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1. Introduction 

Motivated by the seminal theorem of Kharitonov on robust stability of interval 
polynomials (Kharitonov, 1978, 1979), a number of papers on robustness anal
ysis of uncertain systems have been published in t he past few years, see Hollot 
and Tempo (1994), Bartlett eta!. (1988), Fu and Barmish (1989), Wang (1995, 
2003), Wang and Huang (1994, 1994), Barmish et al. (1992) , Chapellat et al. 
(1991), Ackermann (1991, 1992), Dasgupta (1988), Rantzer (1992), Wang et 
al. (2003), Yu and Wang (2001), Wang and Ackermann (2003). Kharitonov's 
theorem states that the Hurwitz stability of the real (or complex) interval poly
nomial family can be guaranteed by the Hurwitz stability of four (or eight ) 

1 Supported by National Natural Science Foundation of China (10372002) , Nat ion al I<ey 
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prescribed critical vertex polynomials in this family. This result is significant 
since it reduces checking stability of infinitely many polynomials to checking 
stability of finitely many polynomials, and the number of critical vertex polyno
rr. ials need to be checked is independent of the order of the polynomial family. 
An important extension of Kharitonov 's theorem is the edge theorem discov
ered by Bartlett , Hollot and Huang (1998). The edge theorem states that the 
stability of a polytope of polynomials can be guaranteed by the stability of its 
one-dimensional exposed edge polynomials. The significance of the edge theo
rem is that it allows some (affine) dependency among polynomial coeffi cients, 
and applies to more general st ability regions , e.g., uni t circle, left sector , shifted 
half plane, hyperbola region, etc. When the dependency among polynomial co
efficients is nonlinear, however, Ackermann shows that checking a subset of a 
polynomial family generally can not guarantee the stability of the entire family, 
see Ackermann (1991 , 1992). 

In t his paper , we consider a class of complex polynomial fami lies with non
li 'lear coefficient dependency. Based on our previous results , we will establish 
some Kharitonov-like robust stability criteria, i.e., the entire family is stable 
if and only if some critical vertices in this family are stable, and the number 
of critical vertices is independent of the order of the polynomial family. We 
will then extend our results to the polynomial matrix case and non-interval D
stability case. Applications of these results in testing strict positive realness of 
interval transfer function family are also presented. 

2. Main results 

A polynomial p(s) is said to be Hurwitz st able, denoted by p(s) E H , if all its 
roots lie within the open left half of the complex plane C . A polynomial family 
P is said to be Hurwitz stable, denoted by P C H , if all polynomials in P are 
Hurwitz stable. 

Consider the n-th order real interval polynomial family 

f = { p(s) l p(s) = tqisi, qi E [qi , qtJ, i =0,1, .. ·,n} 
t =O 

and define the four Kharitonov polynomials of r as 

(1) 

(2) 

(3) 

(4) 

(5) 

L EMMA 2.1 (Kharitonov's Theorem for Real Polynomials, Kharitonov, 1978) 

(6) 
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Consider the n-th order complex interval polynomial family 

n 

[). = { o(s) I b(s) = :2)a; + j (J; )si , a; E [a;' atJ' 
i=O 

(3; E [f3i , f3T ] , i = 0, 1, .. · , n} (7) 

and define the eight Kharitonov polynomials of [). as 

K{(s) = (a0 + j (30 ) +(a!+ j (Ji)s +(at+ j f3t )s2 +(at+ j f33 )s3 

+(a4 + j f34 )s4 + (a5 + j f3t )s5 +... (8) 

KI(s) = (a0 + jf36) +(a{+ jf3t)s +(at+ jf32)s2 + (a3 + j f33 )s3 

+(a4 + jf3t)s4 +(at+ jf3t)s5 + · · · (9) 

Ki(s) =(at+ j(30) +(a!+ jf31)s +(a:; + jf3t)s2 +(at+ jf3i)s3 

+(at+ j(3,j)s4 + (a5 + jf35)s5 + · · · (10) 

K;t(s) =(at+ jf36) +(a{+ j f31)s +(a:; + j f32 )s2 + (a3 + j f3i )s3 

+(at+ j f3;t)s4 +(at+ j f35 )s5 + · · · (11) 

K1 (s) = (a0 + j(30 ) +(a{+ j f3 1)s +(at+ j(3t)s2 + (a3 + j f3i )s3 

+(a4 + jf34)s4 +(at+ jf35)s5 + · · · (12) 

K:; (s) = (a0 + jfJt) +(a!+ jf31)s +(at+ jf32)s2 +(at + j(3t)s3 

+(a4 + jf3t)s4 + (a5 + jf35)s5 + · · · (13) 

K3(s) =(at + j(30 ) +(a{+ j (Ji)s +(a:;+ j (3t)s2 + (a3 + j f33 )s3 

+(at+ j (3,j)s4 +(at+ j f3t)s5 + · · · (14) 

K,j(s) =(at+ jf36) +(a!+ j (J{)s +(a:; + jf32)s2 +(at+ j f33)s3 

+(at+ jf3t)s4 + (a5 + jf3t)s5 + · · · (15) 

LEMMA 2.2 (Kharitonov's Theorem for Complex Polynomials, Kharitonov, 
1979) 

[). C H {=::=} Kt(s) , KI(s) , Ki(s) , K;t(s) , K1(s) , K2(s) , 
K3(s) , K,j(s) E H. (16) 

Now consider the nu-th, nv-th order real interval polynomial families r u and 
f,. Denote their Kharitonov polynomials as Kf(s), i = 1,2,3,4 and K'j(s), 
j = 1, 2, 3, 4 respectively. 
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Similarly, consider the nu-th, nv-th order complex interval polynomial fam
ilies D-u and D-v. Denote their Kharitonov polynomials as Ktu ( s), K;-u ( s), 
'i = 1, 2,3,4 and Kt(s), Kj-v(s), j = 1, 2,3,4 respectively. 

For any function f ( x, y), define 

f ( r u l r v) = { f (Pu ( s) l Pv ( s)) I Pu ( s) E r u l Pv ( s) E r v } 

f(D.u, D-v) = {f(bu(s), bv(s)) I bu(s) E D-u, bv(s) E D-v}· 

Specifically 

r u X r v = {Pu ( s) X Pv ( s) I Pu ( s) E r u l Pv ( s) E r v} 

f u { Pu ( s) ) ( ) } r v = Pv ( s) I Pu ( s E r u l Pv s E r v . 

(17) 

(18) 

(19) 

(20) 

LEMMA 2.3 (Hollot and Tempo, 1994) For any fixed complex number z E C, 
suppose the polynomial family r u - zr v has a fixed order. Then 

fu- zfv c H ¢:::=:> Kf(s)- zK'j(s) E H, i,j = 1,2,3,4. (21) 

If the location of z is known, then the number of critical vertices needed 
to be checked can further be reduced. For example, if z is on the negative 
(or positive) real axis, then only four out of the_16 critical vertices need to be 
checked, namely, if z is negative 

fu- zfv c H ¢:::=:> Kf(s)- zKJ(s) E H, i = 1,2,3,4; (22). 

if z is on the imaginary (or real) axis, then only eight critical vertices need to be 
checked; if z is in the left (or right) half of the complex plane, then only twelve 
critical vertices need to be checked, see Hollot and Tempo (1994) , Wang (2003), 
Wang and Huang (1994), Barmish et al. (1992). 

For complex polynomials, we have the following similar result: 

LEMMA 2.4 For any fixed complex number z E C, suppose the polynomial family 
6.u - zD-v has a fixed order. Then 

D-u- zD.v C H ¢:::=:> K;u(s)- zKt(s), K;-u(s)- zKjv(s) E H, 

i,j = 1,2,3,4. (23) 

THEOREM 2.1 Consider- the polynomial family 

r m rm-1r rm-2r2 + r2rm-2 am u + am-1 u v + am-2 u v + · · · · · · a2 " v 

+a1r ur~- 1 + aor~ (24) 

where ak E R, k = 0, 1, · · ·, rn. Suppose it has a fix ed or-der. Then 

amf~ + am-1r~- 1 r v + · · · · · · + a1r ur:;'-1 + aof;;' C H ¢:::=:> 

am[Kf(s)]m + am-1[Kf(s)]m-1 K'j(s) + · · · · · · (25) 

+ a1Kf(s)[K'j(s)]m-1 + ao[Kj(s)]m E H, i,j = 1,2,3, 4. 
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Proof. Consider the polynomial 

q(z ) = amzm + arn-lZm-l + am-2 Zm-2 + · · · · · · + a2 z2 + a1z + ao. 

Let r = max{k I ak f. 0}. Then q(z) can be expressed as 

q(z ) = ar(z- zi)(z- z2) · · · · · · (z - Zr- d(z- Zr) 

where z1 , z2, · · · · · · , Zr -1 , Zr E C. Hence, we have 

amf~ + am-1r~- 1 r v + · · · · · · + a1f ur~- 1 + aof~ c H 

rm [ar (I.,_)r + ar-l (.G..)r-l + · · · · · · + a1 (r") + ao] C H v rv r,} r,J 

r~ [ar U:: - Z1 ) u~ -Z2 ) .. . ... U:: - Zr -1) (k - Zr )] c H 

{ 
r u- Zkf v c H, k = 1, 2, ...... , r- 1, r, 
r u - Zk fv c H, k = 1, 2, ...... , r - 1, rand r v c H, 

KJ:(s)- zkKj(s) E H, 
i,j = 1, 2,3, 4, k = 1,2,···, r -1 , r 

KJ:(s)- zkKj(s) E H, 
i,j = 1,2,3,4, k = 1,2, .. ·,r- 1,r 
and Kj(s) E H, j = 1, 2, 3, 4 

.;:::::> ar[Kj(s)]m - r[KJ:(s)- ZIKj(s )][KJ:(s) - z2Kj(s)]· · · 

r =m 
r < m 

1·<m 

.. · [Ki(s) - Zr-1Kj(s)][KJ:(s) - ZrKJ(s)] E H , i , j = 1, 2, 3, 4 

(
W' (s) )(K"(s) )] H ··- 1234 · · · ~ - Zr -1 ~ - Zr E , t, J - , , , 

¢::;> [KJ(s)Jm [ar (~n:lf +ar-1 (~H:lf-
1 

+· .. 

(
Ki'( s) ) ] H . · -1234 ... +a1 Kj' (s) +ao E , t,]-,,, 

.;:::::> am[KJ:(s)]m + am-dKJ:(s)]m-1 Kj(s) + · · · 
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(26) 

(27) 

(28) 

· · · + a1KJ:(s)[Kj(s)]m-1 + ao[Kj(s)]m E H, i , j = 1, 2, 3, 4. (29) 

This completes the proof. • 

From the proof of Theorem 2.1 and by Lemmas 2.2 and 2.4, we have 
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THEOREM 2.2 Consider the polynomial fam ily 

Cm.D.;;" + Crn -1D.~' - 1 Dov + Cm.-2 D.~' - 2 D.~+· ·· · ··+ c2D.~,D.~'- 2 

+ c1D.uD.~'- 1 +coD.;;' (30) 

where Ck E C, k = 0, 1, · · · , m. Suppose it has a fixed order. Then 

Cm D. ;;" + Cm-1D.;;"-1D.v + · · · · · · + c1D.u D. ~'- 1 + co D. ~' C H ¢:=? 

cm [Kt"(s)]m + cm-1[K t"(s)]m- 1 Kt(s) + · · · · · · 

+c1Kt'"(s)[Kr(s)]m-1 + c0[Kr(s) ]m E H, (31) 

Cm [Ki- u(s)]m + Cm-l[Ki-"(s)]m-l Kjv (s) + · · · · · · 

+c1Ki- "(s)[Kj-v(s)]m-l +co[Kjv (s)]m E H, i,j = 1,2,3,4. 

REMARK 2.1 We have established strong Kharitonov-like criteria for the sta
bility of a class of polynomial families with nonlinearly co7Telated perturbations. 
The number of critical polynomials that need to be checked is independent of the 
order of the polynomial family. 

EXAMPLE 2.1 Consider a negative unity feedback system with the forward path 
composed of three identical blocks in tandem. Each block consists of an interval 

plant ~~;? with negative unity feedback. Then, the characteristic polynomial of 
the closed-loop system is 

[N(s )] 3 + [N(s) + D(s )f. (32) 

By Theorem 2.1, we only need to check 16 vertex systems for the stability of 
the entire uncertain system family. Furthermore, since all the roots of 

q(z) = 2z3 + 3z2 + 3z + 1 (33) 

lie within the left half of the complex plane, only twelve out of the 16 ver tex 
systems need to be checked to verify robust stability of the entire system fami ly. 

EXAMPLE 2.2 Consider a negative unity feedback system with the forward path 
composed of a controller and an interval plant ~~;~ in tandem. The controller 

is simply a gain k, but can be switched among {k1 , k2, · · · · · · , k711 } under 
different working conditions. Thus, robust stability of the entire system family 
is tantamount to 

[k1N(s) + D(s)][k2N(s) + D(s)]· · · · · · [kmN(s) + D(s)] C H. (34) 

By Theorem 2.1 , we only need to check 16 vertex systems for the stability of 
the entire uncertain system family. Furthermore, since all the roots of 

q(z) = (k1z + 1)(k2z + 1) · · · · · · (kmz + 1) (35) 

lie on the real axis, only eight out of the 16 vertex systems need to be checked. 
Moreover, if k1 , k2 , · · · · · ·, km have the same sign , then only four out of the 16 
vertex systems need to be checked , see Hollot and Tempo (1994) , Wang (2003) , 
Wang and Huang (1004), Barmish et al. (1992). 
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3. Some extensions 

3.1. Extension to non-interval D -stability case 

Given any stability region Din the complex plane C , a polynorni al p(s) is said 
to be D-st able, denoted by p(s) E D, if all its roots lie within D. A polynomial 
family P is said to be D-stable, denoted by P C D , if all polynomials in P are 
D-stable. 

Let the uncertainty bounding set (hyperbox) be 

Q = {q = (ql, G2, .. . , Gtf I Gi E [q;· , qt ], ·i = 1, 2, -- - ,l} (:36) 

and define its one-dimensional edge set as 

{ ( T [- + QE = q = q1 , q2 , · · · , qt) lrJkE qk , q~,] forsome kE {l ,2,·· · , l} (
3
?) 

and qi E {qi- , qt} for all if k}. 

Consider the n 1-th , -n.2-th order complex polynomials 
TL I 

n(s, q) = L c;(q) si (38) 
i= O 

']1, 2 

d(s, q) = L bj(q)sj (39) 
j =O 

where the complex coefficients c; ( q) , bi ( q) are affine fun ctions of the uncer tain 
param eters q = (q1 , q2 , · · · · · · , q, f , respectively. 

In the sequel, we will suppose that De is a connected set . Note that Hurwitz 
stabili ty and Schur stabili ty are special cases of D-stabili ty. 

L EI'vl i'vi A 3.1 Fo-r any fixed complex nwn!Je-rs z01 , z02 E C, stt.ppose the polyno
Tnio.l family {zo1·n. (s, q) + zo2d(s, q) I q E Q} has a fi.red o-rder. Then 

{ Zol'n(s, q) + zo2 d(s, q) I q E Q} C D ¢:=:? 

{zo1n(s , q) + z02 cl(s , q) I q E Q d C D. 
( 40) 

Pmof. Since the coeffi cients of zo1·n.(s , q) + z02rl(s, q) are also affine functions 
of q = ( q1 , q2 , · · · · · · , q1) T, the result follows directly from the Edge T heorem, 
see Bart lett, Hollot and Huang (1988), Fu and Barmish (1989) . • 

For notational simplicity, define 

g(s , q) am[n (s, q)]'n + Clm - 1 [n.(s, q)] m- ld(s, q) 

+ O.m - 2[n.(s, q)] 711
-
2[d(s,q)] 2 + 

+ a2 [n(s , q) ]2 [d(s, q)]m - 2 + a1n(s, q)[d(s , q)]m- l 

+ ao [d(s , q)]m 

w lwrc~ n,, . r:= C . k = 0. 1. · · · · · · . rn . 

( 41) 
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THEOREM 3. 1 Consider the polynomial family 

{g(s, q) I q E Q}. ( 42) 

S·uppose it has a .fixed order. Then 

{g(s,q) I q E Q} c D ¢==> {g(s,q) I q E Qe} c D. ( 43) 

Proof. Consider the polynomial 

( ) m m- 1 m-2 + 2 q z = am z + am-1Z + am- 2Z · · · · · · + a2z + a1z + ao . (44) 

Let r = max{k I ak "I 0}. Then q(z) can be expressed as 

q(z) = ar( z - zi)(z- z2) · · · · · · (z- Zr_I) (z - Zr ) ( 45) 

where Zt , z2 , · · · · · · , Zr- 1 , Zr E C. Hence, we have 

{g( s, q) I q E Q} CD ¢==> g(s, q) ED, Vq E Q 

¢==> [d(s , q)]m { am [ ~~:::? ] m + am- 1 [ ~~:::? ] m-

1 
+ ... 

· · · + a1 [ n(s ,q ) ] 
1 

+ ao} ED Vq E Q 
d(s,q) ' 

[d( s q)]m { a [~ - z J [~ - z J · · · ' r d(s,q) 1 d(s,q) 2 

[~ ] [ n(s,q) J} D w Q · · · d(S;q} - Zr-1 d(s,q) - Zr E 1 vq E 

¢==> a,.[d(s, q)]m-r [n(s , q)- z1d(s , q)][n(s, q) - z2d(s , q)]· · · 

· · · [n(s , q) - Zr -1d(s , q)][n(s , q) - z,.d(s, q)] E D , Vq E Q 

n(s, q)- Zkd(s, q) ED, 
k = 1, 2, · · · · · ·, 7'- 1, 7', Vq E Q T= 'm 

n(s, q)- zkcl(s, q) ED, 
k = 1, 2, ...... 1 T- 1, T' Vq E Q T < '((!, 

and d(s , q) E D, Vq E Q 

n(s, q)- zk d(s , q) E D , 
k = 1, 2, . .. ... ' r - 1, T' Vq E Q E 

r = rn 

n(s, q) - zk cl(s, q) E D , 
k = 1, 2, ...... , T- 1, r' Vq E Q E r < m 
::mrl rl(c n\ e::: n 'dn e::: n, 
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{:=::::? ar[d(s, q)]m-r[n(s, q)- z1d( s, q)][n(s, q)- z2 d(s, q)]· · · 

· · · [n(s, q) - Zr- 1 d(s, q)][n(s , q) - Zrd(s , q)] E D , 'iq E Q E 

[d( )l m { [ n(s,q) ] [ n(s,q) ] S (j a -- - z1 -- - Z2 · · · ' r d(s ,q) d(s,q) 

[
n (s ,q) J [ n(s,q) ] } D \-I Q 

· · · d(s ,q) - Zr- l d( s,q) - Zr E , vq E E 

{:=::::? [d(s , q)] m { Clm [ ~~::~j ] m + o,m-1 [ ~~::~j ] m - 1 + . . . 

· · · + a1 [ ~~::~j r + ao} ED , \;fq E QE 
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{:=::::? g(s,q) ED, \;fq E QE {:=::::? {g(s,q) I q E QE} C D. (46) 

This completes t he proof. • 
REMARK 3.1 Theorem 3. 1 reveals that, for a class of polynomial family with 
nonlinearly correlated perturbations, D-stability of the entire family can be as
certained by only checking one-dimensional edge polynomials in this family. 

3.2. Extension to polynomial matrix families 

Consider the uncertain polynomial matrix 

[ 

2n(s , q) + 3d(s, q) 3n(s, q) + 4d(s , q) 0 l 
M(s , q) = 0 4n(s , q) + 5d(s , q) 2n(s, q) 1 

9d(s, q) 6n(s, q) 5n(s , q) + 6d(s , q) 

It is easy to see that 

dct[M(s, q)] = 16[n(s , q) ]3 + 176[n(s , q)Fd(s, q) 

+279n(s, q)[d(s, q)F + 90[d(s, q)] 3
. 

By Theorem 3.1 , we have 

( 4 7) 

( 48) 

{det [M (s,q)] l q E Q} c D {:=::::? {det[M (s,q) J I q E QE} c D. (49) 

Namely, robust D-stability of the entire polynomial matrix family can be ascer
tained by only checking one-dimensional edges. More generally, for any uncer
tain polynomial matrix of the form 

M( s, q) = [aij n(s , q) + (Jij d(s , q) ]nxn (50) 

it is easy to see that the above edge result also holds. Moreover, if n( s, q) , d( s, q) 
are replaced by interval polynomial families r u ' r v or .0. 1/. ' L'-. v as defined in the 
last section, then Khari tonov-like results can be established for robust Hurwitz 
stabilitv of the corresnon ling nolvnomial matrix families. 
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THEOREM 3.2 Consider the polynomial m.atr'i:r fam·ily 

(51) 

·where Ou(s) E 6.u, c5v(s) E 6. v, and rij, 1);j, 'i, j = 1,2, ... ,n nr·e comple:c n:um
ueTs . Then 

{clet[M(b',(s),ov(s))] lb,(s) E 6.", clv(s) E 6. 11 } C H <¢==> 

{clet[Af(K["(s) , Kr(s))] l ·i,J = 1, 2, 3, 4} U 

{clet[M(I\i-n(s), Kj" (s))]l i , j = 1,2,.3 ,4} C H. 

4. Some applications 

(52) 

A proper transfer function ~~:i is said to be strictly positive real, denot.ecl by 

~ E SPR if 
q( s) ' 

1) q(s) E H 

2) ~~g~\ > 0 , \fw E R. 
(53) 

Suppose p( s) , q( s) have positive leading coefficients. Then , it is easy to sec t.hat 

p( s) 2 2 
-( ) E SPR <¢:=:=> >..p (s) + (1- >..)q (s) E H , /\ E [0 , 1]. 
q s 

Now consider th proper interval transfer function family 

{ 
p,(s) } 

T = - (-) I p.,(s) E r , ' Pv(s) E r v . 
Pv S 

In order to have 

p, (s) 
- ( -) E SPR , p., (s) E f' , , Pv(s) E f' v 
Pv S 

we must have 

>..r; + (1- >..)r;, c H , >.. E [o, 1] 

(54) 

(55) 

(56) 

(57) 

s i~1 cc /\ z2 + (1- >.. ) has purely imaginary roots. l3y Theorem 2.1, we only need 
to have, sec Hollot a.nd Tempo (1994), Wang and Huan g (1994) , Barmish et al. 
(1992) 

/\ [I\f (s)] 2 + (1 - /\ )[KJ(sW E H , /\ E [0, 1] 

/\[/\~'(s)] 2 + (1- /\) [K:J(s)f E I-f,).. E [0, 1] 

/\ [ J\:~' ( s )F + (1- /\)[J(~(s)1 2 E H, /\ E [0, 11 

(58) 

(59) 

(60) 
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-\ (K~'(s)f + (1- -\)[K~(sW E H , ,\ E [0, 1] 

,\(Kf(s) ]2 + (1- -\)[K~(s)] 2 E H, ,\ E [0 , 1] 

-\[K~(sW + (1- -\)[K%(s)f E H , ,\ E [0 , 1] 

-\[K~(s)f + (1 - -\)[K~(s)] 2 E H , ,\ E [0 , 1] 

-\[K~(s)f + (1 - -\)[Kf(sW E H , ,\ E [0 , 1]. 

Equivalently 

Kt(s) IOf(s) Kf(s ) KJ'(s) 
K4(s) ' K3(s) ' Kl(s) ' K2(s) ' 

J(j(s) I\2(s) I\f(s) I\4(s) 
Kf(s) ' K4(s) ' Iq( s) ' Kl(s) 

E SPR. 
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(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

Namely, in order to guarantee that every member of the interval transfer func
t ion family T is strictly positive real, we only need to check eight specially 
selected vertex transfer functions, that is 

Pu ( S) ( ( 
-(-) E SPR, Vpu s) E f u, Vpv s) E f v 
Pv S 

K )'(s) I{'!j(s) I(J( s) Iq'(s) 
<==? K4(s) ' I<3(s) ' K]'(s) ' I(2(s) ' 

K;' ( s) K~'( s) Kf( s) K4( s) 
I<3(s) ' K4(s) ' K2(s) ' Kf(s) E 

SPR. (67) 

which is consistent with the result of Chapellat , Dahleh and Bhattacharyya 
(1991), and Wang and Huang (1991). 

Moreover , for any 1 E R, in order to have 

Pu ( S) 
I + - ( -) E S P R , Pu ( s) E f u , Pv ( s) E f v, 

Pv S 
(68) 

we must have 

,\(-yr v + f 11 ]
2 + (1 - ,\)f~ c H , ,\ E [0, 1]. (69) 

since ,\(/' + z) 2 + (1 - ,\) has roots either at first and fourth quadrants (when 
I ' < 0) or at second and third quadrants (when 1 > 0). By T heorem 2.1 , we 
only need to check twelve vertices to guarantee robust stability, see Hollot and 
Tempo (1994), Wang (2003), Wang and Huang (1994), Barmish et a!. (1992). 
N arnely, in order to guarantee that 

Pu ( S) ( ) ( ) I + - ( -) E S P R , Pu s E f v , Pv s E f v 
Pv S 

(70) 

we only need to check the same property for twelve specially selected vertex 
transfer functions. 
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REMARK 4 .1 The above result can be easily extended to the case of complex 
interval transfer function family. Namely, every member in the complex interval 
transfer function family is strictly positive real, if and only if, sixteen specially 
selected vertex transfer fun ctions in this family are strictly positive real, see 
Wang and Huang {1991). 

5. Conclusions 

Some Kharitonov-like robust Hurwitz stability. criteria have been established for 
a class of complex polynomial families with nonlinearly correlated perturbations . 
These results have been extended to the polynomial mat rix case and non-interval 
D -stability case. Applications of these results in testing of robust strict positive 
realness of real and complex interval transfer function families have also been 
presented. 
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