is satisfied. 
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As for the other hypotheses, if we assume that x 1 ,0 belongs to V(Au) , then 
x1(t) E V(Au) for all t. Therefore x2 E V(A22 ) because x2 is obtained from 
x1 by multiplying by a constant matrix and the regularity proper ties of x1 pass 
over to x2 . This assumption is a lso sufficient to guarantee the p-integrability 
property required in the Theorem. In fact we have 

[- G;-1G1xl(t)]" + D22x2(t) 

- G21G1Au x1 (t) + [G21G1Du- D22 G21Gl]x1 (t). 

It is not difficult to prove that A22 x2 belongs to L00 (0, T; H2). In fact x1 E 
L00 (0, T; Hl) because it is a continuous function and moreover as x1 ,0 E V(A 11 ) , 

from (24) we have 

so that also Aux1 belongs to L00 (0, T; H 1). This is obviously sufficient to prove 
the wanted boundedness property. Thus we get the following result . 

PROPOS ITIO N 4.1 Given the control system (22), letHE Mm xm (IR) be a Hur
witz matrix, G1 E Mmxn- m(IR) and set G2 = F2-

1 H , u = k(GJJ1 + G2Q2) 
with k > 0. When the gain k tends to infinity the closed loop system acquires 
a separation mode: the corresponding slow motion is the solution of (25). This 
evolution can also be interpreted as a sliding mode on the surfa ce (23) obtained 
through the equivalent control method. 

If the couple (Du,D12 ) is controllable, the sliding motion can be stabilized 
by an appropriate choice of the matrix G1 . 

Proof. The first part of the statement is just a collection of previous results. 
As for the second , just note that . if (D 11 , D 12) is controllable (observe that 
this is equivalent to (D, F) in (21) being controllable), then there exists P E 
Mmxn- m(IR) such that Dn - D 12P is stable (Sontag, 1990) . Then if we set 
G1 = H - 1 F2P we get the stability of Dn- D1 2F2-

1 HG 1 = Dn- D12G2G1. As 
before, this condition is sufficient for the exponent ial stability of the semigroup 
governing (24). • 

5. An application to the output control of a wave equation 

Let us be given the following one-dimensional controlled wave equation 

{ 

fPQ _ a2 Q aQ 
~- 7fY'2 + aar + b(y)[u + h(t)] y E (0, 1), t > 0 

~~(y,O) = Ql(y) , Q(y , O) = Qo(y) y E [0 , 1] 

Q(O, t) = Q(1 , t) = 0 t 2:0 

(28) 

with scalar control u , initial values Q0 E HJ(O , 1) , Q1 E L2 (0, 1) and b E 
T2 (n 11 'T''h P t. Prm h ;._ in T.?O rn -1-r'Y) I ;;mrl r PnrP!'<Pnt.s t.llP !'<V!'<tPm 's m:=~.trhPcl 
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uncertainties. Suppose also that we are given the following output 

y(t) = 11 

Q(w, t) f(w) dw, f E L2 (0, 1). 

47 

(29) 

We show that we can choose an high-gain feedback control that ensures the 
independence of the closed loop slow motion with respect to the uncertain term 
h. 

First we restate our control problem using a classical Hilbert form (see 
for instance Curtain and Pritchard, 1978). Let 6. be defined on D(6.) = 
H 2 (0, 1) nHJ(O, 1) as 6.g = g". Then -6. is positive definite and one can define 
( -6.) 112g = g' on HJ(O , 1). Let H be the Hilbert space H = HJ(O , 1) x L2 (0 , 1) 
with the scalar product (z,z)tl. = (z1 ,z1 )H1 + (z2,z2)p. Then calling z(t) = 

0 

[Q(- , t) , ~{, t)JT , we can rewrite system (28) as follows: 

{ 
i (t) = Az(t) + B[u + h], t > 0 z (t) E H (30) 
z(O) = zo 

with 

A : D(A) --+ H, Az [ ~ :I ] z, D(A) = D(6.) x D(( -6.) 112
) 

B : IR --+ H, Bv [ ~ ] v = Bv , zo = [ ~~ ] . 

One can prove that A generates an analytic semigroup on H (Curtain and 
Pritchard , 1978). The control space U is finite dimensional, thus in order to 
be able to write our system in the form (2), we suppose that the image of B is 
contained in D(A), i.e. bE HJ(O, 1). Proceeding as in Remark 2.1, we choose 

1 = [ ~~ ] E D(A*) = D(A) such that (B, 1)11. = (12, b) p = 1 

and set H2 = span{B} , H1 = span{r}j_. The projection on H2 will therefore 
be given by P1 x = (x, 1)11. B. The vectors z (t) E H will accordingly be split in 
the sum 

z(t) = A(t) B + w(t), A(t) E JR , w(t) E { 1 }j_ \:It ~ 0 

and (30) can be rewritten as 

{ 
~(t) = A(t)c + (w(t), A*l)tl. + u + h, A(O) = (zo, 1)11., 
w(t) = A(t) Bo + Aw(t)- (w(t), A*l)t!. B , w(O) = Zo- A(O)B , (

31
) 

where c = (b, 1d HI + a and Bo = [b, - (b, 1d HI bjT. 
0 0 

Using integration by parts it is straightforward to show that in our abstract 
setting, if c.p = -(6.)- 1 j, we can write this output as 

y(t) = (z(t), <l> )tl. = (wl(t),c.p)H~, <l> = r ~ l 
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with w(t) = [w1 (t) , w2(t)f E H2 . Also (B, cf>)H = 0, so that the output system 
has relative degree greater than one. Moreover, thanks to this condit ion, we 
have 

y(t) = (Az(t) + Bu, if!)H = >..(t)(b, J)p + (wz(t), j)£2. 

Let us now suppose that the relative degree is two, i.e. (b, j)£2 -::J 0 and to 
simplify formulas assume (b, j)L2 = 1. Let (3 > 0 be a real number and define 
the following operator 

Now choose the high-gain feedback control u(t) = -k(>..(t) + C1w(t)). Due to 
the hypothesis on the boundedness of h, it is sufficient to slightly modify the 
proof of Theorem 2.2, taking into account the presence of the disturbances, to 
show that the result is still true. Thus in the limit for k tending to infinity 
we obtain a slow motion satisfying the constraint ).. = -C1 w. Thus after the 
transient we have 

which proves that the output y(-) is independent of the disturbances. By Corol
lary 3.1 the same result is obtained by imposing a sliding mode on the manifold 
S={(>..,w)EIRxH1 : >..=-Clw}. 

REMARK 5.1 A sliding surface for this control problem can also be chosen using 
the techniques shown in Orlov {2000). Indeed, that scheme is more general 
in that it does not need the image of the input operator to be contained in 
the domain of the generator. As we showed in Remark 2.1 this condition is 
necessar·y in our setting. Theorem 2.2 does not apply to the general case, but 
maybe a similar result can be proved by exploiting the regularity properties of the 
semigroup {in this case fo r example it is analytic). Here we have chosen to pay 
the price of imposing structural hypotheses on the systems to get a result which 
does not depend upon the operator's regularity. 

6. Conclusions 

In this paper we presented a singular perturbation result for a class of high
gain infinite dimensional control systems and showed the relationship between 
reduced order model trajectories and sliding motions . However, not every dis
tributed system to which sliding mode control can be extended is in this class. 
The question remains open whether for such control systems a similar result 
can be proved. 
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Appendix 

We study here the real part of scalars A E rt that satisfy the following condition: 
there exists a vector v E H 2 (0, 1;rtm) n HJ(O , 1;rtm), v ,P 0 such t hat 

f..LV
11 + J.LDV + Kv = AV, (32) 

for fixed f.L > 0 and D , J( E m m x m with J( Hurwitz. The unique solution P 
of the Lyapunov equation J(T P + PI< = -I is symmetric and positive definite 
(see e.g. Sontag, 1990). Using such P we define on L2 (0, 1;rtm) the following 
scalar product 

(xly) = 11 

y*(OPx(O d~, y* = rF . 

Note that the induced norm is equivalent to the usual one: since P is sym
metric and positive definite, there exists Q with Q*Q = I such that P = Q* !:::.Q 
with !:::. the diagonal matrix of the eigenvalues of P (which are all real and 
positive). Since IIQII = 1 it is easy to show that 

with Amax and Amin the largest and smallest eigenvalue of P respectively. From 
(32), through a scalar multiplication by v and applying integration by parts on 
(v"lv) we get 

A(vlv) = -J.L(v' lv' ) + J.L(Dvl v) + (Kvlv). 

Now, from the Lyapunov equation one has 

2Re (I<vlv) = -11 

v*(Ov(O d~, 
t!Jerefore 

R e A < (v~v) [-J.L(v'lv') + f.LAmaxiiDIIIIvll 2
- ~llvll 2 ] 

< ~ (J.LIIDII Am ax - -
2

1
) . 

/\111111 
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