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1. Introduction 

The relationship between mathematical programming and classical calculus of 
variation was explored and extended by Hanson ( 1964). Thereafter variational 
programming problems have attracted some attention in li terature. Optimal
ity conditions and duality results were obtained for scalar valued variational 
problems by Mond and Hanson (1967) under convexity and by Bhatia and Ku
mar (1996) under B-vexity assumptions. Motivated by t he approach of Bector 
and Husain (1992) , Nahak and Nanda (1996) extended the results of Mond, 
Chandra, and Husain (1988) to multiobjective variational problems involving 
invex functions. Type I functions were fi rst introduced by Hanson and Mond 
(1987). Rueda and Hanson (1 988) have defined the classes of pseudo-type I and 
quasi- type I functions as generalizations of type I functions. Kaul , Sunja and 
Srivastava (1994) , Aghezzaf and Hachimi (2000) obtained optimality conditions 
and duality results for mult iobjective programming problems involving type I 
and generalized type I functions. 

Recently, Bhatia and Mehra (1999) int roduced a class of B-type I functions , 
an extension of invex functions defined by Mond , Chandra, and Husain (1 988) 
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and B-vex functions defined by Bhatia and Kumar (1996), and used the con
cept to obtain various sufficient optimality conditions and duality results for 
multiobjective variational problems. 

In this paper, we propose a class of vector-valued functions called general
ized B-type I and derive various sufficient optimality conditions and mixed type 
duality results for multiobjective variational problems. To est ablish our results 
with our new classes of vector-valued functions , we do not require the assump
t.ion of scalarization of vector objective function made in Bhatia and Mehra 
(1999) . 

2. Notations and preliminaries 

Throughout this paper the following conventions for vectors in IRn ( n > 1) will 
be followed: 

x = y ~ x; = y; V i = 1, . . . , n ; 

X;£ y ~ X; :S Yi 't/ i = 1, .. . , n; 

x:Sy ~ x;£y, and xf:.y; 

x < y ~ X; < Yi V i = 1, ... , n . 

Let I = [a, b] be a real interval and f : I x IRn x IRn --+ JRP and g : 
I x IRn x IRn --+ IRm be continuously differentiable functions. In order to 
consider f(t, x, x), where X : I --+ IRn with its derivative x, denote the p X n 
matrices of first partial derivatives of f with respect to x, :i; by f x and f x, such 
that 

ah ah ah ah 
f ix = (-a , ... ,-a ) and fix= (-a· , ... ,-a· ), i = 1, 2, ... ,p. 

X1 Xn X1 Xn 

Similarly, 9x and 9x denote them x n matrices of first partial derivatives of g with 
respect to x and x. Let C(I, IRn) denote the space of continuously differentiable 
functions x with norm llxll := llxlloo + IIDxll oo, where the differential operator 
D is given by 

u = Dx ~ x(t) = x(a) + 1t u(s)ds. 

Therefore, D = d! dt except at discontinuities. We consider the following mul
tiobjective variational problem, 

(MOP) Minimize 1b f(t,x,x)dt = (1b h(t ,x,x)dt, ... , 1b f p( t ,x,x)dt) 

subject to x(a) =a, x(b) = (3, 

g(t,x,x ) ~ o , t E I. 
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Let K := { x E C(I, JRn), x(a) = a, x(b) = (3, g(t, x, i: ) ~ 0, 'It E I } 
be the set of feasible solut ions of (MOP). Due to the conflicting nature of the 
objectives, an optimal solution that simultaneously minimizes all the objectives 
is usually not obtainable. Thus, for the (MOP) problem, the solution is defined 
in terms of an efficient solution. 

DEFI NITIO N 2. 1 A point x* E K is said to be an efficient (Pareto optimal) 
solution of (MOP) if there exis ts no otheT x E K such that 

1b ;·b f(t , x, i:) dt:::; f(t , x*, i:*) dt. 
a. a 

3. B-type I and generalized B-type I functions 

It will be assumed throughout that f is the vector objective function and g is 
the constraint vector function in problem (MOP). The definition of B-type I 
fo!· the objective and constraint functions of Bhatia and Mehra (1999) can be 
generalized to the objective and constraint vectors in the spirit of Aghezzaf and 
Hachimi (2000) . 

DEFI NITION 3.1 (f ,g) is said to be B-type I at u E C(I,IRn) with respect to 
bo, b1 and 17 if there exist fun ctions b0 , b1 : C(I , IRn) x C(I, IRn) --+ IR+ and 
1] : I X mn X mn --+ mn such that for all X E J( ) 

bo(x ,u)[lb f(t ,x,x )dt-1b f(t ,u ,u)dt] 

~ 1 b 1J(t ,x, u) t [fx(t,u,it)- !tx(t,u,v.)]dt, 

-b1(x ,u) 1b g(t ,u,u)dt 

rb d 
~Ja 1J(t,x,u)t[gx(t , v., v.)- dtgx(t,u ,u)]dt. 

(1) 

(2) 

If in the previous definition , (1) is satisfied as a strict inequality, then we say 
tbat a pair (f , g) is semistrictly B-type I at u E C (I , IRn) with respect to b0 , b1 

and 17. 
Now we propose new classes of vector-valued functions called generalized 

B -type I as follows. 

D EFINITIO N 3.2 (f , g) is said to be weak B-strictly pseudo-quasi-type I at u E 

c (I ' mn) with resvect to bn. b, and n i f there e.r,ist fundinns hn. h, : r. ( T. TR 11
) X 
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C (I , lRn) --+ JR+ and 17 : I X lRn X lRn --+ JR." svch that for all X E K 1 

j" f(t , x, x) dt ::::; jb f(t , ·u. , it)dt 

==> bo(:r: , u) lb 1](t, :r , v.)t [fc(t , tt , 11.) - ~ f':i, (t, u, u) ] dt < 0, 
<t dt 

-.lb g(t , u , ·it.)dt ~ 0 

j·b d 
==> b1 (x, v.) 'l](t ,x, v.)1· [gx(t ,u,it)- -d g:r (t , u , v. ) ]dt ~O. 

<t t 
This definition is a slight extension of the B-strictly pseudo-quasi-type I func
tions of Bhatia and Mehra (1999). This class of functions does not contain the 
class of B-type I functions, but does contain the class of semistrictly B-type I 
fun ctions with bo > 0. 

DEF!N!TION 3.3 (f, g) ·is said to be stmng B-psevdo-q'ltasi-type I at v E 
C(I , JR.") with respect to bo 1 b1 and 'I] if there e.Tis t functions b0 1 b1 : C(I, JR.") x 
C (I, JR.") --+ JR+ and 17 : I x JR" x !R" --+ IR11 svch that for all x E J( 1 

lb f(t ,x,x)clt ::::; jb f(t ,u,it.)dt 

/

·b cl 
==> bo (X , 1t) . a 1] ( t , X, 1t) t [ f x ( t , 7J,, lt) - dt fx ( t , 1t, V.)] dt ::::; 0, 

-jb g(t , u, u)clt ~ o 

l b [ d ] ==> bl(x, u) 't](t ,:~: , u)t gx(t ,v.,it)- -l g:r (t ,u , ·u) clt~O. 
a cl 

Instead of the class of weak B-strictly pseudo-quasi-type I functions , the class 
of strong B-pseudo-quasi-type I functions does contain the class of B-type I 
functions with bo > 0. 

We give examples to show that weak B-strictly pseudo-quasi-type I and 
strong B-pseudo-quasi-type I functions exist. Weak B-strictly-pseudo-quasi
type I funct ions need not be B-strictly pseudo-quasi-type I for the same b0 , b1 

and 17 as can be seen from the following example. 

EXAMPLE 3.1 Define functions f , g by 

j : [0 , % l X JR2 X JR2 --+ JR2 

(t , x(t) , i(t)) 1-----7 x( t) 
1f ') 2 

g: [0 , 2l X JR- X JR --+ IR 

(f .,..(t\ ~- (t\1 1-----'> T, (f)+ J>>(t) 
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(f,9) is weak B-strictly pseudo-quasi-type I at u(t) = (-cost,-sint) with 
respect to functions b0, b1 : C( [O, H JR2) x C([O, H JR

2
) ----+ IR+ and 17: [0, ~] x 

JR2 x JR2 ----+ IR2 defined below: 

bo(x,u.) = ui(t) + n~(t) , 

li1 (:r, 11.) = x~( t) + :r~ (t) + 1, 

but (f,9) is not B -strict ly pseudo-quasi-type I with respect to the same bo, b1 

and ·17 at v. because for x(t) =(cos t,- sin t- 1) and v.(t) = (-cost,- sin t); 

but fo-1 f(t, J;, x )dt f ( -1, - 1). 

Also (f ,9) is not B-type I with respect to the same b0 , b1 and 17 at u as can 
be seen by taking .T(t) = (cost, - sin t- 1). 

Strong B-pseudo-quasi-type I functions need not be B-type I with respect 
tr the same bo, b1 and '7· 

EXAMPLE 3.2 Define functions f , 9 by 

f : [0, ~ ] X JR2 X JR2 
2 

----+ JR2 

(t, x(t ), x(t)) f---7 x(t) 

9: [0, ~ l X JR2 X JR2 ----+ IR 

(t , x (t), x(t)) f---7 :rl(t) + .1:2(t) 

(f. 9) is strong B-pseudo-quasi-type I at v.( t) = (-cost,- sin t) with respect to 
functions b0, b1 : C([O, ~], JR2) x C([O, H JR

2
) ----+ IR+ and TJ : [0, ~] x IR2 x 

JR2 ----+ JR2 defined in the following text 

TJ(f ,T,tt) 

bo (x, u) 

b1 (x,u) 

2 4 
(x2 (t) + - , x 1 (t) + .T2(t ) + - ), 

7r 7r 
2 2 v. 1 (t) + u2 (t), 

xi(t) + x~ (t) + 1, 

but (f, 9) is not B-type I with respect to the same b0 , b1 and 17 at u as can 
be seen by taking x(t) = (- cost - 1, - sin t) nor it is weak B-strictly pseudo
quasi-type I with respect to the same b0 , b1 and 7) as can be seen by taking 
x ( t) = (- cos t - 1 , - sin t) . 
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DEFINITION 3.4 (!,g) is said to be weak B -strictly pseudo-type I at u E 

c (I' mn) with respect to bo' bl and T) if there exist functions bo' bl : c (I' mn) X 

cr I) mn) --t IR+ and T) : I X mn X mn --t mn such that for all X E J() 

lb ;·b 
a J(t,x,x)dt::; a J(t,u,u)dt 

==} b0 (x,u.) lb TJ(t,x,u)t [!x(t,u,il)- :/;;(t,u,u)]dt < 0, 

-1b g(t, u, u)dt ~ o 

lb . d 
==} bl(x,u) a TJ(t,x,u)t[gx(t,u,u)- dtg:r(t,u,u)]dt < 0. 

EXAMPLE 3. 3 Define functions J, g by 

f: [0, ~ l X IR2 
X IR2 

2 
--t IRz 

(t, x(t), x(t)) f-t x(t) 

g : [0,% l X IR2 
X JR

2 --t JR2 

(t, x(t), i:(t)) 
2 2 

f-t (xl(t) + -, xz(t ) +-) 
7f 7f 

(!, g) is weak B- strictly pseudo-type I at u ( t) = (- cost, - sin t) with respect 
to functions b0 , b1 : C([O, %], JR

2
) x C([O, %], JR

2
) --t IR+ and TJ : [0, %] x IR2 x 

JR2 --t JR2 defined in the following text 

TJ(t,x,u) 

bo(x, u) 

b1 (x, u) 

ui(t) + u~(t), 
xi(t) + x~(t) + 1, 

but (!,g) is not B-type I with respect to the same b0 , b1 and TJ at u as can be 
seen by taking x ( t) = (- cos t - ~, - sin t). 

4 . Sufficient optimality conditions 

In the following theorems, we establish various sufficient optimality conditions 
for (MOP) under generalized B-invexity conditions. 

T HEOREM 4.1 Let x* be a feasible solution for {MOP) and let there exist A* E 

JRP' A* > 0 and a piecewise smooth function y* : I --t mm such that for all 
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t E J, 

:X.*1 f x ( t , x*, :i:*) + y* ( t) 1 
9 x ( t, x*, .i*) 

= ~ (.>.. *1f x(t,:r*,.i*) +y*(t) 1gx(t,x*,.i*)), 

y*(t)t g(t ,x*,i:* ) = 0, t E J, 

y * (t)~O, tEl. 

119 

(3) 

(4) 

(5) 

Further, if (f,y *(t) 1g) is strong B-pseudo-quasi-type I at x* with respect to 
functions bo , b1 , and 17 with b1 ( x, x*) > 0 for all x E J( , then x* is an effi cient 
solution for (MOP). 

Proof If x* is not an efficient solution for (MOP) , then there exists x E K such 
that 

lb f(t , x , i:)dt :S 1h f(t , x*, i:*)dt. 

From (4), we have 

-lb y*(t) 1g(t, x*, .i*)dt = 0. 

Since (f , y* ( t )1 g) is strong B-pseudo-quasi-type I at x* with respect to functions 
bo, b1 , and 1], therefore, for any x E K, we get 

bo(x , x* ) lb 1](t ,x,x* )1 [fx(t ,x*,i:* )- ~fx (t ,x*,i:* )]dt :S 0, 

b1(x,x* ) lb 1](t, x,x* )1 [y*(t) 1gx(t ,x*,i:*) - :ty*(t) 1 gx (t, x*,:i;* )]dt ~ O. 

Since b1(x,x*) is positive, and)..*> 0, we get 

bo(x ,x*) lb 1](t, x,x*) 1 [.A*t f x(t, x* ,i:*)- :t.A*1 f x(t, x* ,:i;*)]dt < 0, (6) 

lb 17(t, x, x* )1 [y*(t) 1gx(t, x*, i:* )- ~y*( t) 1 gx (t , x*, i:* )] dt ~ 0. 

By b0 (x, x* ) ~ 0, it follows that 

bo(x, x*) lb 17(t , x , x*) 1 [y*(t) 1gx(t, x*, i:* )- :ty*(t) 1gx(t, x* , i:*) ] dt ~ 0. 

(7) 
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Adding (G) and (7) , we obtain 

bo(:J.:, x* ) ; ·b n(t , :r, x* )1 [A *1 f:~: (t,, :r:*, i *) + y* (t) 1 g":(t, x*, :i:* ) 
• (1 

d(\ *t'( • .• ) d *()t. ( · ··l)]z o - dt /\. i: t, :r ,:.r + clty t .9:i: t ,::c , x c,t < , 

which contradicts (3). Hence :r* is an efficient solution for (MOP). and the proof 

is complete . • 

In the next theorem , we replace the strong B-pseudo-quasi-typ e I by the 
weak B-strictly-pseudo-quasi-type I of (f , y*(t) 1·g). 

T HEOREM 4. 2 Let :r* be a feasible solv.tion for ( M 0 P) , and let there e.Tist A* E 

JRP , A* :::: 0 and a piecewise smooth f11.n ction y* : I --+ m·m s·uch that foT eveTy 
t E I ,(x*,/\ *, y*) satisfy (3)-(5) of Th eor·em (4. 1). 

Furl.her, if (f, y*(t)tg) is weak B-sl:rictly-pseudo-quasi-type I at .1:* with re
spect to functions bo , b1 , and 'I) with b1 (x , :c*) > 0 fo r all x E I\. , then :r:* is an 
e.ffi:cient solution for (MOP) . 

Proof. Assume that :r* is not an efficient solution for (MOP). Then , there exists 
x E ]{ such tha t 

/

·b 11' f(t, :C, i; )dt:::; f(t , .T *, :i;* )dt . 
. a. a 

From (4) , we have 

-1b y*(t )1g(t , :c*, :r*)dt = 0. 

Since (f, y* ( t )1 g) is weak B-strictly-pseudo-quasi-type I at :1.;* with respec t to 
functions b0 , b1 , and 'I) we get. 

bo(:c,x*) 1 bT/(t , :c,.1:* )1 [fx(t,:t*,:i:*)- c~tf:c(t,:c * ,.i:* ) ]dt < 0, 

b ( *) r b ( *lt [ *()1 ( • .• ) d *( )L ( • ··l]d o 1 :c,J; Ja. 17 t ,x,x · y t 9x t ,:l: , :t: - dty t 9:i: t ,:r , :1: .f;£ , 

and now the proof is similar to that of Theorem ( 4. 1). • 

In our final sufficiency result below , we invoke the weak B-strictly-pseuclo
t.ype I of (f,y*(t) 1g). 

THEOREM 4.3 Let x* be a feasible sol·ution j'OT (MOP) and let the'f'e e:rist A* E 

JRP , /\ * ;;::; 0 and a piecewise smooth .f1mction y* : I --+ JR.m such that conddion.s 
(3) -(5) of TheoTem (4.1) aTe satisfied by (:r:*,/\*,y *). 

Further, ·if (f , y* ( t) 1 g) is weak B -st'l·ictly-pseudo- type I at :r * with respect to 
funct·ions bo , lh , and 17 , then :z:* is an effi cient solution fo T ( M 0 P) . 
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Proof. If ~c* is not an effi cient solution for (MOP), then there exists :r E J( such 
that 

/
·h !b . 

f(t , c, x)dt::; f(i , :r *' i:')clt . 
. a , (I, 

From (4) , we obtain 

j
·h 

- y* (t)tg(t , :r* , x* )dt = o. 
(1. 

Since (f, y' (t )tg) is weak B-strictly-pscuclo-type I at :c* with respect to b0 , b1 

a'<d 17 we get 

!h . cl 
bo ( x , .T * ) . a 17 ( t , x, :r * ) t [ f , ( t , x * , :i; * ) - clt f ;; ( t , x * , :i; * ) J elL < 0, ( 8) 

b (, . . ·' ) ! b (t . . ··* )1 
[ *( t)l (t ·* '·*) cl ' *(t )t (t ·* '· *)] lt < 0 1 .r,.c n 17 , .l, ,.T y . gx , ,J.. ,.1: - dty . 9:i: ,x , J.. G. . 

(9) 

From (8) and (9) , we have 

f b 1J(f ,:r,x* )t [f x(t ,x*,:i:*) - c~/;; (t , x*,x*) ] dt < 0, (10) 

j·b l 
( • I. [ * t . * · * C * t .. * · * ] 

0 

'I] t, :~; ,:r) y (t) ·gx(t, :c ,:r) - dty (t) g,c( t ,:r ,X) dt < 0. (11) 

Because/\*~ 0, (1 0) gives 

!b (t * )t [ \ *t f (t * . *) d \ *t;· ( * . * )] l 0 . a. T) ., X, X /\ :c , J; , X - eft /\ :i; f , :7: , X G.f ~ . (12) 

Adding (11 ) and (12), we obtain 

!
·b 

. 
'IJ (t , :~ :, x * )1 [..\ *1 f x(t, x *, :i:* ) + y*(t) 1g:r:( t. :~: *, i ;* ) 

. n 

cl (' *tt· ( * '*) d *( )t ( • '*) )]I - rlt /\ . :t t ,x ,x + dty t g,;; t , .1: ,:t: c.t < O, 

which contradicts (3). Hence the resul t. • 
5. Mixed type duality 

Let J 1 be a subset of M , J2 = J\!f\J1 , and e be the vec tor of JR P whose compo
nents are all ones . We consider the following mixed type dual for (.'viOP ), 
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subject to 

u(a) =a, u(b) = (3, 

>..1 f x(t, u, u) + y(t) 1gx(t, u, u) = :t (>.. 1 f x(t, u, u) + y(t) 1gx(t, u, u)), t E I, 

Yh(t) 1gh(t ,u,u) :2: o, t E I, 

y(t) :2: 0, t E I, 

(13) 

(14) 

( 1.5) 

(16) 

We note that we get a Mond-Weir dual for 11 = 0 and a Wolfe dual for ] 2 = 0 
in (XMOP), respectively. 

We shall prove various duality results for (MOP) and (XMOP) under gen
eralized B-type I conditions. 

THEOREM 5.1 (Weak Duality). If, for all feasible x of (MOP) and all feasible 
(u , >..,y) of (XMOP), any of the following conditions holds 
a) >.. > 0, (J +Yh (t) 1gJ1 e, Yh(t) 1gh) is strong B- pseudo-quasi-type I at u with 
respect to b0 , b1 and 17 with b1 (x, u) > 0, 
b) (J + Yh (t) 1gJ1 e, Yh(t) 1gh) is weak B-strictly pseudo-quasi-type I at u with 
respect to b0 , b1 and TJ with b1 (x, u) > 0, 
c) (J + Yh (t )1 9h e, Yh ( t) 1 9h) is weak B -strictly pseudo-type I at u with respect 
to bo, b1 and T}; 

then the following cannot hold 

Proof. Let x be feasible for (MOP) and (u, >.., y) be feasible for (XMOP) . Suppose 
that 

1b f(t, x, x)dt ~ 1b {f(t, u, u) + [YJ1 (t)
1gh (t, u, u)]e }dt. 

Since x is feasible for (MOP) and (u,>..,y) is feasible for (XMOP), we have 

1b {f(t ,x,x) + [Yh (t) 1gh(t,x,i)]e}dt ~ 

~ ( {f(t, u, u) + [YJ1 (t)
1gh (t, u, u)]e }dt. (17) 
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From (14) , we get 

-1b Yh (t) 1 gh(t , u,u)dt~O . 
Since (f + Yh (t) 19J 1 e, Yh(t) 1gh) is strong B-pseudo-quasi-type I at u with 
respect to bo, b1 and 17 , we get 

bo(X , U) 1b 1J(f , X, U)t [!x(f , U, U) + eyj1 (t)t9J 1x( f, U, U) 

- :f (!x( f, U, U) + eyJI (f) 19JJx(f, U 1 U)) ] dt ~ 0, 

b1(x,u) 1b 1J(t ,x, u) 1 [Yh(t) 19hx(t ,u ,u) - :~Yh(t)t9h x (t ,u,u))]dt~O. 
By b1 (x , u) > 0, and A > 0, it follows that 

bo(x,u) 1b 1J(i, x,u)t [Atfx(t,u,u) +YJ1 (t) t9JJx(t,u,u.) 

- :t(Atj;;(t,u,u) +YJJ(t)t9J1x(t,u,u))]dt < 0, (18) 

1b 7](t, x ,u)t[Yh(t)t9hx(t,u,it)- :tYh(t)t9hx(t,u , u))]dt~O. 
Since b0 (x, u) ~ 0, we get 

bo(x, u) 1 b 7](t , X, u)t [Yh(t)t9hx(t , u , u)- !Yh(t) t9hx (t , u , u)) ]dt ~ 0. 

(19) 

Adding (18) and (19), we obtain 

b 

bo(x,u) 17](t, x ,u)t[Atfx(t,u,u)+y(t)tgx(t,tt,u) 

- :t (At fx(t, u, u.) + !y(t)tg;;(t , u, u.))] dt < o, 
which contradicts (13). 

Now, by hypothesis (b) and from ( 14) and ( 1 7), we get 

bo(x, u) 1b 1](t , x, u)t [!x(t, u, u) + eyh (t)t.9)J x(t, u, it) 

- :t(fx(t ,u ,u) + eyJJ(t) tgJJ ;; (t,u ,u))]dt < 0, 

(20) 

b1 (x, u) t ·ry (t, X, u)t r Yh (t) 1 9hx (t, u, it) - ! Yh (t) t 9hx(t , u , u)) l dt ~ 0. 
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Since b1 (x, u) > 0, ,\ 2 0, and bo(:r:, u.) ~ 0, we get (20) again contradicting (13). 

If (c) holds, then from (14) and (17), we get 

bo(X, u,) lb 'IJ(t , X, ul [f x(t, tL, 7:t.) + ey.] 1 (t)L9.J 1x(t, 'lJ,, u) 

- :t (!:r(t, u , it.)+ ey.1, (t)t9.ft:c(t, u , it)) J dt < 0, (21) 

b1(x, u) lb 1J(t, x, u) t [Yh(t)t9h x(t,u,u) - c~tY.h(t) t 9hx(t, v. , ·u. ))]cit < 0. 

(22) 

From (21) and (22), we have 

lb 1J( t , X, tL )t [f x ( t , 1t, U) + ey.11 ( t)L 9.ft x ( t , tL, it) 

- :t (fx ( t, u, u) + ey J, ( t) t g J, :i ( t, tt, 1i)) J clt < 0, ( 23) 

lb 1J(t, x, n)t [Yh(t)tghx(t,u ,it)- :tYh(t) t9hx(t, u,it)) ]cit < 0. (24) 

Because ,\ 2 0, (23) gives 

1b 1](t, x,u )t[,\tfx(t,tt,1i) +YJ,(t)t9J1x(t ,u,it.) 

- :t ( ,\t f :r( t, u, it.)+ YJ, (t)t9J 1 :r(t, u., it)) J cit < 0, (25) 

adding (24) and (25) , we get 

.lb 1]( t, X, x*) t [A •t. j x ( t, x*, :i; *) + y* ( t) t 9x ( t , x*, :i;*) 

cl ()\*Lj' ( * ' *) cl *( )t ( * '·*))]ci 0 -cit x t , X , X + city t 9x t , X , :r: t < , 

which contradicts again (13). • 
COROLLARY 5.1 Let (u* , )\* , y*) be a feasible solution for (XMOP). Assume 
that yj

1 
(t)tgh (t , u*, it*) = 0 and assume that v,* is feasible for (MOP). If 

weak duality Theorem (5.1) holds between (MOP) and (XMOP) , then, u.* is 
an efficient solution for ( M 0 P) and ( 11. •, ,\ •, y*) is an efficient solution for 
(XMOP). 

Proof. Suppose that u* is not an efficient solution for (MOP), then there exists 
a feasible x for (MOP) such that 

b b 

( J(t , x, x)dt-::; ( J(t , 11.*, u*)dt. 
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And since y j
1 
(t)t.9J 1 (t , v.*, ·u,* ) = 0, we get 

fb j''' f(t ,x, i:)dt:::; {f(t , 'U*,it.* ) + [yj
1 
(t)t9J 1 (t , 'U* , ·it*) ]e}dt. 

·a a 

Since (u*, ;\*, y*) is feasible for (XMOP) and :c is feasible for (MOP) , this in
equality contradicts the weak duality Theorem (5 .1 ). 

Also suppose that ( u *, ;\ *, y*) is not an efficient solution for (XM 0 P). Then 
there exists a feasible solu tion (u, /\, y) for (XMOP) such that 

(26) 

and since yj
1 
(t)tgJ 1 (t, u*, ·u,*) = 0, (26) reduces to 

Since u* is feasible for (MOP) , this inequality contradicts weak duali ty Theorem 
(.':i.l). Therefore v.* and (v.*, ;\ *, y*) are effi cient solutions for their respective 
progffims . • 

THEOREM 5.2 (Strong dtwlity). Let x* be an effici ent solution fo'!' (MOP) at 
which the Kuhn- Tucker qzwlification constraint is satisfied, then ther·e e.Tists 
/\ * E JRP, ;\ * 2: 0, )..,*te = 1 and a piecev;ise smooth function y* : I -----+ mm 
such that (x* , /\ *, y*) is feasible for (XMOP) with yj

1 
(t)t gJ1 (t, :r*, i: *) = 0. 

If also weak dtwlity Theorem (5 .1) holds between (MOP) and (XMOP), then 
(x*, ;\ *, y*) is an efficient solution for (XMOP). 

Pmof. Since :r* is an efficient solution for (MOP) at which the Euhn-Tucker 
qualification constraint is satisfied , then there exists ,.\* E JRP, ;\* 2: 0, J\ *1e = 1 

and piecewise smooth function y* : I -----+ mm such that (3)-(5) of Theorem 
(·U) hold. 

Moreover, :r* E K , hence the feasibility of (x*, J\ *, y*) for (XMOP) follows. 
Also, because weak duality holds between (MOP) and (XMOP), therefore (x*, 
;\ *, y*) is an effi cient solution for (XMOP) . 

If (x*, ;\ * , y*) is not an effi cient solu tion for (XMOP ) then proceeding along 
the lines similar to that for the Corollary (13) , we get a contradiction to the 
weak duality. • 

Acknowledgment: The authors thank the referee for his many valuable com
meEts and helpful suggestions. 
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