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Abstract: We consider a vector minimax Boolean programming 
problem. The problem consists in finding the set of Pareto optimal 
solutions. When the problem's parameters vary then the optimal 
solution of the problem obtained for some init ial parameters may 
appear non-optimal. We calculate the maximal perturbation of pa­
rameters which preseves the opt imality of a given solution of the 
problem. The formula for the stability radius of the given Pareto 
optimal solution was obtained . 
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1. Introduction 

Stability theory is an integral part of any traditional section of mathematics. 
J. Hadamard included the stability condition in the concept of a well-posed 
mathematical problem on a par with conditions of existence and uniqueness 
of solution (see Hadamard, 1902). In optimization the question of stability of 
a problem arises in the case when the set of feasible solutions and (or) the 
choice fun ction depend on parameters, for which the area of change is known 
only. The presence of such parameters in optimization models is caused by 
inaccuracy of initial data, non-adequacy of models to real processes, errors of 
numerical methods, errors of approximation and other factors. So, it appears 
important to the classes of problems in which small changes of input data lead 
to small changes of the result. The problems with such properties are called 
stable. It is obvious that any optimization problem arising in practice can not 
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be correctly formulated and solved without the use of results of the stability 
theory. 

The common presence of discrete optimization models in economy, manage­
ment and design caused a great interest of many specialists in the questions of 
stability, sensitivity and postoptimality analysis of combinatorial optimization 
problems (see, e.g., Sotskov et al., 1995, 1998; Sergienko et al., 1995; Libura 
1996, 2000; Greenberg, 1998; Roesel and Wagelmans, 1999). 

A vector optimization problem is usually understood as the problem of find­
ing a set of efficient solutions, i.e. of choosing from the set of feasible solutions 
the alternatives which satisfy a given optimality principle. In the case where the 
partial criteria of the problem have an equal importance, the Pareto optimality 
principle (see Pareto, 1909) is most often used. Investigation of the stability of 
a vector optimization problem means usually the study of behavior of the set of 
efficient solutions under changing problem's parameters. 

One of the methods of sensitivity analysis is related to the finding of the so 
called stability radius (see e.g. Sotskov et al., 1995; Chakravarti and Wagelmans, 
1999), defined as the limiting level of perturbations of problem's parameters for 
which the initially optimal solution remains optimal. 

2. Statement of the problem 

The problem of stability in the minimax Boolean programming problem can 
be formulated as follows. Let C = (cij) E Rnxm, n, rn E N , m 2: 2, Ci = 
( Cil, Ci2, ... , Cim), Em = { 0, 1} m, and T be the non-empty subset of the permu­
tations set Sm, which is defined on the set Nm = {1, 2, ... , m }. On the set of 
feasible solutions (i.e. Boolean vectors) X ~ Em, IX I > 1, we define the vector 
criterion 

f( x, C)= (h(x, Cl), h(x, C2), ... , fn(x, Cn)) -----7 min. 
xEX 

Ti1e components (partial criteria) are functions 

fi( x , Ci) =max '""" Cit(j), i E Nn, 
tET L.., 

jEN(x) 

where 

t= 
1 2 

t(1) t(2) ::: t(~) ] ' 

Suppose that Ci[t] = (cit(l), Cit(2), ... , Cit(m)). Then we can rewrite the partial 
criteria in the following form 

Ux.r:J = maxCJtlx. i EN, . 
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The problem of finding the set of effi cient solutions (the Pareto set) 

P 11 (C) = {x EX: 1r(x, C)= 0} 

is called a vector minimax Boolean programming problem and denoted zn( C) , 
with 

1r(x ,C) = {x' EX: q(:r,x' ,C) 2: O(n)> q(x,1;' ,C)-# O(n) } , 

q(1;, x' ,C) = (qJ( x,x' ,CI), q2(x,x' ,C2), ... ,q11 (X,.?: ' ,C, )) , 

qi(x , x' , Ci) = f i(x , Ci) - f;(x' , Ci) , i E Nn , O( n ) = (0 , 0, ... , 0) E R ". 

The number 

pn(xo ,C) = { su
0
pn if n -:p 0 

otherwise 

is called the stability radius of the efficient solution x0 , where 

en= {E > 0: VC' E ~(E) (x0 E P 11 (C + C'))}, 

~(E)= {C' E Rnxm :II C' ll oo< c}. 

3. Basic results 

For any x0 -# x and any permutation t E T we introduce the following notations: 

T(x0
, :e) 

N(x, t) 

{t E T: Vt' E T (N(:r0
, t)-# N(x , t'))} , 

{t(j): j E Nm, Xj = 1} , f(x0, .T) = T \ T(x0 ,x) . 

LErv!MA 3.1. Assume that :c0 -# :r, t0 E f(x 0 ,x) . Th en C;[t0]:r0 ::; f 1(x, Ci} for 
any index i E Nn and matr"ix C E Rnxrn 

The efficient solut ion x0 is called trivial if the set T(x0 , x) is empty fo r any 
:r E X\ { x0 } and non-trivial otherwise. 

THEOREM 3 .1. The stability radius pn ( x0 , C) of any trivial solution x0 is infi­
nite. 

Proof. Let x0 E p n(C). Since x is trivial, the equality T = T( x0 ,x) is true for 
any X EX\ {x0

}. By Lemma 3.1 , the inequality (C + C');[t0]x0 
::; f ,(x, ci +CD 

holds for any x E X\{x0 }, t0 E T, ·i E Nn, C' E Rnxm. Hence q(x0 ,x, C + 
C') ::; O(n) . So, the solution x0 E P" (C) preserves efficiency for any independent 
pertubation of matrix C. Thus, p"(x0

, C) = oo . Theorem 3.1 is proved. • 

LEMMA 3.2. Let x0 be non-trivial, r.p > 0. Suppose that for· any matrix C' E ~( r.p) 
and x E X \ {x0

} there exists an index i E Nn such that qi(x,x0 ,Ci +CD> 0. 
Th en, :r0 E p n(C + C') for any matrix C' E ~(r.p) . 
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For any non-trivial solution x0 put 

n o . . Ci[t] x - Ci[t0 ]x0 

c.p (x , C) = mm max mm max ( 0 0 , 
xEQ(xO)iEN,tOET(xO,x) tET a X , t ,x, t) 

where 

a(x0
' t0

' x, t) = I(N(x0
' t0

) u N(x, t))\(N(x0
' t0

) n N(x , t))l , 
Q(x0

) = {x E X\{x0
}: T(x0 ,x) =/; 0}. 

The following statements are true 

Ci[t]x - Ci[t0 ]x0 + II C; ll cxP(X0
, t0

, x, t) 2: 0, i E Nn, 

t0 E T(x,x0
) -t :Jt E T (a(x 0 ,t0 ,x,t) = 0) . 

It is easy to see that 0 ::; c.pn(x0 , C) < oo. 

(1) 

(2) 

THEOREM 3.2. The stability radius pn(x0 , C) of any non-trivial solution x0 is 
expressed by the formula 

Proof. First let us prove that pn(x0 ,C) 2: c.p := c.pn(x0 ,C). For c.p = 0, there is 
nothing to prove. Let <p > 0. Then, for any x E X\ { x0 } there exists an index 
i E Nn such that 

. Ci[t]x - Ci[t0]x0 

mm max > c.p . 
t 0 ET(x 0 ,x) tET a(x0 , t0 , X, t) -

Using (1) and (2) we get the following statements 

q;(x,x0 ,C; + c;) = max(C; + c;)[t] x - max(C; + c ;) [t0 ]x0 = 
tET t0ET 

=min max(Ci[t]x- Ci[t0]x0 + c;[t]x- c;[t0]x0
) 2: 

t0 ET tET 

2: min max( C;[t]x - C;[t0]x0 
- IIC: II ooa(x0

, t0
, x, t)) = 

~ET tET · 

= min max(Ci[t]x - C;[t0]x0
- II CI II ooa(x0

, t0
, x, t)) > 

t 0 ET(x0 ,x) tET 

> min max(Ci[t]x - C;[t0 ]x0 - c.pa(x0 ,t0 ,x,t))2: 0. 
t0ET(x0 ,x) tET 

By Lemma 3.2, we obtain that any non-trivial solution x 0 preserves efficiency 
for any perturbing matrix C' E lR(cp) (i.e pn(x0 , C) 2: cp) . It remains to check 
that pn(x0 ,C)::; cp. According to the definition of <p, there exists x E X\{x0 } 

S'JCh that for any i E Nn 

(3) 
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Let E > 0. Consider the following perturbing matrix c;. Every row of this 
matrix consists of the elements 

c*. = { a if j E N ( x0 ,i) 
' 1 - a otherwise 

where c.p <a < c:. Using (3). we get the following expressions : 

Qi(x , x0
, Ci + C;) = max(Ci + Ct)[t]x- max(Ci + Ct)[t]x0 ~ 

tET tET 

max(Ci + Ct)[t]x- (Ci + Ci)[~x0 = (Ci + Ct)[~x- (Ci + cnmx0 = 
tET 

= Ci [~x - Ci[~x0 - aa-(x0
, t, x, i) < Ci[~x- Ci[~x0 

- c.pa-(x0
, t, x, i) ~ 

i'l 11 0 ,o - ~ Ci[t]x - Ci[~x0 

~ Ci[tJx - C;[tJx - a(x , t, x, t) max 
0 

- ) ~ 
tET a(x , t ,x, t 

i'l 11 0 0 - ~ Ci[~x - Ci[i]x0 

~ C;[tJx - C;[tJx - a(x , t , x, t) 
0 

- ~ = 0. 
a(x , t ,x, t) 

Hence, x0 is not an efficient solution of the perturbed problem zn ( C + C*), 
where C* E ~(c.p) . It means that pn(x0 , C) 2 c.p. That completes the proof of 
Theorem 3.2. • 

4. Supplementary remarks 

I I h ITI [ 1 2 .. . rn ] h h I n a particu ar case, w en = 1, t = 
1 2 

.. . rn , we ave t e usua 

vector Boolean programming problem with linear partial criteria: 

fi( x , Ci) = Cix, i E Nn. 

Then, from Theorem 3.2 we conclude that the stability radius of any solution 
x 0 is expressed by the formula (see Emelichev et a!. , 2003) 

n ( 0 C) . Cix - Cix0 

p x , = mm max , 
xEX\{xO} iEN,. a(xO , x) 

where 
m m m 

j = l j=l j=l 

For the case of a scalar problem (n = 1) , our formula for the stability radius 
transforms into (compare with Libura, 1993) 

n( 0 C) . Cix- Cix0 

p x ' = Xm\m{ o} ( o ) . xE x a X , X 
(4) 

At the end of this paper we give a small example. 
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Let n. =·m=2,X= {:r1, :c2} , .-r 1 =(0,1) , .12=(1, 1) , T ={t1,t2 }, 

[1 2] [1 2] [1 1] t1 = 1 2 ' t2 = 2 1 ' c = 2 . 

Then 

f(x1 ,C) = (1,2), f( :r:2,C) = (2,3),P2(C') = {.1:1}. 

By applying Theorem 3.2 we get p2 (x1 , C) = &. If we remove t2 from the set T, 
t hen -

.JCr1, C)= (1, 1), f(x2, C) = (2, 3), P 2 (C) = {.TJ}. 

ttsing ( 4) we get r} (x1, C) = 1. 
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