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A bstract: The problem of genome mapping is considered. It 
is showed t hat the Double Digest P roblem (DDP ) is NP-hard in its 
search version , while its decision version is trivially easy. 
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1. Introduction 

Creation of physical maps is one of the basic steps in genome studies. Such a 
map of a DNA strand contains information about locations of markers, which 
are short, specific subsequences. There are many ways of constructing a physical 
map. One of them is based upon spli tting a target strand into many shorter 
ones, called clones , so that they would mutually overlap. Next, information 
about each clone is received. This information consists of knowledge about 
the sets of short and unique DNA fragments , called probes , that bind to each 
clone during the hybridization process. T he methods and algorithms based on 
the foregoing approach are presented, in particular, in Alizadeh et al. (1995), 
Setubal and Meidanis (1997). 

Another way of creating a physical map, consists in the diges tion of DNA 
with restriction enzymes. These enzymes cut DNA molecules within specific, 
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short patterns of nucleotides called restriction sites. After the digestion , the 
lengths of obtained fragments are measured and the original ordering of these 
fragments must be reconstructed, and this is the place where computer science 
methods come to the effect. In practice, several variants of this approach are 
used . Two of the best known are the partial dig est and the double digest. 

In the former variant only one restriction enzyme is used, see Skiena et 
al. (1990), Skiena and Sundaram (1994). After multiplying, the target DNA is 
divided into a few sets. Molecules from each set are digested by the same enzyme 
but the time span allowed for digestion differs among sets. The reaction time 
spans should be determined in such a way that, in t he case of ideal experiment, 
in one of the sets most of DNA strands are cut at most once (of course, the site 
need not be the same for different molecules), in the other set - exactly twice, 
and so on. The longest reaction t ime span must suffice to let the enzyme cut all 
molecules at all occurrences of the restriction site. As a result, one gets three 
collections of restriction fragments, whose lengths are then measured during a 
gd electrophoresis process. The problem of restriction map construction based 
upon the presented biochemical experiment is known as PDP (the Partial Digest 
Problem). The computat ional complexity of PDP is an open question (Setubal 
and Meidanis, 1997). Recently, an approach has been designed which reduces 
the complexity of the biochemical stage to two digestions only (the very short 
time span and the very long one) , thus result ing in definition of the so called 
Simplified Partial Digest P roblem (SPDP), see Blazewicz et al. (2001). The 
method compares favorably with the approaches existing so far. 

In the latter variant (i.e. the double digest) two restiction enzymes are used 
for digestion. They are labeled as a and b. The target DNA is multiplied in the 
PCR reaction and the obtained copies are divided into three sets. Molecules 
from the first set are digested by one enzyme (a) , molecules from the second 
set are digested by t he other enzyme (b), while molecules from the third one 
are cut by both enzymes. All digestions are complete, since the t ime span of 
each reaction is long enough to let t he enzyme cut the target strands in each 
occurrence of the restriction site. As a result one gets three collections of shorter 
DNA fragments that correspond to the three digestion processes. At the end 
the lengths of obtained fragments are measured during a gel electrophoresis 
process and recorded as three multisets. On the basis of this data the original 
locations of restriction sites on the t arget DNA should be reconstructed . The 
combinatorial problem based upon the described ideal biochemical experiment is 
known as the Double Digest Problem (DDP). The proof of the NP-completeness 
of DDP (its decision version) has been presented in Goldstein and Waterman 
(1987) , however , it turned out to be incorrect and the decision version of the 
problem appears to be t rivially easy. 

In this paper, we present an appropriate proof of the NP-hardness of t he 
search version of Double Digest P roblem assuming that restriction sit es recog­
nized by enzymes used for digest ion processes do not cover one another. Thus, 
both enzvmes cut DNA molecules in different loci. 
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In Section 2 mathematical formulations of DDP in decision and search ver­
sions are given. In Section 3 the proof of the NP-hardness is presented. Section 4 
concludes the paper. 

2. Problem formulation 

Let n denote the number of restriction sites recognized by enzyme a and let 
·m denote the number of restriction sites recognized by enzyme b. Moreover, 
let l denote a length of a target DNA molecule. Next let A = { a 1, ... , an+ l} 1 

B = { b1 1 • •• , bm+ d and C = { c1, ... , Cm+n+ d denote the non-decreasingly or­
dered multisets of the lengths of DNA fragments obtained as a result of digestion 
with, respectively, enzyme a, enzyme b, and enzymes a and b combined. We 
will formulate now the Double Digest Problem in both versions: the decision 
a.nd the search version. 

PROBLEM 1 Double Digest Problem in the decision version: 
Instance: A , B , C and l , m., n as defin ed above. 
Question: Is it possible to find any permutation 0' of multiset A and any per­
mutation J.L of mtdtiset B such that the list of fragment lengths, obtained on the 
segment of length l as the result of composing 0' and J.L , ordered non-decreasingly, 
would be identical to the list (c1, ... , Cm+n+l) ? 

PROBLEM 2 Double Digest Problem in the search version: 
Instance: A, B, C and l , m, n as defin ed above . 
Goal: Find any permutation 0' of multiset A and any permutation J.L of multiset 
B such that the list of fragment lengths, obtained on the segment of length l as 
the result of composing 0' and J.L , ordered non-decreasingly, would be identical to 
the list (c1, ... , Cm+n+ l). 

In what follows , we will denote by DDP(d) and DDP(s) , respectively, the de­
cision and search versions of the Double Digest Problem. Obviously, DDP( d) is 
easy, since for any error-free input data coming from the biochemical experiment 
there must exist permutations 0' and J.L for which the desired property holds , 
because the input data reflect a real, existing physical map. More formally: 

DDDP(d) = YDDP(d)> (1) 

where D DDP(d) denotes the set of all instances of DDP(d) and YnDP(d) denotes 
the set of all instances of DDP( d) with the answer 'yes'. As a result , the 
NP-completeness proof of DDP(d) given in Goldstein and Waterman (1987) is 
not correct. On the other hand, the problem of finding permutations 0' and 
J.L obeying the assumptions of the problem considered is computationally hard. 
This will be proved in the next section. 
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3. Proof of the NP-hardness of the search version of the 
Double Digest Problem 

At the beginning we will formulate some problems that will be used in the 
following proofs. 

PROBLEM 3 PaTt·ition (only decis·ion version): 
Instance: setS = { s 1, s2, . .. , sk} of k elements and multiset F = {f(sl), j(s2), 
... , j( sk) } of sizes, wheTe f(s i) > 0. 
Question: Is there a subset S' C S such that the following dependence holds: 

Z::s ES' f(s) = Z:: sES-5' f( s) g 

Let nq denote the number of res triction sites recognized by enzyme aq and 
let mq denote the number of restriction sites recognized by enzyme bq. More­
over, let lq denote the length of a target DNA molecule. Next , let Aq = 
{a.q1, ... ,aq(n,,+l )} and Bq = {bq1 , ... , bq (m,, + 1) } denote , non-decreasingly or­
dered, mult isets of the lengths of DNA fragments obtained as a result of digestion 
with, respectively, enzymes O.q and bq. In addition, let Cq = { Cq 1 , ... , Cq( m,, +n,,+l)} 
denote any multiset, sorted in non-decreasing order. The quasi Double Digest 
Problem in both versions: the decision one and the search one is formulated 
below. 

PROBLEM 4 quasi Double Digest Problem in the decision version ( qDDP( d) joT 
shoTt): 
Instance : Aq , Bq , Cq and lq, mq , nq as defined above. 
Question : Is it possible to find any permutation O'q of multiset Aq and any 
permutation J.l·q of multiset Bq such that the lis t of fragment lengths, obtained 
on the segment of length lq as the result of composing 0' q and /J.q , ordered non­
decreasingly, would be identical to the list (cql, . . . , Cq(m,,+n,, +l ))? 

PROBLEM 5 quasi Double Digest Pro blem in the search version ( qDDP(s) for 
shoTt}: 
Instance: Aq, Bq, Cq and lq, 1nq, nq as defined above. 
Goal: Find any peTmutation O'q of multiset Aq and any permutation /J.q of mul­
tiset Bq such that the list of fragm ent lengths, obtained on the segment of length 
lq as the result of composing 0' q and /J.q, oTdered non-decTeasingly, would be 
identical to the lis t (cq1, . . . ,cq(m.,+n,,+l) )· 

We see that due to t he form of Cq, the following equation holds for both 
qDDP(d) and qDDP(s) : 

(2) 

Now, our aim is to prove that the Double Digest Problem in its search version 
is NP-harcl. We will do this by proving the following facts: 

PARTITION cxr qDDP(s) cxr DDP(s ), (3) 
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wh2re exT stands for a polynomial Turing reduction (Garey and Johnson , 1979). 
Since Partition is NP-hard, (Karp, 1972), we obtain the result. 

LEMMA 3.1 PARTITION exT qDDP(s). 

Proof. In order to prove the lemma, one has to construct an algorithm A for 
solving Partition that uses a polynomial number of times a procedure P which 
solves qDDP(s). 

Let us consider any procedure P that solves the quasi Double Digest Problem 
in the search version: 

P(IqDDP (s)) =solution E Z(IqDDP(s)) whenever Z(IqDDP(s)) ¥ 0, (4) 

P(IqDDP( s)) = 'no' whenever Z(IqDDP(s)) = 0, (5) 

where Z(J) denotes the set of all solu t ions for any given instance I of the 
problem. 

Our goal is to construct an algorithm A for solving Partition that uses proce­
dure P a polynomial number of times. With this end in view, let the algorithm 
A be as follows: 

A(! PART) = generate the set G(IPART) of corresponding instances of qDDP(s) 
and call procedure P for each generated instance. 
A(I) = 'yes ' <=> 3JEG{I) (P(J) = solution) , where G(J) denotes the set of 
corresponding instances of qDDP(s) generated by algorithm A for instance I. 

Let us consider any instance I PART = (k, S, F) of the Partition problem. The 
generation of set G(IPART) is as follows: nq = k- 2, mq = 1, lq = L,sEsf(s), 
Cq = F , Bq = { ~ · lq, ~ · lq} for all generated instances. The only difference 
relates to multiset Aq, as for the i-th generated instance IqDDP(d)i E G(IPART) 
the following holds: 

(6) 

where i = 1, ... , ~ · (k2 
- k), 1 ~ u ~ k, 1 ~ w ~ k and u ¥ w. 

Obviously, for each generated instance, another pair of elements of F is 
being removed , thus resulting in ~ · (k 2

- k) different instances. Also note that 
11 7; = (~ ·lq, ~ · lq) = f.Lq for each element of G(IPART)· 

Algorithm A solves the decision problem I1 iff: 
1. for each instance I E Yi1 the answer 'yes' is generated, 
2. for each instance I E Dn - Yn the answer 'no' is generated. 

Thus, we have to prove that: 
1. YIED(PART) : (IE YPART => A(I) = 'yes '), 
2. YI ED(PART) : (I~ YPART => A(I) = 'no'). 

First, let us consider any instance I= (k, S, F) E Y PART · Note that A(J) = 
'yes' <=> 3JEG(I)(P(J) = solution), where G(J) denotes the set of ~ · (k2 - k) 
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instances generated by algorithm A for instance I. Because the answer for I is 
'yes ' , there exists a subsetS' such that L,sES'f(s) = L,s ES-s'f(s). Thus, for 
auy instance Ji E G(J), i = 1, ... , ~ · (k2 - k) , the elements of multiset Cqi can 
be divided into two sets with equal sums of sizes. Moreover, there exists at least 
one instance J; E G(J), for which one can construct a permutation CJqi of Aq;, 
i = 1, ... , ~ · (k2

- k) such that the composition of CJq i and /-Lq i results in the list 
with the desired property. 

Second, let us consider any instance I = (k , S , F) ~ YPART· Note that 
A(I) ='no'¢::? VJ EG(I)(P(J) ='no'), where G(J) denotes the set of~· (k2

- k) 
instances generated by algorithm A for instance I . Because the answer for I is 
'no', there does not exist a subsetS' such that L, sES' f(s) = L, sES-S' f( s). Thus , 
for any instance Ji E G(J), i = 1, . . . , ~ · (k2 - k), the elements of multiset Cqi 
cannot be divided into two sets C~; and Cqi - C~i with equal sums of sizes, while 
Bqi = Bq = H · lq , ~ ·lq} and J-L = (~ ·lq , ~ ·lq). Due to that fact, there does not 
exist any permutation CJ qi of Aqi for any instance J; E G (I), i = 1, ... , ~ · ( k2 - k) 
such that the composition of CJq i and /-Lq would result in the list with the desired 
property. • 

Let us note that as a result of the LEMMA we have proven that qDDP(s) is 
NP-hard. Now, we will prove the second part of our reduction process. 

LEMMA 3.2 qDDP(s) r:xy DDP(s) . 

Proof. Again, in order to prove the lemma, one has to construct an algorithm 
A for solving problem qDDP(s) that uses a polynomial number of times a pro­
cedure P which solves DDP(s). The most important part of the proof consists 
in proving the following dependence: 

YnnP(d) = YqDDP(d )· (7) 

With this end in view, let us consider any instance InnP( d) = (n,m , l , A , B , C) 
ofDDP(d). Clearly, since DnD P(d) = YnnP(d) (let us recall that this fact follows 
from the trivial answer to any ideal biochemical experiment), there must exist 
permutations CJ and f-L for which the answer is 'yes'. The corresponding instance 
IqDDP( d) = (nq, mq, lq, Aq, Bq, Cq) of qDDP(d) can be easily constructed as 
follows: nq = n, mq = m, lq = l , Aq = A, Bq = B , Cq = C, questions of the 
two instances being the same. Obviously, an answer to the question of IqDDP(d) 
is 'yes' and holds for permutations CJq = CJ and /-Lq =f-L. 

Now, let us consider any instance IqDDP(d) = (nq, mq, lq, Aq, Bq, Cq) of 
qDDP(d) for which the answer is 'yes ' and holds for the permutations CJq 
and /-Lq · Thus , the non-decreasingly ordered list of elements obtained out of 
the composition of CJq and /-Lq is identical to the list (cql, ... ,Cq(m,,+n,,+l))· 

Adding the fact that (2) holds, we can construct the corresponding instance 
Inn P(d ) = (n, m, l, A , B, C) of DDP(d) as follows : n = nq , m = mq, l = lq , 
A = Aq, B = Bq, C = Cq. Obviously, an answer to the question of InnP(d) is 
'yes' and holds for permutations CJ = CJ q and J-L = J-Lq . 
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Thus , we have shown that any instance of DDP (d) is also an instance of 
qDDP(d) and that any instance of qDDP(d) for which the answer is 'yes' is 
also an instance of DDP(d). Adding the fact that DDDP( d) = YDD P(d)> we have 
proven the following dependence: 

YD DP(d) = Y qDDP(d) · (8) 

Now, let us consider any procedure P that solves the Double Digest Problem in 
the search version: 

P(IDDP(s)) =solution E Z(IDDP(s)), (9) 

where Z(I) ::j:. 0 denotes the set of all solutions for given instance I of the 
problem. 

Our goal is to construct an algorithm A for solving qDDP(s) that uses proce­
dme P a polynomial number of times. With this end in view, let the algorithm 
A be as follows: 

A(IqDDP( s ) ) = P(IDDP (s)), where P denotes a procedure that solves DDP(s) 
and I DDP(s) denotes the corresponding instance of DDP(s). 

Thus , A(IqDDP(s)) = 'solution' whenever the following dependence holds: 

Iq DDP(d) E YqD DP(d)' 

while A(IqDDP(s) ) = 'no' otherwise. 

Now , we may prove the main result. 

TH EOREM 3. 1 Problem DDP(s) is NP-hard. 

(10) 

• 

Proof. Follows immediately from the lemmae and the fact that Partition is 
NP-hard. • 

4. Summary 

In the paper, the Double Digest Problem in the search version was proved to be 
NP-hard under the assumption that the restriction enzymes cut DNA molecules 
iP different loci. It was also shown that the number of equivalent solutions grows 
exponentially with the length of a DNA strand being mapped (see Vlaterman, 
1995; Goldstein and Waterman, 1987; Schmitt and Waterman , 1991) . A good 
alternative is, thus, the Simplified Partial Digest Problem (SPDP in short) , 
presented in Blazewicz et al. (2001 ). 

References 

ALIZADEH, F., KARP , R.M. , WEISSER, D.K. and ZWEIG, G. (1995) Physi­
cal mapping of chromosomes using unique end-probes. Jmmwl of Com­
putational Biolo_qy 2, 159-184. 



140 J. BLAZEWICZ et a l. 

BLAZEWICZ, J., FORMANOWICZ, P., JAROSZEWSKI, M., KASPRZAK, M . and 
MARKIEWI CZ, W.T. (2001) Construction of DNA res triction maps based 
on a simplified experiment . Bioin.formatics 5, 398-404. 

GAREY, M.R. and JOH NSON, D.S. (1979) Computers and Intractability. A 
Guide to the theory of NP-CO'Inpleteness . W.H. Freeman and Company, 
San Francisco. 

GOLDSTEIN, L . and WATERMAN, M .S. (1987) Mapping DNA by stochastic 
relaxation. Advanced Applied Mathemat·ics 8, 194-207. 

KARP , R .M . (1972) Red7J.cibility among combinatorial problems. In: R.E. 
Miller and J.W. Thatcher, eels. , Complexity of Computer Computations. 
Plenum Press, New York, 85-103. 

RoSENBLATT, J. and SEYMOUR., P . (1982) Thestructureof homeomctricsets. 
SIAM J. Alg. Disc. Math . 3, 343-350. 

SCHM ITT, W. and WATERMAN, M .S. (1991 ) Multiple solu tions of DNA re­
striction mapping problem. Advanced Applied Mathematics 12, 412-427. 

SETUBAL, J. and MEIDANIS , J . (1997) Introduction to Computational Biol­
ogy. PWS Publishing Company, Boston. 

SK IENA, S.S ., SMITH, W.D. and LEM KE, P. (1990) Reconstructingsetsfrom 
interpoint distances . In: Proc. Sixth ACM Symp. Computational Geom­
etry. 332-339. 

SKIENA, S.S. and SUNDARAM, G. (1994) A partial digest approach to restric­
tion site mapping. Bulletin of Mathematical Biology 56, 275-294. 

WATERMAN, M.S . (1995) Intr·oduction to Computational Biology. Maps , Se­
quences and Genomes. Chapman & Hall, London. 


