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Abstract: In this paper necessary and sufficient conditions (and 
criteria) for null-controllability, reachability and controllability of 
time-variant discret e-time posit ive linear systems are established. 
These propert ies appear to be entirely structural propert ies, that is, 
they do depend on the zero-nonzero pattern of the pair (A(k) , B(k) ) 
2: 0 and do not depend on the values of its entries. An interesting 
phenomenon has been revealed namely the time needed to reach 
the origin for a null-controllable system as well as the time to reach 
a (non-negative) state from the origin for a reachable system can 
be less, equal or greater than the dimension of the system. This 
phenomenon has no equivalent in the case of time-invariant discrete
time posit ive linear systems where this t ime is always less or equal 
to the system dimension. Examples are provided. 

Keywords: positive linear systems, discrete-time systems , time
variant systems, reachability and controllability, non-negative matri
ces. 

1. Introduction 

Posit ive systems are defined as systems in which the state trajectory lies entirely 
in the non-negative orthant whenever the init ial state and the inputs are non
negative. A number of models having positive linear systems behaviour can 
be found in engineering, economics, pharmacology and medicine, biology and 
other fields, see Farina and Rinaldi (2000) , Kaczorek (2002), Luenberger (1979). 
Reachability and controllability are fundamental properties of the system with 
direct implications in a number of control problems. While the reachabili ty and 
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controllability properties of time-invariant discrete-time positive linear systems 
have been well studied during the last decade and a variety of criteria in both 
algebraic and digraph forms (Bru et al., 2003; Caccetta and Rumchev, 2000; 
Rumchev and James, 1998; Rumchev, 2003) for recognising these important 
properties have been developed, there is not much work clone for time-variant 
positive linear systems except, possibly, Kaczorek (2001), where the author 
considers reachability of time-variant continuous-time positive linear systems 
and obtains sufficient type conditions for reachability. In this paper we study 
null-controllability, reachability and controllability properties of time-variant 
discrete-time positive linear systems. Our motivation to consider this problem is 
twofold. We are interested in examining the problem in the course of developing 
a system theory for positive systems. At the same time such models naturally 
arise in some inventory and production systems. 

2. Preliminaries 

Consider the positive time-varying linear discrete time system, Kaczorek (2002), 

x(k + 1) = A(k)x (k) + B(k)u(k), k = ko, ko + 1, ko + 2, ... 

A(k) E R~xn, B(k) E R~xm, u(k) E R~, 

(1) 

(2) 

where x(k) is state of the system at time k, u(k) is the control vector sequence 
and for each pair of positive integers (T, s) the symbol R~xs denotes the set of 
all T x s real matrices (vectors) with non-negative entries a;2 ( k) 2: 0 for all k. 

The reachability matrix of the pair (A(k), B(k)) 2: 0 (and the system (1)-(2) 
is defined as 

~(k, ko) = 
[ B(k- 1) A(k- 1)B(k- 2) . . . A(k- 1)A(k- 2) · · · A(ko + 1)B(ko) ] , 
k > ko, 

~(ko, ko) =I. (3) 

The reachability matrix ~(k, k0 ) is clearly a non-negative matrix for k > k0 , 

i.e. ~(k, k0 ) 2: 0. By introducing the reachability matrix the state x(k) can be 
represented as · 

x(k) = cf! (k, ko )x( ko) + ~( k, k0 )u(k), (4) 

where the transition matrix cf!(k, k0 ) is given by 

cf!(k, ko) = A(k- 1)A(k- 2) ... A(ko + 1)A(ko) fork> ko, cf!(k0 , ko) =I 

(5) 

and u(k) = [uT(k -1), · · · ,uT(ko + 1),u(k0 )]T is the expanded control vector. 
The positive system (1)-(2) (and the nonnegative pair (A(k), B(k)) 2: 0) is 

said to be. Rumc:hev and .Tames (1 qRg). 
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a) Teachable (or contmllable-from-the-o7·igin) if fo r any state .1:: E R'j_, :c =I 0, 
and some fini te k t here exists a non-negative control sequence {H(s), s = 
ko, ko + 1, k0 + 2, ... , k - 1} that transfers the system from the origin to 
the state x = x(k); 

b) null-contTollable (or controllable- to -the- oTigin) if for any state :r E R 'j_ 
and some finite k there exists a non-negative control sequence {v.(s), s = 
ko , ko + 1, ko + 2, . . . , k - 1} that transfers the system from the state 
:r = x(ko) to the origin x( k) = 0; 

c) contmllable if for any non-negative pair (x0 , x) E R 'j_ and some finite k 
t here exists a non-negative control sequence { H( s), s = k0 , k0 + 1, k0 + 
2, . .. , k - 1} that transfers the systern from the state x 0 = x(ko) to the 
state x = x(k). 

A column vector with exactly one non-zero entry is called monom.1:al. The 
product of a non-singular diagonal matrix and a permutation matrix is called 
monomial matrix. A monomial matrix consists of linearly independent mono
mial columns. A monomial vector is called i-monomial if the non-zero entry 
is in t he i-th position . All monomial matrices (vectors) in this paper are non
negative. An n x n matrix A is called nil-potent if A 5 = 0 for some s :::; n but 
Ak =I 0 fork < s. The integer .s is called the index of nil-potency of t he matrix 
A. 

The following result is proved in Coxson , Larson and Schneider (1987), see 
also Caccetta and Rumcher (2000). 

L EMMA 2. 1 Let A be ann x n non-negative matrix and b be ann x 1 non-negative 
column vector. If there is an i -monomial in the sequence {A k b, k = n, n + 1, . .. }, 
t.1en there is an i-monomial in the sequence { Akb, k = 0, 1, ... , n- 1} . 

Lemma 2.1 simply tells us (Caccetta and Rumchev, 2000) that all monomial 
columns in the reachability matrix Rk fork > n of a time- invariant discrete-time 
positive linear system (with scalar as well as with vector control sequences) are 
in the reachability matrix Rn· 

Let D(A) be the digraph of ann x n non-negative matrix A construCted as 
fo llows: the set of vertices of D(A) is denoted as N = {1 , 2, ... , n} and there 
is an arc (i,j) in D (A) if and only if a ij > 0; the set of arcs is denoted by 
U. A walk in D (A) is an alternating sequence of vertices and arcs of D , i. e. 
{:1, h , i2), i2 , .. . , (i~,;, ik + 1) , ik + 1} . A walk is called closed if i1 = ik+l and 
spanning if it passes through all the vertices of D(A). A walk is said to be a 
path if all of its vertices are distinct and a cycle if it is a closed path. The path 
length is defined to be equal to the number of arcs in the path . A cycle of length 
one is called a loop. 

One way to associate a matrix with digraph is by the use of adjacency matrix 
A. The entries of the adjacency matrix A are defined as 

_ .. _ { 1 if ( i, j) E D (A) , 
a,J - 0 if (i,j ) ~ D(A). 



88 V. RUMCHEV, J. ADEANE 

The matrix A is a binary matrix. It is clear that A 2: 0 and D (A) ::= D (A), 
where A is any non-negative matrix having the same zero-nonzero pattern as 
A. 

Let D1 ::= { N1 , U1} and D2 ::= { N2, U2} be two digraphs. The operation 
union D1 u D2 produces t he digraph {N1 U N2, U1 u U2} . Thus, if the vertex 
sets are the same, then the union of two digraphs is just the superposition of 
their arcs. Given m n x n nonnegative matrices A1 , A2 , ... , Am, we define a 
joint digraph D( A 1 , A2 , ... , Am) as D(A1 ) UD(A2 ) U . .. UD(Am) in which each 
arc is labelled (coloured) with a subset of { 1, 2, ... , m} depending upon which 
of the digraphs D(AI), D(A2), ... , D(Am) includes that arc . The digraph of 
the product of m n x ·n nonnegative matrices A1, A2, ... , Am is denoted as 
D(A1A2 ... Am)· 

L EMrviA 2.2 (Br'U and Johnson, 1993) 
Th ere is an arc from ito j in D(A 1 A2 .. . Am) if and only if there is a path of 
length m from ·i to j in the joint graph D (A 1, A2 , ... , Am. ) coloured 1, 2, ... , m , 
in that order. 

Proof. The matrices As 2: 0, s ::= 1, 2, ... , m. Thus, there is an arc ( i, j) E 
D(A1A2 ... Am) if and only if there are arcs (i, si) E D(AI), (s 1 , s 2 ) E D(A2 ), 

... , (sm - l ,sm) E D(Am)· These arcs are coloured in the order 1,2 , ... ,7?1 in 
the joint graph D(A 1 , A2 , .. . , Am)· • 

The inverse of Lemma 2.2 also holds true: 

L EMMA 2 .3 There is no arc fmm i to j in D(A 1 A2 ... Am.) if and only if there 
is no path of length m from i to j in the joint graph D ( A1 , A2 , .. . , Am) colo'Ured 
1, 2, . .. , m, in that order. 

3. Main results 

3.1. Null-controllability 

THEOREM 3.1 Th e positive system ( 1 )- (2) is null-controllable if and only if 
there exists a finite times 2: k0 S'Uch that the tr-ansition matrix <I>(s, k0 ) ::= 0. 

Proof Since t he system is positive t he control sequence does not contribute to 
reaching t he origin so the if part of the proof readily follows from ( 4). To prove 
the only if part assume that null-controllability of the system (1)-(2) does not 
imply <I> (s, ko) ::= [<P;j(s, k0 )] ::= 0, that is, there exists a finite times 2: ko such 
that <I>( s, ko)x ::= 0 for every x 2: 0 but <I> (s, ko) -:/= 0. Without loss of generality 
take ¢,.1J(s, k0 ) > 0, </J;j(s, k0 ) ::= 0 for i -:/= 1· and j -:/= p, and x = ep . Then 
[<I>( s, ko)x] ,. > 0. A contradiction. The theorem is proved . • 

R EMARK 3.1 Th e transitivity pmperty of the tr-ansition matT'ix implies that the 
system (1) -(2) is null-controllable for any j and s, k0 :::; j < s S'Uch that 
<I>(s , j) ::= 0. 
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EXAMPLE 3.1 Consider the system (1)-(2) with a system matrix given by 

(~)A: l 
~ 'k =0, 1,2, .. 

{ 
1, i = j 

where bij = 0 i i- .i i.e. the Kronecker 6. 

It is easy to see that 

A(1)A(O) i- [OJ and A(2)A(1)A(O) i- [OJ 

btd 

A(3)A(2)A(1)A(O) = 

[ 
0 6

1

4 i l [ 0 1

1

6 t l [ 0 * ~ l [ 0 1 1 l [ 0 0 0 ] ' 003 1 0 2 101 000 = 000 
000 000 000 000 000 

so the system is null-contr·ollable in four steps while the dimension of the systPm 
is three. 

THEOREM 3.2 The system (1)-(2) is null- controllable if and only if for some 
.finite s 2 k0 there exists no path of length ( s- k0) in the joint diagraph D (A ( s-
1) , ... , A(k0)) coloured with 1, 2, ... , (s - k0) in the order of the matrices 1:n the 
product from the left to the right. 

P-roof. Let the system (1)-(2) be null-controllable. Then , from Theorem 3.1, 
with necessity <I>(s, ko) = 0 for some finites 2 k0 and, therefore , t here is no arc 
between any two vertices in the digraph D(<I> (s,k0 )). This implies, according to 
L\~mma 2.3, that t here is no path of length (s- k0) in the joint graph D(A(s -
1) , ... , A(ko)) coloured 1, 2, . .. , (s-k0) in order. The only if part is thus proved. 

Assume now that there is no path of length (s-k0) in the joint graph D(A(s-
1) , ... ,A(k0)) coloured 1,2, ... ,(s - k0) in order. Then, by Lemma 2.3, there 
is no arc between any two vertices in D(A(s - 1) ... A(k0)), which corresponds 
to all the entries of the transition matrix <I>(s, k0 ) = A(s - 1) .. . A(k0) being 
zero. Since <I>(s, k0 ) = 0, according to Theorem 3.1, the system (1)-(2) is null
controllable. • 

ExAMPLE 3. 2 Consider the positive system with 

[ 

0 ( ~) k k2 l 
A(k) = 0 0 k + 2 2 0, k = 1, 2, ... 

0 k2 - k 0 

Th e transition matrix <1>(3 , 0) = A(2)A(1)A(O) = 0, so by Th eorem 3. 1 the 
positive system is null-controllable in three steps. 
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3 

Figure 1. 

The joint digraph D(A(2) , A(1) , A(O)) coloured in order 1, 2, 3 that is A(2) , 
A(1), A(O), respectively, is given in Fig. 1. There does not exist a path of length 
three from any vertex coloured with 1, 2, 3 in order in the above joint digraph. 
Therefore, by Theorem 3.2 the system is null-controllable in t hree steps. 

Since A(k) 2': 0 and <I>(k, k0 ) = A(k- 1)A(k- 2) . .. A(k0 ), k0 :S k, Theorem 
3.1 and Theorem 3.2 tell us that null-controllability of the system (1)-(2) is 
an entirely structural property. It depends on the zero-nonzero patterns of 
the system matrix A(k), k 2': k0 , and does not depend on the values of its 
entries. The time needed to reach the origin can be less, equal or greater than 
the dimension of the system. This phenomenon has no equivalent in the case 
of time-invariant positive linear systems where the time of reaching the origin 
is always less or equal to the dimension of the system, Caccetta and Rumchev 
(2000). It is important for many reasons to determine the classes of time-variant 
discrete-time positive linear systems that are null-controllable and the time of 
reaching the origin is less or at most equal to the dimension of the system. 
Theorems 3.3 and 3.4 below define such classes of systems. 

THEOREM 3.3 Let the adjacency matrix A(k) =A 2': 0 be a constant matrix for 
k0 + j :S k < k0 + j +n. and let A be a nil-potent matrix. Then the positive system 
(1}-(2} is null-controllable and the time k of r-eaching the or-igin ·is k < k0 +j+n. 
In particular, if j = 0 the origin is reachable in k - k~ :S n steps. 

Proof. The zero-nonzero pattern of the transition matrix <I>(k , k0 ) depends on 
the zero-nonzero patterns of A( k), k 2': k0 , only so that the adjacency matrix of 
<J>(ko + j + n, ko) is given by 

<i>(ko + j + n, ko) = <i>(ko + j + n, ko + j)<i>(ko + j, ko). 

Let now A(k) = A for k0 + j :S k < k0 + j + n and A be a nil-potent matrix, 
i.e. Jin = 0. Then 

<i> (ko + j + n, ko) = Jin<i>(ko + j, ko) = 0, 

so the system (1)-(2) is null-controllable by Theorem 3.1. For j = 0 

<i> (ko + n, ko) = Jl. n<i>(ko, ko) = A71 I = 0, 
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and the origin is reachable in s :::; n steps, where s = k - k0 is the index of 
nil-potency of the adjacency matrix A and k is the time of reaching the origin. 
This completes the proof. • 

THEOREM 3.4 Let A(k) ;::: 0 be a nil-potent matrix for k= 0, 1, 2, .. . , n- 1 and 
let A(k) :::; A(k + 1) for at least k = 0, 1, 2, ... , n- 2. Then the positive system 
(1)-(2) is null-controllable and the origin can be reached ins :::; n steps. 

Proof. Since A(n- 1) is nil-potent, An(n- 1) = 0 and therefore there are no 
arcs between any two vertices in the digi·aph D (An ( n- 1) ). Consequently, there 
is no path of length n in the joint digraph D (A ( n - 1) , ... , A ( n - 1)) coloured 
in order 1, 2, ... , n. By hypothesis aij(k) :::; aij(k + 1) fori , j = 1, ... , n and 
k = 0, 1, 2, ... , 7~- 2, so that the joint digraph D(A (n -1) , ... ,A(1) , A(O)) 
contains only the arcs (i, j) E D(A(n- 1) , ... , A(n- 1)), but coloured in order 
1,2, ... ,s(i,j) with s(i,j):::; n. This means that there is no path of length n 
in D(A(n- 1), ... , A(1) , A(O)) coloured in order 1, 2, .. . , n, since there is no 
path of length n in D(A(n- 1) , ... , A(n- 1)) coloured in the same order . If 
there is no path of length n in the joint digraph D(A(n- 1), ... , A(1), A(O)) 
coloured in order 1, 2, ... , n, then by Lemma 2.3 there are no edges between any 
two vertices in D(A(n - 1) , ... , A(1) , A(O)) and hence <I>(n , 0) = 0. The system 
(l)-(2) is null-controllable. • 

3 ,2. Reachability 

THEOREM 3.5 The non-negative pair (A(k), b(k)) ;::: 0 (and the system (1)-(2)) 
is reachable if and only if, for some finite s, the r·eachability matrix ~( s, ko) 
contains ann x n monomial submatrix M , i.e . M ~ ~(s , k0 ). 

Proof. Considering the if part of the theorem assume that M ~ ~(s , ko) ;::: 0 
for some finite s. Set all the controls that do not correspond to the columns of 
Iv! equal to zero. Then, from (4) for x(k0 ) = 0, 

n 

x (s) = L ajej with aj 2: 0 for a ll j = 1, 2, ... , n, 
j=l 

(6) 

where ej are the basis unit vectors and aj are scalar multiples of the controls 
corresponding to the respective monomial column of M. The non-negative 
linear combination (6) represents the non-negative orthant (a polyhedral cone). 
Therefore, for every x = x(s) ;::: 0 it is always possible to find a non-negative 
control sequence that transfers the system from the origin into the state x. The 
system (1)-(2) is reachable. 

To prove the only if part assume that the system (1)-(2) is reachable for 
some finites but the reachability matrix ~(s , k0 ) does not contain a monomial 
submatrix. We may assume without loss of generality that ~(s , ko) contains n 
linearly independent columns, (n-1) of which are monomial, say scalar multiples 
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of the unit basis vectors e1 , ... , Cn-l, respectively, and the nth column has two 
positive entries, that O:n (en + ej) for j E { 1, . . . , n}. Then, 

n 

x(s) = LO:jCj + Ci:n ( en + ej) with Ci:j 2:0 for all j = 1,2, . .. ,n. (7) 
j = l 

It is not difficult to see from (7) that the states on the ray o:11e71 , O:n 2: 0 cannot 
be reached by non-negative controls. Thus, the system is not reachable, which 
contradicts the assumption. The theorem is proved. • 

REMARK 3.2 Note that in Theorem 3.5 the time of reaching a non-negative 
state from the origin for a reachable time- variant discrete-time positive linear 
system can be less, equal or greater than the dimension of the system. Example 
3. 3 illustrates this. 

EXAMPLE 3.3 The non-negative pair (A(k) , b(k)) 2: 0 with 

, k = 0, 1, 2, ... 

is not reachable in three steps but it is reachable in Jour steps since 

SR(3, 0) = [ b(2) A(2)b(1) A(2)A(1)b(O) ] = [~t 0~ 0~] 

is not monomial but SR( 4, 0) does contain a monomial submatrix, 

SR(4, 0) [ b(3) 

[ ~ 1 
3 
2 
0 

A(3)b(2) A(3)A(2)b(1) A(3)A(2)A(1)b(O) ] = 

Hl 
It is interesting to notice that a s·im'ilar phenomenon has been observed in 

the study of singular linear systems Kaczorek, 2002, p.164, Example 3.14, where 
the system with n = 2 is not reachable in two steps but it is reachable in three 
steps. 

At the same time the system considered above is null-controllable in two steps 
since the transition matrix <I>(2, 0) = 0. 

THEOREM 3.6 Let (A(k), B(k)) = (A, B) fork 2: k0 , where the adjacency ma
trices A and B ar·e constant matrices. Th en if the system (1)-(2) is reachable 
it is reachable in s :::; n steps. 

Proof. Since (A(k), B(k)) = (A, B) for k 2: k0 the pair (A(k), B(k)) 2: 0 and 
(A, B) 2: 0 have the same zero-nonzero pattern. Thus, (A(k), B(k)) is reachable 
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if and only if the pair Vi, B) is reachable. By Lemma 2. 1, all monomial columns 
in the reachability matrix 3(k for k > n of (A , B) 2 0 are in the reachability 
matrix 3(n so that if the pair (A, B) 2 0 is reachable it is reachable in s :S n 
steps. The theorem is proved. • 

3.3. Controllability 

THEOREM 3.7 Th e system (1)-(2) is controllable if it is null-controllable and 
Teachable. 

Proof. Let (x0 , x) E 3('t and assume the system (1 )-(2) is null-controllable and 
reachable. Since the system (1 )-(2) is null-controllable, according to Theorem 
3.1 , <P(s, k0 ) = 0 for (some) finites , and the system can reach the origin from 
X 0 = x( k0 ) in s steps. On the other hand , by hypothesis , the system (1)-(2) is 
reachable, so it follows that for some finit e k and any state x E R~ t here exists 
a nonnegative control sequence such that the system (1)-(2) can move from 
:c (ko) = 0 into x = x(k). Then it readily follows from linearity of the system 
(as well as from (4)) that there exists a non-negative control sequence such that 
the system can be moved from the state X 0 into the state x in max{ s, k} and 
thus, according to Definition 2.1, the system (1)-(2) is controllable. • 

EXAMPLE 3.4 The non-negative paiT (A(k), b(k)) 2 0 in Example 3.3 is null
controllable in two steps but Teachable in fouT, and so the system can be trans
fi::rred from any xo 2 0 into any x 2 0 in four· steps. 

4 . Conclusions 

In this paper necessary and sufficient conditions (and criteria) for null-control
lability, reachability and controllability of t ime-variant discrete-time positive 
linear systems are established. T hese properties appear to be ent irely struc
tura l properties . They do depend on the zero-nonzero pattern of the pair 
(A(k) ,B(k)) 2 0 and do not depend on the values of its entries. An interesting 
phenomenon has been revealed namely the t ime needed to reach the origin for a 
null-controllable system as well as the t ime to reach a (non-negative) state from 
the origin for a reachable system can be less, equal or greater t han the dimension 
of the system. This phenomenon has no equivalent in the case of time-invariant 
discrete-time positive linear systems where this time is always less or equal to 
the system dimension. Classes of null-con trollable and reachable time-variant 
discrete-time positive linear systems with transition time less or equal to the 
dimension of the system are identified. Examples are provided . 

T he authors wish to thank the anonymous referees for their comments. 
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