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Abstract: The adaptive control problem for a jump linear sys-
tem with quadratic cost functional on infinite time interval is solved
in this paper. It is assumed that the coefficients of the state equa-
tion are unknown but a compact set that contains the parameters is
known. A diminishing excitation accompanies the adaptive control
signal to ensure the strong consistency of the weighted least squares
algorithm.
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1. Introduction

The problem of finding a control that minimizes an ergodic, quadratic cost
functional for a linear system with unknown parameters is probably the most
well-known stochastic adaptive control problem. There is a huge. literature
devoted to this problem. The latest publications dealing with this class of
adaptation are Duncan, Guo, Pasik-Duncan (1999}, Guo (1996), and Prandini
and Campi (2001).

In this paper a similar problem for systems with jump parameters is inves-
tigated. These models are characterized by their hybrid state space. To the
usual Euclidean space, on which we model the basic dynamics z, we append a
fiuite set S. Let r be a discrete Markov chain with state space S. In applica-
tions r, called mode, is a labeling process indicating the context within which x
evolves. Considerable research devoted to these models is motivated by signifi-
cant applications. This class of processes has been used successfully to model air
traffic (Blom, 1990), manufacturing systems (Boukas, Haurie, 1990), power sys-
tems (Sworder, Rogers, 1983), fault tolerant systems {S'wierniak‘ Simek, Boukas,
1998), and multiplex redundant systems (Siljak, 1980).
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For systems with jump parameters adaptive control can be understood in
two ways. In the first one we assume that the states of the Markov chain cannot
be observed directly but only partially through a certain noisy channel. This
approach is presented in Dufour and Elliott (1998) and Pan and Bar-Shalom
(1996). In the second way the word "adaptive” refers to the situation presented
above for standard systems, i.e., we assume that the coefficients of linear model
which describes the dynamics of 2(k), k = 0,1, ... are unknown. In this paper
we consider the latter situation.

The system under study is described by the following equation:

a(k+1) = Ay (k) + Brgyu(k) +w(k + 1), (1)

with the state z(k) € R", control u(k) € R™, disturbance w(k) € R™, and the
abrupt changes are incorporated into the model via the ergodic Markov chain
r(k) taking values from a finite set S = {1,...,s} according to the stationary
probability matrix P = [p;;],

P(r(k+1)=jlr(k) =1) = pi,i,j €S,

mnitial distribution P (r(0) = i) = 1 and limit distribution (7;),. ¢ . Throughout

this paper (Q Fi (5 )1. —0 "P) is a fixed stochastic basis, with (F;.);' —o denot-

ing a filtration, where F. stands for the o-field generated by {r(0),...,r(k)}, and
P a probability measure on (Q, F) . Moreover we assume that w(k), k = 0,1.... is
a second-order independent identically distributed sequence of random variables
with Fw(k) = 0 and

Ew(k)w” (k) = I, (2)

and that w(k), k = 1,2.... and r(k), k = 0,1.... are independent. The initial
condition x(0) = x in (1) is assumed to be a constant vector. The control
u = (u(0),u(1),...) is such that u(k) is Fy-measurable. Together with (1) we
will consider the following cost functional to be minimized

N-1

J (0,10, u) = lim —EZ (Qrmyz(k), x(k)) + (Royulk), u(k))] ,

where the matrices Q;, 1 € S are nonnegative definite and R;, i € S are positive
definite.

The objective of this paper is to find a control that minimizes J under
assumption that the Markov chain is perfectly observed and the coefficients A;
and B; are unknown. If the coefficients of the system (1) are known the solution

to the control problem is given by the following Theorem (see Costa, Fragoso,
1995).



Adaptive control for a jump linear system with quadratic cost 53

THEOREM 1.1 Suppose that {A;, B;,i € S} is mean square stabilizable and
{VQi, Ai,i € S} is mean square detectable. Then the coupled Riccati equation

Pi=Qi+ (A - BG))" | Y piP; | (Ai - BiG:)) +GiRiGi, i€S (4)
JES
where
—1
Gi= |R:+ BT | Y piP;i | Bi) BT |D_ piiPi| A (5)
JES JES

has a unique positive semidefinite solution and the optimal control for the prob-
lem (1), (3) is given by

'U.(;G) = ‘_Gr(k):r(k)e (6}

the closed loop system is MSS. Moreover the minimal value of the cost functional

18
SN wlipitr (Py). (7)

i€S jES

Definitions of stochastic stabilizability and stochastic detectability are given
in the next section.

This paper is organized as follows: In the next section we present two def-
initions of stability of jump linear system and we study their properties. In
the third section we characterize a class of controls that are optimal for control
problem (1), (3). The problem of parameter estimation is investigated in the
fourth section. The main result of this paper is presented in section five where
the adaptive control is constructed. Finally, section six contains concluding
remarks.

2. Stability of stochastic system

We begin with definitions of stochastic stability, stabilizability. and detectability.
which are taken from Costa, Fragoso (1993, 1995). Suppose that for each i € S
a sequence A;(k), k =0,1,... of n x n random matrices is given.

DEFINITION 2.1 The system
a(k+1) = Ayry(k) (8)
is mean square stable (MSS) if

lim E|e(N)|I* =0
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for any initial conditions (ig,xg), and almost sure stable (ASS) if
” 3
Jim |z(N)|I" =0
for any initial conditions (1o, xo) .
LemMA 2.1 (Costa, Fragoso, 1993) MSS implies ASS.

The next theorem contains three conditions equivalent to MSS. The proof
can be found, for example, in Ji et al. (1991).

THEOREM 2.1 The following conditions are equivalent to MSS of (8):
1. For each ig € S there exists a positive definite matriz P;, such that for all
Tg € R

E " la(N)|* < (Piyao, o) - 9)
N=0

2. For all positive definite matrices Q;, 1 € S there exists a positive definite
solution P;, 1 € S, of the following coupled Lyapunov equation

-
P, = A (Zp‘-jpj) Ai+Qi, €S (10)
g=1

3. For each 19 € S there exist § > 0 and q € (0,1), such that

2

N
E\II Arw| <B4,
k=0
where
N
11 Ary = Ay Argo)-
k=0

In our further considerations we will deal with models of the form
2(k + 1) = Ay (k)2 (k). (11)

The next result shows that if the sequence A;(k) converges for each i € S and
the limiting system is MSS then so is (11).

LEMMA 2.2 Suppose that (8) is MSS. Moreover, let for each i € S a sequence
Ai(N) of n x n random matrices be such that

lim AAN)Y= A, a.s.
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and there is a constant ¢ such that "K,-(N)” <cforallie S and N=1,2,...
Then for each z(0) € R", ig € S we have

lim E|z(N)|* =0 (12)
N—=oo
where z(k) us given by (11). Moreover, convergence in (12) is exponential, that

1s-for each ig € S there exist § > 0 and q € (0,1), such that

N 2

H r(k) (K

< BgN. (13)

Proof. Let P;, i € S, be the solution of (10) with @; = I, i € S. Define a
function V : R" x § — R, by

V (2,1) = (Piz,2)
and let

V(z,k,3) = E(V (z(k +1),r(k + 1)) 2(k) = z,7(k) = i) = V (2,1).
Moreover denote

Ai(k) = A(k) -
Using definitions of conditional expectation and P;, we get

7 (2,k,d) = B (B9 (0) Py Brgiy (0)2(K), 2(0) )| 2(6) = 2,7(k) = 4)

~V (2,1)

E (<(A}(k)(k) + Ar(k,)'P,(m, (A (k) + Argry) 2, z> r(k) = i)
—V (2,i) =

E ((A}(k, () Prgiesry Argiy (k)2, ) r(k) = i) +

25(( i (8 B 4r(u~'~> r(k) = z') o

E(<4:_(HP,.U+1}AT“)z,..Nr(k) e f.) —V (i) =

E((A,m K)' Pyiorry Argry ()2, z>|r(k) =é) $

23(( vy (k)P H])A,‘(,,,z,» r(k) =z')+

UV(z ;)) A -V (2,i) =



56 A. CZORNIK

E ({4 Prissny A2, 2)| 1K) = 1) = V (2,0) =
(< r(k}(k) Pr(‘»""l}Ar(j,)(k}z Z>|?‘(k) - i) %

A
(( (k) (K Pr(kg1)Ar(k) 2, 2 N (k):f)—v(zai)g-

From the assumption of the lemma we know that

E ( <Aur(k}(k),Pr(k-H)Er(k)(k)za 3>

'r(k)zz') 50

k—+oo

and

E (A () Prgesy Arqpy 2, 2)| rlk) = i) = 0.
Therefore there exists kg such that for all & > kg

E ((gr(k}(k)'f’r(wnﬁr(k) (k)z,z) r(k) = i) +

2E ( <-’Zr(k)(k),Pr(k+1)Ar{k)zvz> r(k) = i) <elzl?,
where £ = mi-“;,—n Consequently, we get

V (2, k,i) [E
Vi) = (Piz,2)

+ES_‘Tr
\

with v = mﬁ' From the above, we obtain

E(V (z(k+1),7(k+1))| z(k) = z,r(k) = i) < (1 —7) EV(z(k),1).
Since this inequality is true for all i € S, therefore,

EV (z(k+1),r(k+1)) < (1 —9) EV(2(k),r(k)).
Recursively, we have

EV (z(k+1),r(k +1)) < (1 = 9)*"" EV(2(0),7(0)).

From the definition of V' it is also clear that EV (z(k + 1),7(k + 1)) > a|z|*
for certain positive «. Combining this fact with the last inequality we obtain
(12) and (13). ]

The previous Lemma deals with the MSS of (11), however we will also need
results about the ASS of this system. Such a result can be easily obtained from
(13) by applying the following observation: For a sequence y(n), n = 1,2, ... of
nonnegative real valued random variables we have

EY y(n)=)_ Ey(n)
n=1 n=1
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and particularly if 307 Eq(n) < oo, then Y07 y(n) < oo a.c. Applying this

observation to y(n) = ||z(n) )|I>, where z(n) is defined by (11) and having in
mind (13) we get the following

n=1

COROLLARY 2.1 Under assumption of Lemma 2.2 with z(n) defined by (11) we
have

Z ()] < oo a.c.
n=I1

The next two lemmas contain technical results that will be used in the proof
of optimality of adaptive control.

LEMMA 2.3 Suppose that for cach i € S a sequence A;(k). k=0,1,... of n xn
rendom matrices 1s given. Consider a system

(k4 1) = Ay (k) z(K) + f(R), (14)

where f(k) is a sequence of n dimensional random veetors such that
pni2
E|f(R)I" < oo,

(f(0), f(1),...) and ( ,{0](0) A, Fy(1), ...) are mutually independent. Sup-
pose that sequence (A, r0)(0), Ary(1), - ..) satisfies assumptions of Lemma 2.2.
Then there exist positive mnstants ¢, and ¢y such that

N N
Y El=(B)IF < e llzol +e2 Y ENFRIF (15)
k=0 k=0
Proof. We have
kE ok
k+1)_H~1“) ZH (P f@),
=0 =1 p=i

with the notation

Erd

H (D)) = f(R),

and therefore

k

1'[ L)

l=(k + DI <

k 3
W ol + D I TT A )| 1 @I

=1 ||p=l
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Using the inequality (a + b)® < 242 4 2b?, taking expectation and applying
Cauchy-Schwartz inequality, we obtain

k . k| ok 2
Ellz(k +)I* < 2E |[[AryO] Nlzoll® +2E | Y[ Z:m @] 1D | <
1=0 =1 ||p=t
ko * ‘ k . k
2B || [T Zy@)| llzoll® +2E 7w (anf) =
=0 =1 ||p=l i=1
k 2 k k k
: 2
2B | [ Aroy@)| Nzoll® +2 Z [ @) (ZEnf(p)uﬂ) :
=0 =1 p=l =1
(16)
From Lemma 2.2 we have
2
k —_—
E ]:[Ar(p}(p) Sﬁqk_f'
p=l
Applying this inequality to (16) we get
& k
Ell=(k + 1)I* < 284" |20l + 28 (Z q*‘-*) (Z Ellf(;o)ll‘) ‘
=1 I=1
Because ¢ < 1, the last inequality implies (15). ]

Using Corollary 2.1 and following the line of reasoning of the above proof
we can show the following:

LEMMA 2.4 Consider system (14) and suppose that (Erm}(O), Erm(l), i)
satisfies assumptions of Lemma 2.2. Then there exist nonnegative random vari-
ables ¢; and ¢ such that

AI'

Y llz(®)I < e |I~ol +rzZl|f(k (17)

k=0 k=0

We end this section with definitions of mean square stabilizability and mean
square detectability (see Costa, Fragoso, 1995).

DEFINITION 2.2 System

.’LU» 4= 1) = Ar(k)ﬂi(k) + Br(k)u(k)‘
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or alternatively {A;, Bi,i € S} is called mean square stabilizable if there ewists
a feedback control u(k) = L,xyx(k) such that the resulting closed loop system

z(k+1)= (Ar‘(k) + BT(")L?‘(H) :I‘-(’\?)
is stochastically stable.

DEFINITION 2.3 Consider matrices C;, i € S of size n x l. The system
z(k+1) = Ayyz(k)
y(k) = CT-(J.-)il-'{k)

or alternatively {C;, A;,i € S} is called mean square detectable if there ewist
matrices H;, i € S such that for any initial conditions (ig, xo) we have

lim E|z(N)]* =0,

where z(k) is given by

2(k+1) = (Ary + Crny Hrry) 2(K).

3. Characterization of a class of optimal controls

The control given by (6) is not a unique optimal control for the problem (1),
(3). The next theorem describes a large class of controls that are optimal for
this problem.

THEOREM 3.1 Suppose that {A4;, B;,i € S} is mean square stabilizable and
{V@:, Ai,i € S} is mean square detectable. Let Gi(k), k = 0,1, ... be a se-
quence of random n x n matrices such that G;(k) is Fi.-measurable, there exists
a constant ¢ such that

IG:(R)]| < ¢ (18)
and

lim Gi(k)=G;, 1€ S a.s. (19)

k—o0

where G; are given by (5). Moreover, for each i € S letv; (k), k=0,1, ... be a
sequence of independent n dimensional random variables such that v; (k), r(k)
and w(k) are mutually independent and

Evi(k)=0,i€ 5, k=0,1,... (20)
and

lim E|lv; K| =0, i€S. (21)
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Then the control given by
u(k) = =Gy (K)a (k) + vy (F) (22)
is optimal for problem (1), (3).
Proof. Define a random variable
Ek+1) = (Qryz(k),z(k)) + (Royu(k), u(k))
+ (Trry(k + 1), z(k + 1)) - (R-(k}*(;"):ir(k» ;
where
Tot) = ) Prit) P
jes
Using (1) and (4) we obtain
E(k +1) = ((Qr(k) + Gray () Rygiy Griny (K)
+Lr(L}(k)Tr(L)Lr(L)U\) Prxy)x(k), 2(k))
+ = 2(Re(iyvr(iy (), Griry (k) (K))
+2(Tr () (Brikyvr(ry (k) +w(k + 1)) , Lyry (k) (k))
+ (Rr(kyvr(r) (k) vrry (K))
+ (Tr(k) (B,.(k}‘u,.(k)(k) + w(k + ].)) y B,—(k)'b‘r[k)(k) + T.U(k + l))
(23)

where

L,y (k) = Arxy = Brii)Grir) (k).

Now we will analyze each term in the above sum separately to show that

Jim —E E Ek+1) = w(i)pitr (P (24)

i€S jes
From (4) we have
P,=Qi+L{TL;+GiRG;, i € S,
where
L; = A; — BiG,
and G, is given by (5). Therefore
Qr(x) +Gf}k} (K)Rr(r)Griry (k) +Lr(a)( )Ty Lriy (K) = Prry =
Gty (B) Ry Gy (k) + Loy (B) T iy Loy (k) +
U AR (DO RN, .. N TN . o
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Now (19) implies that
klim Li(k)=L;, 1€ § as.

and consequently

Jim (Qi + G (k)R:Gi(k) + LY (k)T;Li(k) = P;) =0, i € S as.
and
kIEEe (Qr(k) + G?:(;.-) (k)R-r(k}Gr[k)(k) - Lzﬂ(:.-)(k)ﬁ{k}f»u-(m(k) - Pr{k)) =0

a.S.

Moreover assumptions (18) and (19) guarantee, that there exists constant ¢
such that

|Qr(k} + G;-r(k)(k)Rr{k)Gr(k)(k} + L?}H(k)TT(HL,(U(L) ot .P._..(MH <

(25)
and
Jim (| Qe + Gy (KR Gy () + LTy (6) Tty Ly (K) = Prgy | = 0.

(26)

Lemma 2.3 with A,x)(k) = Ly (k), and f(k) = Brgyvrm (k) + w(k + 1)
together with (2) and (21) show that there exists constant ¢y such that

N-1
1
SE Y eI <. (27)
k=0
Finally using (25), (26) and (27) we obtain

N—1
. ] [ |
m B g ((Qr(k) + Gy (F) Ry iy Gr iy (R)+

LTy ()T gy Loy () — P,.(k)) :u{k),.t(k)) = 0. (28)

Frem definition of v,(x) and properties of w(k) we obtain
E (Rr'{k}vr(k)(k)'crfk) (‘l'—)"l(k)) =0, (29)
E(Tyx) (Br(syvrry (k) + w(k + 1)), Ly (k)ax(k)) = 0 (30)

and

N-1
1
o ;z—% (ReiyUr(r (K), vr(ry (K)) = 0.
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Finally

E(T,,(k) (B,,(“U,“\}(I.)+w +1 ) Br(A)Urtk U-) 1L’(k+1)>=
E (T (k) Br(kyUr(k) (K)y Br(ry vriry (R)) + E (Tpeyw(k + 1), w(k + 1))

and since

N-1
. ]|
1\11—%0 N ZO (Tr{k}Br(k)Ur(k)(k)rBr(k}vr(k)(k)) =0
and
N-1
Jim Z E(Tw(k +1),w(k+1)) =Y > w(i)pytr (P))
e —o i€S JES
we have
N-1
ll‘rl‘l —E Z E <TT(}~) ( T(“b‘r“‘:)(}i‘) =+ w(k i 1)] \Br(k]l’r{k}(;‘:) + w(k + 1)>
k=0
=3 w(i)pitr (Py). (31)
i€S jES

When we combine (28), (29), (30) and (3.), we obtain (24). Whence, by the
definition of £(k) we conclude that

N-1

*EZ[(Qr(m(k ), 2(k)) + (Royu(k), u(k))] =

N-1 N-1
- TE D &k+1) I]V > {Prwya k), a(k)) — (Trwya(k + 1), 2(k +1))] =
k=0 k=0

2|'-'
MZ

E(k + 1) + — E [(P,.(g).l" 1(0)) < (N = 1).‘1.‘(N) T N))]

k=0

; N

NE [(Prwyz(k), z(k)) — (Trp—nyz(k), x(k))] =
k=1

§ R 1

-ﬁE Ek+1)+ EE [{Pr(0)2(0),2(0)) — (Trn—1)x(N),z(N))] +
k=0

;N1

_A_’E [((Prky — Tr(e-1y) (k) z(K))] - (32)

=
|

-1
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Now observe that (27) implies that

1 :
Jim B [(Pr0)2(0),2(0)) = (T -na(N),2(N)] = 0, (33)
moreover, Tyx—1) = E (Py|r(k — 1)) and therefore E (Pyz) — Tyr-1)) = 0.
Furthermore, random variables P,z — T(5—1) and z(k) are independent given
r(k —1), so that
N-1
E Y [(Prry = Toge—ny) k), 2(k))] = 0. (34)
k=1
Finally, combining (33) and (34) with (32) gives (24). This leads directly to
the conclusion of the theorem, because the right hand side of (24) is, according
to Theorem 1.1, equal to the minimal value of the cost functional, whereas the

lert. hand side is equal to the value of the cost functional corresponding to the
control given by (22). |

4, Parameter estimation

In this section we briefly describe the weighted least-squares (WLS) algorithm.
Consider the following linear regression model

y(k+1) = 0"p(k) +w(k +1), (35)

where # is an unknown parameter matrix , y(k) and (k) are the observation
and the regressor and w(k) is the noise with the properties described in the
Introduction.

Fix 6 > 0,0 < a < 1, and matrix #(0) of the same size as 6. Define Py = al,

1
k) =P O, elk) = —7——,
=7 i|+Z|i¢{ o A

b pe PRI (k) P(R)
PEHD=P0) =~ o P
P(k)o(k)
@ (k) P(k)p(k)

With this notation the recursive WLS algorithm has the following form (see
Guo, 1991, for details)

O(k + 1) = 6(k) + L(k) (y(k + 1) — ' (k) (k)) .

The proof of the next theorem may be found in Guo (1996).
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THEOREM 4.1 The WLS algorithmn has the following properties:
1. T e/ (k) (0(K) = ) = 0 (g (k) +0(1)

2. 8(k) converges almost surely to a finite random variable 8 (not necessarily
equal to ).

Now we show how the WLS algorithm can be used to estimate coefficients
A; and B; of (1).
For each i € S we define the stopping times (7;(k)),cy by the following
recurrent formula
(1) =min{{>0:r () =1}, ri(k+1) =min{l > (k) : r (I) =1} (36)

and denote

I T (1 — | 2 (k)
Hf i [ A& Br ]' LP@(M = [ 1 (Ti(kn ] . (37]
Then, (1) can be rewritten in the form of (35) as
a(ri(k) + 1) = Gpi(k) + w(ri(k) + 1) (38)

and using the WLS algorithm we can for each 7« € S construct a sequence
oi(k) = [ Ai(k) Bik) |

which will be called the WLS estimator of 8] = [ A, B; ] . Observe that the
assumption about ergodicity of r(k) implies that the sequence is infinite.
Next theorem gives sufficient conditions for #;(k) to be strongly consistent.
he proof follows immediately from Lemma 3 of Guo and Chen (1991).

THEOREM 4.2 For each i € S let T; (k), k =0,1, ..., be a sequence of indepen-
dent n dimensional random variables such that T; (k) is independent of (k) as
well as of w(k),

Ev; (k) =0,E0; (k)v; (k) =1, 1€ S, k=0,1,...
and put

o (k)

o (k) = 22

where £ € (0.1/8n). Consider system (1) with the control law:

u(k) = =Gy (F)a(k) +vpy (k)
Assume that the control is such that

q(k)y = O(k), (39)
for certain i € S (q(k) depends on i thought (38)). Then the cstimator 8;(k) is
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5. Adaptive control

The objective of this section is to construct certain adaptive control sequence
and to show that it satisfies assumption of Theorem 3.1 and therefore by this
theorem it is optimal.

Let us make the following assumption

(A) Suppose that for each i € S a compact set Z; of pairs (A, B) of matrices is
known and the sets are such that (4;, B;) € Z; and for each choice of (A;, B;) €
Ei, systems {4;,B;,1 € S} and {V/Q;, 4;,i € S} are stochastically stabilizable
and stochastically detectable, respectively.

The meaning of the assumption is that we know the parameters of the sys-
tem with certain accuracy. If the original system is stochastically stabilizable
and stochastically detectable then it is always possible to find a neighborhood
(Zi);cs of the true parameters such that the assumption (A) is satisfied (see,
Czornik, Nawrat, Swierniak, 2002). In the construction of the adaptive con-
trol we need this assumption to guarantee that the trajectory of the system is
bounded.

Under assumption (A) for each choice of (Z;,B}) € Z; there exists a matrix
G, such that the system {4; — B;G;,1 € S} is stable.

For (k) = [ Ai(k) Bi(k) ] € Z; denote by G;(k) the matrix given by (5)
with (4;, B;) replaced by (4;(k), Bi(k)).
Now the adaptive control is defined by
=Gy ()2 (k) + vy () i [ Ai(ri(k) Bi(m(k) | €=
u(k) = for alli e § (40)
~Grkyx(k) + vk (K) in opposite case
where the random variables v; (k) are defined in Theorem 4.2

THEOREM 5.1 Under assumption (A) the adaptive control given by (40) is op-
timal for system (1) with cost functional (3).

In the proof of this theorem we will need the following two lemmas.

LEMMA 5.1 (Czornik, Swierniak, 2002) Suppose that { A;, Bi,i € S} is stochas-
tically stabilizable and {\/Q;, A;,i € S} is stochastically detectable. Let the se-
quence (A;(k), B;(k)), such that for eachi € S

A; = lim A;(k), B; = lim B;(k),
k—roo k—o0
Then there exists ko such that for all k > ko the coupled Riccati equation
P(k) = Qi + (Ai(k) — Bi(k)Gi(k))" (Z pz'jpj(k)) (Ai(k) = Bi(k)Gi(k))

jES
+Gi(k)RiGi(k),

1
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where

=1
Gilk) = (R,- + BT (k) (Zp‘-j&(ky) Bi(k)) BT (k) (Zpijpj(k)) Ai(h)

JES j€S
has a unique positive semidefinite solution and
len;lo Pi(k)=P;, 1 €8S,
where P; is the solutions of (4).

LEMMA 5.2 Suppose that for certain control u the solution of (1) satisfies the
following condition

k

> (IlOI + Il@I) = oK), (41)

i=1

then for each i € S we have

> (e I + lu(m@I) = OG). (42)

I=1

Proof. Fix 1 € S. From the assumption about (k) we know that the limit

dm (43)

exists and is greater than 0. We have

Y (le@I + 1@I?) S (@I + @®I7) /6
(k) B (k) -
Sy (IO + llu(O)I) /&
Ti(k)/k .

From the assumption (41) we know that the left hand side of the last inequal-
ity is bounded and (43) implies that the denominator in the right hand side is
bounded, therefore (42) follows. [}

Proof of Theorem 5.1 From the point 2 of Theorem 4.1 we know that for each
i € S the sequence [ Ai(k) Bik) ] converges. Denote by 8, = [ 4; B, |
the limit. First, we show that 8; € Z; for all i € S. Suppose that

iy

6‘50 Eiﬂ (44}
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for certain ip € S. Then, according to (40) the control is

u(k) = =Gy (k) + vy (k) . (45)

From the assumption about G; and Lemma 2.4 we conclude that
k

S (Ile@I? + @) = 0(k)

=1
and by Lemma 5.2 assumption (39) is satisfied and therefore @fu = 64,, by
Theorem 4.2. This is a contradiction to (44). Now rewrite the model (38) as

& (ri(k) + 1) = Tpi(k) + w(ri(k) + 1) + ai(ri(k)), (46)

where

!

ai(ri(k)) = (6: = 8:) pi(k) = (8: — 8i(K))" @ilk) + (6i (k) = 8)" ulk).

By Theorem 4.1 we conclude that
Znat (r (kDI = o(q(k)) + O(1). (47)

Since we know that 8; € Z; for all i € S then the control (40) is defined by
u(k) = =Gy (K)a(k) + veey (K)

for sufficiently large k, and therefore (46) takes the following form
z (ri(k) + 1) = (4; = BiGi(1i(k))) z (1:(k)) + w(ri(k) + 1) + aq(7:(k)).

By Lemma 5.1 and Theorem 1.1 we know that A; — B;G;(k) converges to a
cortain matrix A; and the system {AHI' (i€ S} is MSS. Now by Lemma 2.4 and
(47) we get

k
ZII:l (D) = O(k) + o (a(k))

which in light of (45) implies

k
> (IO + lu(r@)IF) = O) + o (g(k))
I=1

and consequently
a(k) = O(k).

The last equality shows that assumptions (39) of Theorem 4.2 are satisfied and
therefore #;, = 6;,. Finally, the conclusion of the theorem follows from Theorem

3.1 [ |
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6. Conclusions

In this paper the adaptive control problem for jump linear system with quadratic
cost functional on infinite time interval is solved. The assumptions are that we
know certain closed subset of parameters such that the true parameters belong
to the set and there is a feedback that stabilizes all systems with coefficients in
this set. Moreover, we assume that the state of the Markov chain is perfectly
known. Regarding the first of these assumption it seems that it is justified in
real-word situation when parameters, although not completely known, are still
supposed to be given with some accuracy. As we mentioned, the second as-
sumption could be justified using the sensitivity analysis proposed in Czornik,
Nawrat, Swierniak (2002). The assumption about the common stabilizing feed-
back can be replaced by the stability of the open loop system. In this case in
the definition (40) of adaptive control there should be G, = 0. The proof
of optimality remains the same. Under such assumption one of the first results
about standard adaptive LQ control have been obtained (see Chen, Guo, 1986).
This assumption is very restrictive and its removal is the biggest challenge for
further research. Also the perfect observation of the state of the Markov chain is
doubtful and in further research it should be replaced by the partial observation
of the Markov chain. In overcoming this difficulty the results of from Dufour
and Elliott (1998) seem to be promising.
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