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Abstract: The exact stability bound of the parasitic parameter 
for a discrete-time singularly perturbed system is determined by the 
linear fractional transformation (LFT) framework. Two systematic 
approaches including time-domain and frequency-domain methods 
are proposed to solve this problem based on the unified LFT frame­
work. One employs the Kronecker product of LFTs and the guardian 
map theory. The other is to plot the eigenvalue loci of a real rational 
function matrix. Two examples are given to show the feasibility of 
the approaches. 
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1. Introduction 

Singular perturbations arise naturally in many control systems as a result of 
the presence of small physical parameters, such as small time constant, mass, 
capacitance, etc. Singularly perturbed systems or two-time-scale systems, con­
sist of a slow subsystem and a fast subsystem. An overview of discrete-time 
or continuous-time singularly perturbed systems was given in Naidu and Pao 
(1985), Naidu, Price and Hibey (1987), Kokotovic, Khalil and O'Reilly (1986). 

The stability bound problem is of great practical significance for analysis 
and synthesis in singularly perturbed systems. For continuous-time cases, this 
problem has been investigated by various methods and some solutions have been 
proposed in Fang (1988), Chen and Lin (1990) , Sen and Datta (1993), Mustafa 
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(1995), Li et a!. (1997) , Chen and Lin (1999). For discrete-time cases, an ap­
proach based on Nyquist plot to determine the stability bounds was developed 
in Li and Li (1992). In Kafri and Abed (1996) , the authors used guardian 
map theory to address this problem and gave less stringent assumption than 
Li and Li (1992). Recently, Li , Chiou and Kung (1999) and Ghosh, Sen and 
DEttta (1999) used the critical stability criterion to solve this problem by the 
bialternate product. 

In this paper two systematic approaches in time domain and frequency do­
main are proposed to determine the exact stability bounds of a discrete-time 
singularly perturbed system. The Schur stability is considered . It means that 
all eigenvalues of the system lie in the open unit circle. The approaches are 
essentially based on the LFT framework which was successfully applied to con­
tinuous cases, see Chen and Li (1999). For the time domain approach, the 
stability bounds are determined by using the Kronecker product of LFTs and 
the guardian map theory. For the frequency domain approach , they can be also 
determined by plotting the eigenvalue loci of a rational function matrix. It is 
seen that the results in Li and Li (1992) can be easily obtained by the frequency 
domain approach . An appealing advantage of the system in LFT description is 
to provide a unified framework for evaluating the exact stability bounds. 

In Li and Li (1992) , Li, Chiou and Kung (1999), a nonsingularity assumption 
for a subsystem matrix was made , but it is not necessary in our approaches. 
Compared with Kafri and Abed (1996) , the LFT framework proposed in this 
paper provides a matrix with smaller dimension, which is used to find out the 
stability bounds in constructing the guardian map. Although the method from 
Ghosh, Sen and Datta (1999) could be used to reduce the dimension of the 
computational matrix, however, it involved a one-dimensional search over the 
positive real domain. 

This paper is organized as follows. In t he following section some preliminar­
ies are briefly reviewed and the LFT description systems are proposed. Main 
result s for determining the exact bounds by time-domain and frequency-domain 
approaches are given in Sections 3 and 4, respectively. Two examples are given 
in Section 5 to show the feasibility of the approaches . Finally, a brief conclusion 
will be given in the last section . 

2. Preliminaries and LFT description systems 

Suppose that M is a matrix partitioned as M = [ Z~~ Z~~ ] and 6 is a 

n:atrix of appropriate dimension. The upper and lower linear fractional trans­
formations (LFTs) are defined as, Doyle, Packard and Zhon (1991) 

(1) 

(2) 
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respectively. Clearly, the existence of the LFTs depends, respectively, on the 
invertibility of matrices I- Mu6 and I- M226. 

The Kronecker product of two square real matrices A and B is denoted by 
A 0 B , Lancester and Tismenetsky (1985). If A is an m1 x m1 matrix and B 
is an m2 x m2 matrix, then A 0 B is an m11n2 x m(m2 matrix with (i,j) -th 
block a ij B. The Kronecker product of two LFTs was established in Lin and 
Chen (1999). 

LEMMA 2.1 (Lin and Chen, 1999) Let 6 M E Cq2 xp2 and 6N E CS2 xr2 . Sup­
pose that M and N are complex matrices partitioned as 

M [ Mu 
M21 

Ml2 ] E c (p , + P2)(q , +q2) ) 
M22 

N [ Nu 
N21 

N12 ] E C (r1+r2)x(s 1+ s2 ) 

N22 

then 

where 

The discrete-time models of sampling singularly perturbed continuous sys­
tems can be classified into two categories: the slow sampling model 2::::: 1 and the 
fa.st sampling model '2::2 , described in Naidu , Price and Hibey (1987) , Li and 
Li (1992) , Kafri and Abed (1996), Li , Chiou and Kung (1999) , and Ghosh, Sen 
and Datta (1999), 

and 

"" x(k + 1) = Aux(k) + c-A12y(k) 
L..'l . y(k + 1) = A21x(k) + EA22 y(k) 

"" . x(k + 1) =(In, + EAu)x(k) + EA12Y(k) 
~2 . y(k + 1) = A21x(k) + A22y(k). 

(3) 

(4) 

In both of them x(k) E Rn1 and y(k) E Rn2 are the state vectors at the k-th 
instant. The constant matrices A ij , i, j = 1, 2, are of consistent dimensions. 
The singular perturbation parameter E is a small positive scalar. 
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The stability bound problem of a discrete-time singularly perturbed system 
is to determine the upper stability bound c* such that the overall system remains 
stable for all c E (0, c*). 

Let X(k) = [xr(k) yr(k)f and c be considered as a parameter uncertainty, 
then the system .Z::::: 1 can be rewritten as an LFT description of 

2:1 
where 

Mn = 0 ] 
0 ' nxn 

Similarly, the system .Z::::: 2 can be rewritten as an LFT description of 

where 

Nu = 
0 
A22 ] N [ 

In 1 ] 
' 12 = 0 

nxn n xn1 

N 21 = [ An A12 ]n1 x n 1 N 22 = On, xn1 • 

(5) 

(6) 

REMARK 2.1 Although the slow sampling model can be represented in different 
forms, Li and Li (1992), Kafri and Abed (1996) , Li, Chiou and Kung (1999), 
Ghosh, S en and Datta (1999) , these forms can be equivalently transformed to 
the canonical model .Z::::: 1 by a state-variable transformation , Li, Chiou and Kung 
(1999), Ghosh, Sen and Datta (1999). Thus , the stability analysis can be carried 
out only for the system .Z::::: 1 since stability is invariant under any state-variable 
transformation. On the contrary, the representation of the fast sampling model 
.Z::::: 2 is unique. 

In the sequel, two systematic approaches including time-domain and frequency­
domain methods are developed to determine the exact stability bounds for both 
models .Z::::: 1 and .Z::::: 2 . 

3. Time-domain approach 

The guardian map was introduced in Saydy, Tits and Abed (1990) as a use­
ful tool for studying generalized stability of parametrized families of matrices . 
With the system matrix Ft (M, clnJ, the LFT description of the system .Z::::: 1, a 
guardian map for Schur stability is given by 

(!pJ,( F, ( M. cl~ " ) 0 F, ( M , clno ) -In ® In ) := det(.F[ (M , t:hnn2 )) (7) 
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where 

(8) 

The matrix FL(M ,eh nn2 ) can be calculated directly from Lemma 2.1, and 
it is required to be nonsingular to guarantee Schur stability of the system 2.:1 
for all e E (0, e*). The only assumption in the following theorem is that A 11 

is Schur stable. The invertibility of Au , assumed in Li and Li (1992), Li , 
Chiou and Kung (1999) , is not required. Thus , this paper gives less stringent 
conditions for stability analysis as shown in Kafri and Abed (1996). 

THEOREM 3.1 Let Au be Schur stable. The discrete-time singularly perturbed 
system 2:1 is Schur stable for all e E (0 , e*). Then the exact stability bound e* 
is given by 

where i1 = M22- M21Mt'/ M12 and >-;t ax (M) denotes the largest positive real 
eigenvalue of the matrix M . 

Proof. Since Au is Schur stable, and thus Mu = [ ~~~ ~ ] , the nominal 

system matrix of FL(M,cln2 ) withe= 0 in 2:1, is Schur stable. This implies 
that matrix Mu = Mu 0 Mu - I n2 is nonsingular. Hence, from the guardian 
map theory we have 

System 2.:1 is Schur stable 

<=> F1 ( M, ehnnJ is nonsingular 
• • • 1 • 

<=> det(Mu + eM12(hnn2 - eM22)- M2I) ::J 0 
• 1 • • 1 • 

<=> det(Jn2 + eMil_ M12(12nn 2 - eM22)- M2I) ::J 0 
• -1 • • -1 • 

<=> det(hnn2 + c(hnn2 - eM22) M21Mu Ml2) ::J 0 
• • • 1 • 

<=> det(hnn2 - eM22 + eM21Mli Ml2) ::F 0 

<=> detU2nn2 -eM) ::J o. 

As a result, e* is the smallest positive real value such that det(hnn2 -eM) = 0. 
Th2refore, the system 2.:1 preserves the Schur stability for all e E (0 , e*). • 

Similarly, the guardian map for Schur stability of the system 2.:2 is given by 

det(F1 (N, cln, ) 0 F1 (N, cT,.,, ) - ] ., 0 ]., ) := det( F, UV . FT., __ ) ) (Q) 
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where 

(10) 

The matrix Ft (N, cl2nn1 ) must be nonsingular to guarantee Schur stability of the 
system 2.::2 for all E E ( 0, E *). It is worth noting that there is a significant differ-

ence between 2.:: 1 and 2.::2 . The nominal system matrix, Nn = [ ~:11 A~2 ] 

in 2.::2 with fixed n 1 eigenvalues of one, is not Schur stable. Thus, Theorem 
3.1 can not be directly applied to the system 2.:: 2 because the invertibility of 

N11 = Nn 0 Nn - f n2 does not exist. However, the guardian map is also 
applicable, and thus the following theorem is established. 

THEOREM 3.2 Assume that A22 is Schur stable. The discr·ete -time singularly 
perturbed system 2.::2 is Schur stable for all E E (0, c;*). Then the exact stability 
bound E* is given by 

c;* = ,\~in (U, V) 

wher-e U = [ h,Ow 1 0

0 
] , V = [ J:22 - J:21 ] and ,\~in (U, V) denotes the 

N12 -Nil 
smallest positive real gener·alized eigenvalues of the matrix pair (U, V), i.e . , 
det(U- -\V) = 0. 

Proof. Analogous to the Theorem 3.1, 

System 2.::2 is Schur stable 

¢=> Ft(N, Ehnn 1 ) is nonsingular 

¢:> det(Nll + ENt2(hnn1 - cN22 )- 1 N21) "I 0 
(11) 

- - 1 - -
¢:> det(Nn + N12(-ehnn 1 - N22)-l N2t) "I 0. 

It is worth noting that the matrix ( ~ hnn 1 - N22 ) is not singular for any E > 0. 
The following determinant identity holds 

det ( [ ~ ~ ]) = det(A) · det(D - CA- 1 B) 

if the matrix A is nonsingular. Eqn. 11 is thereby equivalent to 

det([ ~ I2nn~_-N22 J:21 ]) -:p o ¢=>det (~u-v) -:p o. 
-N12 Nn c; 

Then the maximal stability bound c;* is the smallest positive number c; such 
th <> t 
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det ( ~ U - V) = 0 

holds. Mathematically, the above equation can be rewritten as det.(U- cV) = 0 
for c "I 0. Hence c* = >.~in (U, V) . This completes the proof. • 

REMARK 3.1 The generalized eigenvalues of the matrix pair (U, V) can be easily 
be obtained by using the existing software packages, for example, the M atlab 
(Matlab ... , 1991) command "eig(U, V) ". If there does not exist any positive real 
generalized eigenvalue for the matrix pair (U, V), then either the system 2:: 2 

is Schur stable for· all c > 0 or it is not Schur stable for any c > 0. The precise 
situation can be checked by an arbitrarily chosen positive number c. 

4. Frequency-domain approach 

In this section, an LFT block diagram is proposed to evaluate the exact stability 
bound for a discrete-time singularly perturbed system. Taking the z- transform 
for system 2:: 1 yields 

(12) 

with zero initial conditions. Clearly, (12) can be represented by an LFT block 
diagram illustrated in Fig. 1, where z~ 1 In denotes the time-shift operator. 

X(kl'-----+1 
M 

X(k+J) 

Figure 1. An LFT block diagram of system 2:: 1 

Absorbing the time-shift operator z~ 1 In into the matrix M by upper LFT, 
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leads to an equivalent block diagram shown in Fig. 2, where 

P(z) Fu(M, z- 1 In) 

M22 + z-1 M21 (In- z- 1 Mu)-1 M12 

= 0 + [0 In2 ] (zin- [ ~~ ~ ~ ]) -

1 

[ ~~~ ] 

[0 Ino] ( [ -1 (zinJ - Au)-1 -1 0 ] ) - 1 [ A12 ] 
· z A21(zfn 1 -A11) z- 1In2 A22 

z- 1(A21(zin 1 - Au) - 1Al2 +A22). · (13) 

P(z) 

£In l 
2 

I 

Figure 2. An equivalent block diagram of Figure 1 

Assume that matrix Au is Schur stable, then P(z) is a stable rational func· 
tion matrix of dimension n2 x n 2 with poles in the unit circle. Clearly, the 
characteristic equation of the system I;1 is given by 

det (In 2 - c:P(z)) = 0 (14) 

Since the nominal system matrix of the system I;1 is Schur stable, of all eigen­
values lie inside the unit circle. For the special case of c = c:*, there exist at 
least an eigenvalue just on the unit circle. Consequently, the problem of finding 
the exact stability bound c:* is equivalent to determining the smallest positive 
number c: such that 

det(Jn2 - c:P(eJ0
)) = 0 for 0 ~ B < 2n. (15) 

Let A; ( eJ0), i = 1, 2, ... , n2 , be the i-th eigenvalue of the rational function 
matrix P(eJ 0 ) for a given B, then the graphs of ,\;(eJ0) for 0 ~ (} < 2n are 
the eigenvalue loci of t he matrix P(eJ 0 ). Based on the fact that eigenvalues 
are continuous functions of the entries of a matrix, >..;(eJ 0) is continuous on e 
for i = 1, 2, ... , n 2 . In view of this, an explicit solution for c:* is obtained by 
plotting the eigenvalue loci of P( eJ 0 ) for 0 ~ B < 2n. 
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THEOREM 4.1 Assume that A11 is Schur stable. The discrete-time singularly 
perturbed system :Z::::: 1 is Schur stable for all c: E (0 , c:*). Then the exact stability 
bound c:* is given by 

* 1 
E=+((O) Amax P eJ ) 

where >-;,ax(P( e1°)) denotes the largest positive real eigenvalue oj matrix P( e1°) 
jOT 0:::; 8 < 211'. 

Proof. If the eigenvalue loci of matrix P( e1°) for 0 :::; B < 211' intersect the 
real axis at (o, 0) , then there exists a real number c: = i satisfying det (/n2 -

c:.P(e1°)) = 0. Mathematically, 

c:* min{ c:> O:det (~In2 - P(e10 ) ) =0 for 0:::;8 <211' } 

1 

.A;tax(P(e1°)). 

As a result, the exact stability bound c:* is the reciprocal of the largest positive 
real value where the eigenvalue loci of matrix P(e1°) for 0 :::; B < 211' intersect 
the real axis. This completes the proof. • 

Analogous to the development of Theorem 4.1, the exact stabili ty bound of 
system :Z::::: 2 can be obtained in the following theorem. 

THEOREM 4.2 Assume that A 22 is SchuT stable. Th e discTete-time singulaTly 
perturbed system :Z::::: 2 is Schur stable joT all c: E (0, c:*) . Then the exact stability 
bound c:* is given by 

1 
c* - ---;--------,-::--'- - + ·e 

Amax(G(eJ )) 

wheTe G(e1°) = (e1° - 1)-1 [An + AJz(eJ0 In2 - A22) - 1 A21] and >-;, ax (G(eJ0)) 
denotes the laTgest positive real eigenvalue of G(e1°) joT 0:::; e < 211'. 

Proof. An LFT block diagram can be depicted as shown in Fig. 1 with matrix 
M replaced by matrix N and cln2 replaced by cln1 • Then the upper LFT of 
the time-shift operator z- 1 In and matrix N is given by 
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G(e1°) is a stable rational function matrix of dimension n 1 x n 1 with assumption 
of A22 being Schur stable. The remainder is similar to the development of 
Theorem 4. 1. • 

REMARK 4. 1 In the complex plane of eigenvalues of matrices P(e18 ) or G(eJ8 ), 

if the eigenvalue loci intersect the positive real axis at points (>.{, 0), (>-i, 0) , 
... , (>-t,O), with >-t > · · · > >-t > >.{ > 0, then E* = 1/>-7;,. In the case where 
the eigenvalue loci do not intersect the positive real axis, either the system 2::: 2 
is Schur stable for all E > 0 or it is not Schur stable for any E > 0. Th e precise 
situation can be checked by an arbitmrily chosen positive number E. 

REMARK 4.2 The conditions determining the maximal stability bound E* in 
Theorem 4.1 and Theorem 4.2 coincide with Li's results in Li and Li {1992). It 
is clear that the LFT fmm ework provides a more systematic and straightforward 
development . 

REMARK 4.3 Comparing time-domain approach with freq·uency-domain approach, 
it is seen that the dimension of matrix to be dealt with in Theorems 4.1 and 4.2 
is lower but a sweeping parameter e is needed. On the other hand, the dimen­
sion of matrix to be dealt with in Theorems 3.1 and 3.2 is larger but no sweeping 
parameter is needed. 

5. Illustrative examples 

In this section, two examples are presented to illustrate the proposed approaches. 

EXAMPLE 5.1 Let us consider t he same example adopted from Li , Chiou and 
Kung (1999). The slow sampling model 2::: 1 is given by 

[ ;:1!: :l] = [ ~~:5 1~6~5 ~
1

5g:::' ~2:~i~~' l [ ::1~l ] · 
Y2(k + 1) 0 0.0453 0 1.3423E Y2(k) 

For the time-domain approach, the set of the non-repeated positive real 
eigenvalues of the matrix M = M22 - M21MnM12 is {0.7108, 0.8556, 1.2001, 
2.2499, 3.4642}. The dimension of the matrix M is 16 x 16. Based on Theorem 
3. 1, we obtain E* = 1/3.4642 = 0.2887. On the other hand, for the frequency­
domain approach, the eigenvalue loci plot of P(eJ0 ) for 0 :S 8 < 2JT is shown in 
Fig. 3. 

P(eJ0
) is a matrix of dimensions 2 x 2. It can be seen that the largest value of 

the eigenvalue loci intersecting the positive real axis is 3.4642. Hence, Theorem 
3.2 leads to the stability bound E* = 1/3.4642 = 0.2887. Both results derived 
from the two approaches are clearly the same. They also coincide with that 
of Li , Chiou and Kung (1999) , which was determined by calculating four real 
eig~nvalues . Although the same result can be obtained by the method of Kafri 
and Abed (1996), the-matrix size for calculation is 32 x 32. 
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-2 - - - .• . . .. . • . . • . ... ' .. . 

-~3'----'-_2----'-, - ---'---'-----'-----'--__j 

Real A~ s 

Figure 3. The eigenvalue plot of matrix P (e 8 ) for 0 :S f) < 27r 

EXAMPLE 5.2 Let us consider the same example as the one analysed in Li and 
Li (1992), Kafri and Abed (1996), Ghosh , Sen and Dat ta (1999). The fast 
sampling model I:: ~ is described by 

r 

x(k + 1) 1 r 1- 6.71c 
Y1 (k + 1) - 1 
Y2(k + 1) -0.05 
y3(k + 1) 0.98 

E -E 

-0.65 0 
0 0.45 
0 0 

E 1 r :t:(k) 1 0 Y1(k) 
0 Y2 (k ) 

-0. 54 y3(k) 

For the t ime-domain approach , the set of the non-repeated positive real 
generalized eigenvalues of the matrix pair (U, ll) is given by {0.347, 0.3778, 
0.5528}, and thus we have the stability bound E* = 0.347 by Theorem 3.2. 

On the other hand , for the frequency-domain approach , G(eJe) is a scalar 
function since the dimension of the fast mode is one. The eigenvalue loci plot 
of G(eJ0 ) for 0 < f) < 21r is shown in Fig 4. The local plot of in terest is shown 
in Fig. 5. 

It is seen that the largest value of the eigenvalue loci intersecting the positive 
real axis is 2.8815. Hence, Theorem 4. 1 leads to the stabili ty bound E* = 
1/2 .8815 = 0.347. The resul ts derived from both approaches are clearly the 
same. T he results also coincide with those obtained in Li and Li (1992), Kafri 
and Abed (1996), Ghosh, Sen and Datta (1 999). 



106 Sh .-J. CHEN , J .-L . LIN 

300.---~----~----~---..---~----. 

200 

100 

-100 

-200 

-300 L---~----~-----'------~--~----_j 
2 

Real Axis 

Figure 4. The eigenvalue loci of matrix G(eJ8 ) for 0 < B < 27r 

1.5 ,----.,----....----.----,..----,-----,-----,-----, 

0.5 

-0.5 

-1 

-1.5 L__ __ ..__ __ _,__ __ -'---~----'---~-----'-----' 

2.6 2.7 2.8 2.9 3.1 3.2 3.3 3.4 
Real Axis 

Figure 5. The local eigenvalue loci of matrix for G(eJ 8 ) 

6. Conclusions 

The exact stability bound is derived in an explicit and closed form to guarantee 
Schur stability of a discrete-time singularly perturbed system by time-domain 
and frequency-domain approaches. An LFT description for the system is pro­
posed to serve as a unified framework for evaluating the exact stability bound in 
both approaches. In fact, the approaches can be extended to address more gen-
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eral stability region with a suitable guardian map for time-domain approach or a 
sweeping parameter on the regional boundary for frequency-domain approach. 
Illustrative examples show that the results obtained by both approaches are 
the same, and also the same as those of the existing criteria proposed in the 
literature. 
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