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Abstract : At the conceptual stage of design , designers only 
have vague ideas of initial shapes which they gradually refine . These 
imprecise shapes may be specified by a set of fuzzy shape descriptors 
which represent the intent of a designer. It is also desirable to be 
able to save them in a database for future reference or for use as 
initial shapes for new designs. Most research on fuzzy databases 
has been focused on theoretical aspects while a fuzzy database is 
rarely seen in practice, especially in the design area. This paper 
aims to construct a fuzzy shape database to support shape design 
by integrating fuzzy data processing and fuzzy querying functions 
into a conventional database. A possibility-based framework is used 
for a fuzzy relational database model. 
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1. Introduction 

Design is generally defined as a process of creating a description of an artifi
cial object that satisfies certain constraints . Conceptual design is the process 
in witch tentative design alternatives are produced. This process is generally 
achieved by sketching and prototyping. Conceptual design is intrinsically im
precise with imprecision coming from both designers ' thinking and practical 
problems. At this stage, designers have only vague ideas of initial shapes that 
they gradually refine. Therefore, appropriate tools should satisfy the require
ments of fuzziness in shape description, and allow designers to work at a higher 
level without having to consider precise details so that their creativity is not 
hindered. Existing CAD systems based on rigid, precise geometric represen
tation such as vertices , edges and surfaces lack these imprecise properties. In 
order to support the top-down shape design process , it is desirable to be able 
tc represent the intent of a designer using a set of descriptive words that we 
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call shape descrip tors. The fuzzy set approach that was introduced by Zadeh 
(Zadeh , 1965, 1999) is particularly suitable for handling the imprecise shape 
perception process of humans and hence is chosen for t he shap e representation . 
In addition to its perceptual aspect , a shape also needs to be physically mod
elled in a CAD (Computer-Aided Design:) system so designers can communicate 
t heir designs to manufacturers, therefore an underlying geometric shape repre
sentation is needed. We have constructed a fu"''~Y shape specification system to 
b; ·idge these two aspects of shape (P ham and Zhang, 2000), where each set of 
shape descriptors corresponds to a set of shapes that looks similar yet slightly 
different. We call this set of shapes a fu zzy shape . 

In many cases, successful designs may be stored in a database and retrieved 
later to be used as ini tial shapes fDr new designs. T he database that performs 
fmzy shape management is called a fuzzy shape database. Most research on 
fu zzy databases has been focused on theoreti cal aspects while fuzzy da tabases 
are rarely seen in practice, especially in the design area. T his paper aims to con
st ruct a fuzzy shape da tabase to support shape design by integrating fuzzy data 
processing and fuzzy querying functions into a conventional relational database. 
We concentrate on fuzzy shape representation , indexing, retrieving and querying 
issues. 

In a fuzzy database , the fuzzy set approach is used to represent and ma
nipulate imprecise or uncertain information. Fuzzy relational database is an 
extension of conventional relational database in t he sense that it allows fu zzy 
attribute values or fuzzy relations to be represented in a relational model. A key 
characteristic of fuzzy database is that the domain values need not be atomic. 

There are two main aspects in the application of the fuzzy set approach to 
the database area: 

• Building fu zzy front,cncl querying systems for regular, crisp databases, 
such as t he well-known SQLf a nd FQUERY systems (Kacprzyk and Zadro
zny, 1997; Petry and Bose, 1996). This kind of systems is used to make 
the query more flexib le. Fuzziness happens only a t the query level. 

• Building a full Database Management System (DB MS) that can facilitate 
the manipulation of imprecision and vagueness represented by fuzzy sets . 
In such a system, fu zziness happens in the database itself including at
tribute data, rela tionship and entity as well as external querying (Petry 
and Bose, 1996; Pons eta!. , 1997; Vila et a!. , 1995; Yazici eta!., 1999) . 

Our work belongs to t he second class because all shape descriptors are de
scriptive terms ass0cia.ted with fuzzy sets and all parameters hold fu zzy set 
values. Yet in practice, we map this application to the first class by treating the 
attributes with fuzzy set values in a similar way as multiple-valued a ttributes 
are usually treated in a conventional relational database. Add-in functions are 
employed to perform fuzzy upclatiri.g, querying and retrieving. 

Current fuzzy database representation approaches can be categorised into 
three fr ameworks according to the way fuzzy data is represented: similiuity
based (Buckles and Pet ry, 1982; Pet ry and Bose, 1996), fu zzy-relation-based 
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(Baldwin , 1983; Baldwin et a!. , 1995) and poss ibility-based (Bose: and Gali
bourg, 1989; Petry and Bose:, 1996; Prade and Testcmale, 1987; Umano, 1982), 
The sirnilar·ity-based fr amework associa tes a domain similarity rela tion with 
each attribute instead of just. an identity relation . This method relies on the 
pre-partition of attribute's domain and the pre-definition of the c:orrespond
illg ~imilarity relation. The fuzzy-r-elation -based fr amework uses weighted tuples 
to represent fuzzy relations in which each tuple is associated with a degree of 
truth while the values of individual attributes arc crisp. As this fr amework 
represents the imprecise information t hrough a membership value associated 
with the overall t uple, it is not very expressible. In practice, it is often used 
along with other frameworks such as the possibility-based framework (Baldwin 
eta!. , 1995; Umano, 1983) . The possibility-based fr amework uses poss ibility dis
tribution to represent imprecise information including linguisti c: terms. In this 
fr amework, the relation is an ordinary relation yet ava ilable imprecise informa
tion about. the value of an attribute for a tuple is represented by a possibility 
distribution . Hence, this representation is more fl exible and expressive than 
the similarity-based framework and the fuzzy- relation-based framework. As the 
possibili ty-based fuzzy database model associates imprecise information directly 
with data items, it satisfi es t he need for storing fuzzy shapes whose parameters 
are represented as possibility distributions. We will therefore fo cus on this 
framework in this paper. 

This paper is organized as follows. In Section 2, we introduce the geomet
ric and perceptual representa tion of fu zzy shapes. A fuzzy shape specification 
system that provides the original data for the fuzzy shape database is briefly 
outlined. The shape descriptions that are based on the vague perception in the 
design process are then discussed. In Section .3 , an overview of the database 
structure is outlined. Section 4 presents the conceptual modelling of this fuzzy 
shape database. Sec tion 5 gives the shape indexing methods that index shapes 
in several different ways. For quick and crisp searching of shape, a shape iden
tification number is automatically generated and will be used as the primary 
index. For general shape retrieval, t he combination of shape name and version 
is used as an alternative index. For fiexiblc and vague shape retrievaL the com
bination of a set of shape descriptors is employed as ano ther candidate index 
of shapes . Since the first indexing method is very common in data base design 
and the second indexing method is conventional in engineering databases , we 
do not need to discuss these techniques in this paper. Instead , we wi ll focus 
on the third shape indexing approach. In Section 6, a knowledge-base assisted 
sLape querying rnethod is discussed . A graphical user interface is constructed 
for natural-language-like query input and a graphical three-dimensional shape 
display window is employed for support ing query output. The SQL querying 
mechanism of a. commercial database management system is employed as the 
underlying querying engine. In Section 7, the possibility-based fu zzy shape re
trieval method is presented. A hierarchical shape matching approach that aims 
to speed up the fuzzy shape retrieval process is discussed. Finally, Section 
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provides the implementation and test results. Conclusions and future work are 
given in the last section. 

2. Shape representation 

Many representational schemes exist for modeling 3D shapes : Constructive Solid 
Geometry (CSG) , Boundary Representation (B-Rep) , sweeping, cellular decom
position (Bronsvoort , 1990; Mntyl, 1988), NURBS (Piegl and Tiller , 1997) , and 
parametric and feature-based modeling (Shah and Mntyl, 1995). These model
ing methods are based on precise representations of geometric objects, such as 
vertices, edges, surfaces as well as exact topology relationships between them. 
These methods are good at supporting the detail design process where all pre
cise design details must be represented. However, they are not suitable for 
supporting conceptual design which is inherently qualitative and uncertain . 

Qualitative shape models such as geons have been used for obj ect recog
nition in the computer vision area (Biederman, 1987; Dickinson et al. , 1993; 
Dickinson, 1994) because they are suitable for dealing with imprecise data or 
lack of data. However, qualitat ive models cannot provide sufficient quanti
tative information that is required for shape specification and manipulation in 
CAD/CAM (Computer-Aided Design and Manufacturing) systems. Deformable 
supcrquadrics arc composed of basic super-ellipsoids and their deformations. 
Basic shape parameters and deformation parameters provide precise quantita
tive information about a shape. Since the linguistic descriptions of a shape can 
be linked to shape parameters directly, deformable superquadrics also provide 
qualitative information. The properties of being both quantitative and qualita
tive makes superquadrics the ideal candidate for bridging qualit ative conceptual 
shape design and detail design . These properties also make it possible for us 
to int roduce fuzzy set approach into a CAD system, where fuzzy set s are used 
to represent design intents formu lated by descriptive terms and shape param
eters are used to construct a solid model. We have therefore chosen to use 
superquadrics as the basic representat ion for 3D shapes , where a shape is rep
resented by a set of shape descriptors and a set of shape parameters. The 
descriptors are the semantic features of a shape such as rmmdness or bendiness. 
The parameters are the geometric elements of a shape that are used to define a 
shape geometrically. The following subsections explain these shape parameters 
and descriptors in more detail. 

2.1. Geometric representation: deformable superquadrics 

Superquadrics may be expressed by an implicit equation: 

(1) 
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where, c1, c2 are shape parameters which control the shape roundness and 
squareness along the north-south direction and the west-east direction , respec
tively. For example, if a1 = a2 = a3 = 1, the shape is a cube when c- 1 = c2 -t 0, 
and the shape is a sphere when c1 = c2 = 1. When c1 and c2 change from nearly 
0 to 1, t he shape change continuously from a cube to a sphere. a1 ,a.2 and a.3 are 
scalar parameters which represent the length of a shape along the x, y and z 
axes , respectively. Since the shape description of an object does not relate to its 
size, we let a1 = 1 and a.2 , a3 represent the ratio of a2/ a. 1 and a.2/ a.1 . Thus· a.2 

and a 3 control the relative dimension of the two cross sections of a superquadric 
shape. For example, when c1 = c2 = 1, if a.2 = a. 3 = 1, the shape is a sphere, 
otherwise it is an ellipsoid . 

Several deformation parameters, k,c, ky, kv and t , are employed to control 
the deformation quality tapering, bending and twisting. The parameters kx and 
ky -:::ontrol the tapering property. When kx = ky = 0, there is no tapering, while 
when kx = ky = 1, the shape is extremely sharp (one end is reduced to a point). 
The parameter kv controls the bending property. When kv = 0, the shape is 
not bent at all while when kv > 0, the shape can change from slightly bent to 
eYtremely bent . The parameter t controls the twisting property. When t = 0, 
shape is not twisted at all while when t > 0, shape can change from slight ly 
twisted to extremely twisted. With the incorporation of the four deformation 
parameters into the original superquadrics , a deform able superquadric shape 
can be represented by eight shape parameters: 

F0r further information on deformable superquadrics , please refer to Barr (1981 , 
1984, 1992), Pham and Zhang (2000). 

The small number of parameters makes deformable superquadrics easy to 
control. However, it is still difficult for designers to create desired shapes using 
these parameters directly because this requires a good understanding of the un
derlying mathematical model which general users do not possess. In addition, 
some of the parameters have not direct engineering meaning and the relation
ship between these parameters and shapes is non-linear , hence the process of 
generating shapes by trial-and-error is tedious. On the other hand , designers of
ten have some vague ideas of geometric shapes in mind and wish to obtain such 
a shape quickly. An effective supporting tool should allow them to express their 
intent in a natural and semantic way. Therefore, we proposed to use a set of 
shape descriptors to represent shape and link them to shape parameters through 
a fuzzy shape specification system (Pham and Zhang, 2000). We discuss this 
perceptual representation of shape in Section 2.2 . 
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2.2. Possibility-based perceptual representation: fuzzy shape de
scriptors 

Most of the shapes used in design are geometric shapes which can be defined 
by mathematical equations and their combinations. However, it is more con
venient and intuitive for designers to represent shapes using common shape 
descriptors , especially in the conceptual design stage where rough expression is 
sufficient. Since the human ability for shape recognition is only approximate, 
it is not necessary to depend on exact quantitative details to make judgements. 
Furthermore, such judgments are slmv and error prone. Instead, in a previous 
paper (Pham and Zhang , 2000), we use fuzzy concepts to describe the global 
characteristics of shapes because they are more natural. To do so, we first col
lected a set of words, such as ro'Und, sq'Uare, cylindrical, ellipsoidal, bent, sharp, 
twisted and pinched as well as a set of linguistic hedges, such as extremely, very, 
modemtely etc. to represent the description of a shape. A set of shape descrip
tors, including ro'Undness, sq'Uareness, bevel-ness, pinchness, fl atness, tape·rness, 
bendness, twistness, and shearness, were used to describe a shape. 

A fuzzy set, which is characterized by a membership function, is a mapping 
from the universe of discourse (or reference set) to the interval [0 , 1] (Kruse et 
a!., 1994). In other words, a fuzzy set is a set that allows its members to have 
partial degrees of membership. There are a large variety of different interpreta
tions of fuzzy sets in the literature such as possibility functions, similari ty-based 
functions, or preference functions (Ruspini et al. , 1908) . 

A possibility distribut ion is a mapping from the universe of discourse (or ref
erence set) to the unit interval [0 . 1], where at least one element has the grade 1 
(Kruse et al. , 1994). Possibility can be interpreted physically to represent pref
erence: the most feasible ones are usually preferred. It can also be interpreted 
in an epistemic way to represent the consistency of a datum with the available 
information (Ruspini et a!. , 1998). 

Possibility theory is related to but independent of fu zzy sets because it can be 
derived with or without reference to fuzzy sets . Normal fuzzy sets and possibility 
distributions may have t he same representation but with different interpreta
tions. The grade of membership expresses the extent to which a well-known 
value in the universe belongs to an ill-defined set . The degree of possibility 
refers to the strength of a value to be the actual value given an ill-defined set. 
When a fuzzy set is used to represent the uncertain informat ion about the value 
of a single-valued variable, the degree attached to a value means the possibility 
that this value is t he actual value of this variable. The fuzzy set is then inter
preted as a possibility distribution , which expresses the degrees of plausibility 
or preference of the possible values of the ill known variable. 

Zadeh (1978) suggested using a fuzzy set to convey the meaning of a concept 
such as tall or old. The usc of fuzzy sets to represent the value of a variable 
ir~duces a possibility distribution. In imprecise conceptual shape design, a fuzzy 
set can be used to convey the meaning of a linguistic concept such as extremely 
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sq·u,are. Thus, the value of the variable of a shape can be represented by a 
possibility distribution induced by this description in a predefined universe of 
d;scourse. In this context , a fuzzy set is equated with a possibility distribution. 
For example, squareness can be extremely square, modemtely square or slightly 
square in the universe of discourse of [0, 3] and corresponding possibility distri
butions are shown in Fig. 1a. The grade of membership function represents the 
degree of a value being in a fuzzy set, but also the degree of possibili ty with 
which the variable takes this value. The value of each shape parameter is also 
a possibility distribution (Fig. 1 b) which is inferred from several shape descrip
tors through a fuzzy shape specification system, where the relationship between 
shape descriptors and shape parameters is represented by a set of rules. For 
example, if squareness is extremely square then c1 is neaTly zero. An experimen
tation of shape descript ion was carried out to investigate how people perceive 
and describe shape characteristics. The resultant data was used to construct 
fuzzy membership functions for these shape descriptors and the inference rules 
ti1at link these descriptors to the values of the shape parameters. More details 
on this shape specification system may be found in Pham and Zhang (2000) . 

Sli ghtly 
square 

Moderately 
square 

Extremely 
square 

x (squarcncss) 

a) Membership functions for a 
shape descriptor squareness 

b) Membership function for a 
shape parameter E1 

Figure 1. Membership functions for shape descriptors and shape parameters 

3. System architecture 

To efficiently support 3D shape storage and retrieval, the fuzzy shape database 
consists of the following components: 

1. A Graphical User Interface (GUI) that is used to input a user's query. 
The commonly used shape descriptive terms are displayed in the GUI and 
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users need only to .click on the buttons to formulate simple or composite 
shape queries. 

2. A translator that is used to generate valid , standard queries. This trans
lator is required because initial queries need to be intuitive and easy to 
understand for the user but they cannot be used to retrieve shape directly 
since not all descriptors used in the GUI level are stored in the database. 
For compactness and uniqueness , a set of standard shape descriptors is 
chosen to code the shape and stored in the database. The intuitive queries 
must be translated into standard queries before the querying process is 
performed. 

3. A fuzzy predicate evaluation module which handles fuzzy data manipu
lation. The descriptive terms inputted by users are associated with their 
granule meaning through a fuzzy predicate library. When a new fuzzy 
shape needs to be inserted into the database, a fuzzy data closeness mea
sure , which represents the similarity of two shapes, is used to check data 
redundancy. The possibility and certainty degrees are employed to per
form hierarchical data retrieving. 

4. An existing relational database which provides the basis for the imple
mentation of this fuzzy database. It provides the basic DBMS resources 
and some SQL program tools for user's application. All information about 
a shape, including shape ident ifier , name, version, perceptual descriptors 
and geometric parameters as well as membership functions associated with 
fuzzy attributes , are stored in the shape database. 

5. A rendering software which is used to display the 3D shapes retrieved 
from the shape database. As a fuzzy shape represents a set of shapes 
that have similar properties, a multi-viewed window is needed to display 
several typical shapes of a fuzzy shape. 

Fig. 2 shows the basic structure of the fuzzy shape database. 

4. Conceptual modelling of the fuzzy shape database 

The Entity-Relationship (ER) model has been widely accepted for conceptual 
database design because of its ease of use and that the entit ies and relation
ships are natural concepts in the real world (McFadden et al. , 1999). Therefore, 
the Fuzzy Entity-Relationship model (Chen, 1998), which incorporates fuzzy set 
theory to the basic ER concepts, is used to represent the conceptual structure 
of the fuzzy shape database. Since fuzzy shape descriptors and parameters 
are represented by possibility distributions, we chose to use a possibility-based 
fuzzy database model. In database design, the fuzziness can happen at three 
levels (Chen, 1999; Petry and Bose, 1996). The fir st level is the fuzzy concep
tual model which results in fuzzy semantic objects including fuzzy entity sets, 
fuzzy relationship sets, and fuzzy attribute sets. Fuzziness in this level may 
arise during database design and may be solved by designers before database 
implementation. The second level concerns the occurrences of entities and re-
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Figure 2. Fuzzy Database Structure 

lat ionships. The third level deals with fuzzy attribute values. The fuzzy shape 
database has only fuzzy attribute values and all entities and relationships are 
ordinary. Hence, we consider the conceptual modeling process of the fuzzy rela
tional shape database to be similar to that of a conventional relational database 
b2cause we can consider the fuzzy attributes to be ordinary except for the fuzzy 
representation of their values . 

4 .1. Schema design 

A shape is described by a set of shape descriptors and represented by a set 
of shape parameters. It also has a name, version and an underlying identifier. 
All shape descriptors are fuzzy terms and corresponding certainty levels. Each 
fuzzy term has a label and an associated fuzzy set represented by a possibility 
distribution. All parameters also possess fu zzy se t values. Although shape 
parameters can be derived from shape descriptors , we store them explicit ly in 
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the database because they are used as design solut ions. As a shape has many 
descriptors and parameters, the detailed E-R model is very big, hence we present 
lv;)re only an abstractE-R model in which Di and Pi represent fuzzy descriptors 
and parameters respectively (Fig.3) . 

In Fig. 3, a shape has four attributes : the shap e identifier SID , the name 
and corresponding version number of a shape as well as the ident ifier of t he 
set of descriptors. The version of a shape, is introduced here to facilitate the 
gradual refining process of the same design object. It is also useful when a 
designer prefers to assign the same name to a. des ign object but has different 
design solutions for it . DesSet stands for Description Set which has DesSetiD 
as ident ifier and a list of fuzzy descriptors. ParSet is a Parameter Set which 
has ParSetiD as ident ifier and a list of fuzzy parameters. Each descriptor or 
parameter is an attribu te of the shape with a value expressed as a possibility 
dis~ribution . Such an att ribute is called a fuzzy attribute. For each descriptor 
Di, DiiD is its identifier , DiLabel is the label of a fuzzy predicate, and DiDOF 
is the preferred threshold . For each parameter Pi , PiiD is the identifier of a 
parameter and PiValue is the corresponding possibility distribution. The Fuzzy 
P tedica.tes are used to represent the dist ribution parameters of fuzzy shape 
descriptive terms such as ext remely bent. Each fuzzy predicate has its ident ifier 
FPID and corresponding fuzzy distribution parameters FPValue. We represent 
DesSet in a separate table to avoid the table Shape being too big. Since ParSet 
is dependent on DesSet, it is also saved in a separate table. 

4.2 . Data typ es 

A key aspect of a fuzzy relational database is that the domain values need not 
be atomic. In a possibility-based approach, the available information about the 
value of a single-valued attribute A for a tuple I, is represented by a possibility 
distribu tion rr A(t). The universe of discourse of this distribution is D U{ e }, 
where D is the domain of attribute A and e is an extra element which means 
t he attribute does not apply to tuple t. The possibili ty distribution is a set of 
the possible and mutually exclusive values of A( t) in D U{ e} with possibili ties 
between 0 and 1. 

The possibility distribution representation of data provides a unified frame
work to deal with precise and imprecise values. A precise value can be repre
sented as a possibility distribution with the membership grade 1 for one crisp 
element and the membership grades zero for all other elements. Since the stor
a!6e space required for an imprecise value is much more than a precise value, we 
still use different data types in the fuzzy shape database for different attributes 
depending on the real values they may take. For example, attributes that might 
have fuzzy values are represented by possibili ty distributions no matter whether 
their real values are crisp or fuzzy, while attributes that can only take precise 
values are represented by the precise data type. 

Since the shaoe database is limited to the specific application domain, only 
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Notation: ~<>0 
entity attribute relationship fu zzy attribute 

( . ., h fi ·b · <I~D · · · d b h fi JVOte: t e uzzy attn ute notatiOn ~ IS msp1re y t e uzzy 
attribute notation in fuzzy Ex!FO model [Yazici and George, 1999].) 

Figure 3. Abstract fuzzy E-R model of the shape database 
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three types of data are involved. The first type is the precise value such as 
shape identifier ID = 20. The second type is the fuzzy set value without label 
such as shape parameter p1 = {1 / 0.2 , 1.2/0.8 , 1.6/ 1.0, 1.8/0.4}. The third type 
is the mixed fuzzy notion and fuzzy set value such as the descriptor m'Undness 
= extremely round with membership grade over 0.9, where extremely round is 
the label of a membership function. The third type is essentially the same as 
the second, i.e., fuzzy set values represented by possibility distributions. We 
treated it as a separate data type in practice for efficiency. 

5. Fuzzy shape indexing 

Database indexing is the study of data structures to allow for efficient search 
and ret rieval of a collection of data. T he choice of an index depends on the 
nature of the data and the expected query types. The shape indexing and 
retrieval approaches can enhance the efficiency of geometric searching and have 
been explored mainly in image processing area (Lu, 1999) . However, only few 
attempts have been made in CAD systems (Cybenko eta!. , 1997; Kriegel, 1993; 
Kriegel eta!. , 2001; M. Hardwick eta!. , 2000; McWherter et a!. , 2001). Existing 
shape indexing approaches are based on precise shape representation and cannot 
facilitate fuzzy shape indexing and retrieval. We therefore aim to develop a 
shape indexing approach based on the proposed fuzzy shape representation. 

In a conventional database, the data item is self-indexed. For example, the 
condition "sid = 10" can find the tuple whose attribute s·id is 10 if this tuple 
exists. Therefore, it is quite easy to find a desired tuple which satisfies the 
search condition by Boolean matching. However, a fuzzy value cannot index 
itself because the index must be suitable for all elements in the fuzzy set. For 
example, the fuzzy predicate "roundness = extremely round" cannot index a 
shape which is extremely round. A Degree of Fulfilment (DOF) of a user to 
the predicate "roundness = extremely mu.nd" must be used. If the datum is 
represented as a fuzzy set in the database, only one DOF is not enough to 
retrieve a tuple. In this case, two degrees, possibili ty degree and necessity degree 
can be used along with the predicate to retrieve a tuple. Hence, the indexing 
task in fuzzy database is a severe problem . Usually an additional attribute is 
employed as identifier (Petry and Bose, 1996). 

Yazici and Cibiceli (1999) utilized the multi-level grid file approach to de
velop an access structure for similarity-based fuzzy databases. In this approach, 
t!1c domain of an attribute with fuzzy values is partitioned into several regions 
related to predefined fuzzy predicates. Each predicate has an identification 
code. Then, the region of each predicate is further divided into three parts: 
left, middle and right. This partition process can be performed recursively until 
the desired granule level is reached. Each sub-region has a unique local code, 
which is a bit pattern. The code of each sub-region is the concatenation of its 
parents' code and its own local code. An additional bit is used to identify if an 
item is a fuzzy or cri sp value. The original value is then associated with this 
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bit pattern. Take the attribute of human height for example. Three predicates 
arc used: short , middle and tall. Their bit codes are assumed to be 00 , 01 , 11. 
Then, the short predicate is divided into three parts: short left , short middle 
and short right with the local code 00 , 01 and 11. Then, the index for short 
middle is 0001. This approach can index both crisp and fuzzy values. Hence, it 
is suitable for indexing a database which may have both cri sp and fuzzy values 
for the same attribute such as the height of a person (heterogeneous attribute). 
However, fuzzy values need to be first defuzzified into crisp values in order to 
obtain a suitable code. That is to say, a fuzzy set is not indexed by its fuzzy 
wtlue but by the crisp value of its defuzzification result. This makes the fuzzy 
values lose their fu zziness very early and may lead to the loss of the effectiveness 
of indexing. This indexing approach relies on the pre-partition of the attribute 
domain. 

Bose proposed some indexing principles for a possibility-based fuzzy database, 
where the value of an attribute is a fuzzy set represented by a possibility distri
bution (Bose and Galibourg, 1989) . This approach works as follows: 

• The indexing of a tuple is not by the fuzzy values themselves but by 
their support or core. The support of a fuzzy set is the crisp set of all 
elements in the universe of discourse with nonzero membership grades 
and the core of a fuzzy set is the crisp set of all clements in the universe 
of discourse with membership grade(s) one (1). For example, if a fuzzy 
set is represented as a trapezoid and the vertices (a , b, c, d) are from left 
to right, the support bound is [a., d] and the core bound is [b, c]. The four 
bound values, including the lower and upper bounds of the support and 
core of the possibility dist ribution, are used to index the fuzzy set. 

• A two-step searching is employed for fuzzy selection . Firstly, a subset of 
initial relations is determined by comparing the support and core bounds 
of the datum set and the condition set; secondly, a measure indicating 
the minimum degree to which a datum possibly or necessarily satisfies 
a condition is computed over the reduced relation and compared to a 
predefined threshold . Thus, a fuzzy selection is converted to a Boolean 
multi-key searching. 

Since the calculation of possibility and necessity degree requires that the 
fuzzy sets of interest have bounded supports, the Bose's indexing structure 
is suitable for databases where the values for the same attribute are of the 
same type (homogeneous) and the supports of all fuzzy sets are closed intervals. 
As the Bose's indexing approach uses only the supports of fuzzy sets and the 
possibili ty and / or necessity degrees for indexing, it does not rely on the pre
partition of the attribute domain. 

In the fuzzy shape database , the values of all shape descriptors are fuzzy 
real numbers within finite domains, hence they are homogeneous. The "homo
geneity" restriction of the Bose's indexing approach is trivial in this case. On 
the other hand, it is difficult to pre-partition the fuzzy attribute domain into 
a certain granule level. Therefore, the Bose's indexing approach is chosen for 
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fuzzy shape indexing and retrieval according to shape descriptors. However, it 
is used as the secondary index because the searching process based on fuzzy 
sets is much slower than searching a single value. An integer number t hat is 
automatically generated by the database management system is employed as 
the primary index for efficiency. 

5.1. Primary index 

Since searching through shape descriptors that are represented by fuzzy set is 
relatively slow, we provide the shape ID which is automatically generated by 
the conventional DBMS as the primary index. Frequent users may search a 
shape using this number. We also provide the combination of name and version 
as an alternative index of shape. This is the conventional indexing method 
used in current CAD systems. These two indexing methods are implemented 
by crisp searching and relevant techniques that can be found in many database 
textbooks. Since we aim to introduce the fuzzy set approach into CAD systems 
in order to support the conceptual design, the semantic searching of shape 
through fuzzy descriptors is essential. Hence an indexing method based on 
fuzzy descriptors is discussed in the next section. 

5.2. Fuzzy descriptor index 

The shape parameters (P) are derived from shape descriptors (D) and corre
sponding Degrees of Fulfilment to predefined membership functions (DOF) as 
well as the Fuzzy Inference System (PIS) in a shape specification system. Hence 
the shape parameters can be denoted asP= F(D , DOF , F IS ). Once the Fuzzy 
Inference System is generated, we consider it as fixed. The shape parameters 
are determined only by the shape descriptors and corresponding thresholds. So, 
it can be denoted as P = F(D, DOF). For the same set of descriptors and 
DOFs, the set of fuzzy parameters will be the same. Therefore, the descriptors 
and DOFs can be used to index a fuzzy shape. Vlhen retrieving a shape, the 
descriptors and corresponding DOF levels can identify the appropriate tuples in 
the fuzzy shape database. Since the shape descriptors people use are numerous 
and not all of them can be applied to index a shape, a primary set of shape 
descriptors is selected for indexing. Other descriptors will be mapped to these 
basic descriptors or their combinations through a translator. 
The primary set of shape descriptors includes: 

• mund-ness, square-ness, bevel-ness, pinch-ness and fiat-ness in north-
south direction and east-west direction of superquadrics. 

• taper-ness (along X and Y axis) 
• bend-ness (along Z axis) 
• twist-ness (around Z axis) 
• shear-ness (along X axis) 
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Although the expressive ability of these primary shape descriptors is still 
very limited , they can describe all the shapes currently representable in our 
superquadrics-based 3D shape modelling system. The perceptual shape de
scription is the media for fuzzy shape representation , specification, storage and 
retrieval. For example, we assume that in the conceptual design stage, the 
designer intends to have a shape which is ellipsoidal and extremely bent with 
satisfaction degree 0.8. This specification implies that the descriptor round
ness l (roundness in east-west direction of a superquadric shape) has a fuzzy 
value extremely round with satisfaction degree 0.8 and the descriptor bendness 
has a fuzzy value extremely bent with satisfa ction degree 0.8. There will be a set 
of crisp shapes that can fulfill t his specification with different certainty levels. 
We call this set of crisp shapes a fuzzy shape. This fuzzy shape can be indexed 
and retrieved according to the shape descriptors and their linguistic values. We 
assume that the membership fun ction of the fuzzy predicate extremely round is a 
triangle characterized by points { (0.7, 0) , (1, 1) , (1.3, 0)} in the universe of [0, 3]. 
The membership function of the fuzzy predicate extremely bent is a piece-wise 
linear function characterized by points {(0.14, 0),(0.4,1),(1, 1) ,(1, 0)} in the 
universe of [0 , 1]. Then the membership function of the descriptors roundness l 
and bendness are derived from the two fuzzy predicates and the satisfaction 
d·~gree (bold lines in Fig. 4). The supports of the descriptors roundnessl and 
bendness are [0 .94, 1.06] and [0 .35 , 1] respectively. These lower and upper bound 
values of supports are used as indices of the corresponding shape descriptors . 
They can be used for filt ering out many irrelevant tuples in the shape database 
during shape retrieval which will be discussed in a later section. 

Extremely round Extremely bent 

0.8 0.8 

0.7 0.94 1.06 1.3 roundness 1 0.14 0.350.4 I bendness 

a) Membership function for roundness I. b) Membership function for bendness. 

Figure 4. Support of shape descriptors 

In addition to the primary shape descriptors which are used for shape in
dexing, we also employ a set of secondary shape descrip tors at the user inter-
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face level. A list of commonly used descriptive terms, including 3D geometric 
primitives, geometric descriptors and linguistic hedges, is extracted from sev
eral references . The secondary shape descriptors, which are currently used in 
the system are geometric shape descriptors such as c·u bical, conical, spherical, 
cylindrical and ellipsoidal. The secondary shape descriptors are mapped to the 
combinations of primary shape descriptors through a translator. 

6. Fuzzy shape queries 

Querying and retrieving of data from a database is an important activity. Fuzzy 
querying allows users to formulate queries using linguistic words, hence it is 
more flexible than crisp querying. In addition , fuzzy queries produce naturally 
ranked results whereas conventional queries bring back only undifferentiated 
tuples. Fuzzy queries may also provide reasonable answers where crisp queries 
fail to find solutions. When querying the shape database, a user can formulate a 
query by searching the shape name and version. Frequent users may also query 
shapes using the shape ID , which is automatically generated by the computer. 
However, it is sometimes desirable to search shapes using natural-language-like 
shape descriptors , especially for occasional users. It is also desirable to allow 
users to express preferences and thus make the querying results more feasible. 
Using vague predicates represented by fuzzy sets to perform a query is one 
approach to achieve the above targets. 

6.1. Query requirement analysis 

Query requirement analysis is based on the task the query will complete and the 
type of users. The aim of querying a shape database is to obtain the appropriate 
shape. People usually perceive a shape by commonly used regular shape names, 
by pictures or by shape description. For example, for a cubical shape, people 
will describe it as cube, c·uboid, wbic, cubical, or square. Hence, the system 
should allow querying by shape descriptions . If the shape number of this cube 
in the shape database is 10 and the user knows this number , sjhe may just 
ask " list out the lOth shape" . The query system should respect the diversity of 
querying, therefore multiple query options should be provided. 

The users can be classified into primary users who use the system regularly 
and secondary users who use the system only casually. The query system should 
allow primary users to input their query as quickly as possible. This is achieved 
by querying the database using shape ID or name. For novice or casual users , 
the system should provide effective guidance. The Query-By-Example method 
and intelligent query assistant are usually employed to guide the query pro
cess. In the shape database, the underlying shape descriptors represent the 
geometric characteristics of shapes along different directions based on the shape 
representation approach. Although they are represented by words and can be 
understood by professional users, it is still hard for general users to understand 
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and formulate shape queries using these descriptors. Hence, a Graphical User 
Interface is utilised to help users to formulate query. Commonly used shape 
descriptors are displayed in the GUI and they will be translated into underlying 
basic shape descriptors through a translator. In addition, the support messages, 
such as on-line help and error messages should be provided. 

6.2. Categories of queries 

The shapes are classified into two classes: fuzzy shapes and crisp shapes. The 
main difference between these two kinds of shapes is the data associated with the 
shape parameters. For a crisp shape, each parameter has only one value whereas 
for a fuzzy shape, each parameter has a fuzzy set value. In the case of fuzzy 
query on crisp shapes, each tuple will be assigned a Degree of Fulfilment (DOF) 
to the fuzzy condition. In the case of fuzzy query on fuzzy shapes , the similar 
method as fuzzy query on crisp shapes can be employed but the calculation 
method for DOF is different and two DOFs are needed. In the latter case, we 
use the possibility and necessity degrees to measure the extent to which a datum 
sat1sfies a condition. 

In a fuzzy database, the crisp data and the fuzzy data can be represented 
uniformly by fuzzy sets, and a crisp value is only a special case of a fuzzy value 
where the membership grade is one for a crisp element and zero for all others 
(Bose and Galibourg, 1989). Since the fuzzy shape database is mainly used for 
storing and retrieving initial fuzzy shapes that have fuzzy set values , hereafter 
we consider fuzzy queries on fuzzy data only. The possibility / necessity measures 
will be used to represent the upper and lower bounds of the satisfaction degree 
of a fuzzy datum with respect to a fuzzy condition. 

The categories of fuzzy queries can be further classified into the following 
classes: simple query and combined query. A simple query refers to a query by 
a single condition. For example, the user inputs a single shape descriptor such 
as extremely round and a series of shapes will be retrieved from the dat abase 
and will be displayed on the screen in multiple views. A combined query refers 
to a. query composed of multiple descriptions. For example, a user inputs a 
combination of shape descriptions , such as extremely round and slightly bevel, 
and a. series of shapes will be retrieved from the database and will be displayed 
on the screen. 

Shape description combination can be classified into feasible combination 
and infeasible combination. Feasible combination means that two descriptors 
on the two sides of an AND operator can be used to describe the same shape at 
the same time. For example, the descriptors ext7'emely cylindrical and slightly 
ben t can exist at the same time because they describe a shape that is a slightly 
bent cylinder. Infeasible combination means that two descriptors on the two 
sides of an AND operator cannot be used to describe the same shape at the 
same time. For example, a cylindrical shape cannot be pyramidal. The feasible 
combination can be passed to the inference engine for deriving the result values . 
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The infeasible combinations will be checked out by the system according to a 
constraint table and the user will be asked to reformulate another query. 

6.3. Q uery input and generation 

A conventional database query language, such as SQL, requires of users to un
derstand the logical database schema, relational algebra and the query language 
itself to formulate a query. The popular QBE (Query-by-Example) avoids using 
a 3pecial query language yet still makes the DBMS users to work on the table 
level. Therefore, it is very difficult for novice users to communicate their needs 
to DBMS. Integrating artificial intelligence techniques and database techniques 
in order to support novice users to access database has become increasingly 
popular (Wu et al., 1996). Since the underlying shape representation is difficult 
to understand for general shape designers or users , it is extremely difficult for 
them to query the shape database through SQL or QBE directly. It is desirable 
to provide a mechanism to allow users to perform a query according to com
monly used shape descriptors, hence it is necessary to construct a friendly and 
intelligent database query front-end . By intelligent query, we mainly mean the 
following: 

a) Allowing end-users to formulate database queries using natural-language
like descriptive terms with fuzzy internal meaning. Although a completely 
natural language interface is most desirable, automatic interpretation of a 
natural language such as English is very difficult because of its complexity 
and ambiguity. In addition, it is impossible for us to obtain the fuzzy 
meaning for all words even if they are limited to shape description , hence 
only a selected set of shape descriptors such as very round are allowed in 
the menu-based GUI (Graphical User Interface). 

b) Having knowledge and reasoning ability for formulating conventional queries 
according to general inquiries. A set of primary shape descriptors is se
lected and associated with corresponding fuzzy sets. A set of secondary 
shape descriptors is also used in shape query and they are mapped to the 
combinations of the primary shape descriptors through a translator. 

c) P roviding end-users with substantial guidance in query formulation by per
forming validation checking and automatically applying some constraints 
as users select their query from GUI. 

General intelligent query systems also generate cooperative responses for ill
formed queries and provide natural language explanation of the query result 
(Wu et al. , 1996). A fuzzy query itself is a kind of intelligent query because 
it decreases the chances for the null answer and can provide ordered weighted 
answers naturally, so we will not design a separate cooperative answering system. 
As the query result is a fuzzy 3D shape that is displayed on the screen as response 
to a query, whether the query result is correct or not is intuitive. Hence we do not 
need to translate the query results back to natural language-like explanations. 
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\ iVhen constructing GUI, we const rain the user 's query to a res tricted linguis
tic domain , t hat is, the commonly used shape description words. The users can 
input their query in the query window through menu selection . All available 
shape descriptors and corresponding linguistic hedges are listed in the query 
window. The default logic operator is AND. Users need only to click on the 
check box to formulate query. 

Once the query is formulated, a constraint table (Table 1) of description 
combinations is employed to perform validi ty checking for combined queries 
through a validat ion-checking module. The valid general query is passed to the 
translator and translated into a combination of internal (primary) descriptors 
according to the mapping rules that are derived from the relat ionship table of 
user descriptors and internal descriptors (Table 2). For example, IF shape IS 
cylindrical THEN shape in north-south direc tion IS extremely squar·e and shape 
in east-west dir-ec tion IS extremely round. 

Table 1. Constrainst of shape description combinations 

Squa re Round Cylindrical E lli psoidal Conical Ta pered Bent 

Squa re y y N N N y y 

Round y N y N y y 

Cylindr ical y N N y y 

Ell ipso id al y N y y 

Conica l y y y 

Tape red y y 

Be nt y 

Note: Y - means that combination is accepted , N - that it is not. 

Table 2. User descriptors-interal descriptors relationship 

Sql Rdl Sq2 Rd2 Obl Ob2 Tp l T p2 T3 t 
Square T T T T 

Round T T T T 

Cyli ndr ical T T T 

Ell ipsoidal T T T 

Coni cal T T T T T 

Tapered T (A nd/ or)T 

Bent T 

Note: T for True means that for a commonly used shape descriptive 
term columns correspond to internal shape descriptors, the corre
sponding internal shape descriptor while rows to commonly used 
shape descrip tors is true. 

T he main difference between this translator and a convent ional knowledge 
base is that in a conventional knowledge base, the facts and rules arc fixed and 
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users perform different queries. Whereas in this translator, the rules and queries 
are fixed but the facts are changed according to the user 's input. The output 
of this translator is a standard fuzzy query that is then passed to the fuzzy 
processing module to perform shape retrieval. The relevant techniques for fuzzy 
shape retrieval will be discussed in t he next section. 

7. Shape retrieval 

Shape ret rieval methods can be classified into two classes: content-based re
trieval and annotation-based retrieval. Content-based retrieval concentrates on 
lower level shape features such as geometric parameters. Annotation-based re
trieval is based on higher level semantic features such as perceptual descriptions, 
therefore it can support direct , natural queries. Annotation-based retrieval is 
complementary to content-based retrieval and depends on the conceptual data 
available. In a fuzzy shape specification system, the conceptual data such as 
shape descriptions is acquired in the design process and can be stored in the 
database. They are very important information for fuzzy shape retrieval. By 
using these annotations (or symbols) , the user can query the database using 
higher level descriptors rather than the detailed shape parameters. The anno
tations used in shape database include the feature-based descript ive terms such 
as very round , extremely sharp , slightly bent etc . These terms will be used to 
help fuzzy shape retrieval. Unlike the annotation-based retrieval in convent ional 
database which is based on alphabetic matching, the annotation-based retrieval 
in fuzzy database, is performed on the granule meanings of each annotation. 

The fuzzy sets of geometric parameters are stored in the shape database but 
general users usually do not query the shape database by shape parameters. 
Instead, they query the shape database by shape descriptors. Shape descriptors 
and corresponding DOFs (thresholds) are also stored in the database but we 
C<:>nnot query them in a crisp way because every shape descriptor has a granule 
meaning. Hence, querying the shape database using shape descriptors should 
be based on their granule meaning. We propose to use a fuzzy predicate and 
a threshold (or DOF) to define a fuzzy set which is related to a shape descrip
tor. The DOF functions as a linguistic hedge that modifies a predefined fuzzy 
predicate in order to obtain a fuzzy datum set. The fuzzy set associated with 
a predicate used in fuzzy query acts as the condition set. The possibility and 
necessity degree proposed by Prade and Testemale (1984) can be used to per
form shape retrieval. The query form attribute = value in relational database 
can be extended to attribute = Value with degTee B, where B can be possibility 
or necessity degree. 

Given two fuzzy sets in the same universe of discourse, they can be compared 
according to the possibility and necessity measures. This comparison leads to 
two types of degrees: the possibility degree and the necessity degree, meaning 
to what extent two fuzzy sets possibly and necessarily match. The possibility 
degree IT represents the extent of the intersection between the pattern set and 
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the datum set . It is the maximum membership value of the intersection set. The 
necessity degree N represents the extent of semantic matching of a pattern set 
for a given datum set. It is the minimum membership value of the union of the 
pattern set and the complement of the datum set. The interval defined by [N, IT] 
represents the lower and upper bounds of the degree of matching between such 
pattern and datum sets. Since what is necessary must be possible, the possibility 
degree is always not less than the necessity degree. The proof of this property 
and the detailed formulas for calculating the possibili ty and necessity degrees 
can be found in Bose and Galibourg (1989) , Prade and Testemale (1984). Fig. 
5 shows a pattern and a datum fuzzy set as well as the corresponding possibili ty 
and necessity matching degrees . 

Pattern set 
(round) 

Datum set 

a) The possibility degree is 1.0 

0.4 

b) 

Curve for 
calculating 
possibility or 
necess ity degree 

Compl ement 
of Datum set 

The necessity degree is 0.4 parameter 

F igure 5. Possibili ty degree and necessity degree 

A simple fuzzy query to a fuzzy database involves only one fuzzy condi t ion 
and is performed by calculating the necessity and possibility degrees of a datum 
set to the pattern set . Compound condition involves the disjunction, conjunc
tion , or negation of simple conditions. When the attribu te values are logically 
independent (i.e., the value of one attribute does not rely on or is controlled 
by the values of other attributes) , the overall necessity and possibility degrees 
of a tuple are the combination of elemental possibility and necessity degrees 
using min / max operator. The detai led equations that express the decompos
ability properties of possibility and necessity degrees can be found in Bose and 
GaEbourg (1989), Petry and Bose (1996) . 

Our initial test on shape retrieval using possibility / necessity degrees shows 
that the possibility degree is too optimistic while the necessity degree is too 
pessimistic. For example, if the cores of the possibility distributions of two 
fuzzy sets have one common point , then the possibili ty degree is 1 even though 
the two compared sets arc very different from each other. On the other hand , 
the necessity degree for a triangle fuzzy set A to lie in A is only 0. 5. This makes 
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the meaning of the entailment relation counter-intuitive and causes difficulties 
in shape retrieval. Hence, we use the possibility degree as a filter and compose 
another entailment measure called certainty degree for shape retrieval. 

Given two fuzzy sets A and B in the same universe of discourse, the certainty 
degree to which B lies in A is the ratio of the cardinality of the intersection of 
these two fuzzy sets to the cardinality of B. The cardinality (or power) of a fuzzy 
set is the sigma-count (sum) of the membership degrees of all elements (Yager 
and Filev, 1994). We can see that the certainty degree is reflexive (the certainty 
degree to which A lies in A is 1.0) but not symmetric (the certainty degree to 
which A lies in B is not the same as that of B lies in A) . The certainty degree 
is 1.0 if two fuzzy sets have exactly the same representation and 0.0 if their 
supports have no common region. In other cases, the certainty degree varies 
between 0.0 and 1.0. The overall certainty degree of a tuple over composite 
domains is the combination of the certainty degrees of elemental domains. In 
fuzzy retrieval, given a fuzzy condition and a fuzzy datum , if their certainty 
degree is higher than a predefined threshold, the datum satisfies the condit ion 
and will be retrieved otherwise it will be discarded. 

Since the perception-based shape retrieval can support natural language 
querying, we use a set of primary shape descriptors for shape indexing and re
trieving. The shape searching process is the matching process of fuzzy granule 
meanings of primary descriptors that are listed in the shape indexing section. 
We use a hierarchical matching process of fuzzy set to perform fu zzy shape 
retrieval. This hierarchical matching process comprises of the following steps: 

1. Support-Core Matching. If the supports of two fuzzy sets are not inter
sected, they are not matched. This filtering process can cut off many 
irrelevant tuples. 

2. Possibility Degree Matching. The possibility degree is calculated for the 
retained tuples from step 1). If this degree is lower than a predefined 
threshold, the matching process can stop. 

3. Certainty Degree Matching. The certainty degree is calculated for all 
tuples retained from step 2). 

4. ANDing and ORing: If the compared tuples have more than one fuzzy at
tribute, the conjunction and disjunction operation is performed to obtain 
the overall possibility and certainty degrees for all retained tuples. The 
final matching degrees are saved in the fi elds in the corresponding tables. 
This approach is the same as that used in fuzzy-relation-based framework 
in the sense that a matching degree is attached to each tuple. 

5. Boolean selection based on the matching degree attached to each tuple. 

As the large number of possible valuations of incomplete information, com
plex relational operations such as join operations applied to imprecise attributes 
are infeasible (Bose et al., 2000) . Hence, in the shape retrieval process, we per
form only the selection/projection operations and join operations applied to 
precise attributes such as shaoe identitv number. Ac:tnallv we neerl t.o ret.rieve 
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shape ID according to some criteria applied to some shape descriptors. For 
example, the possibility matching may look like this: 

SELECT shape. shpiD 
FROM shape, Desl , Des2, Des3 
WHERE (({Desl.poss)> 0.9) AND ((Des2.poss)> 0.9) AND ((Des3.poss)> 
0.9 )); 

where poss is the possibility degree to which a fuzzy datum satisfies a fuzzy 
condition. Once the shape ID is obtained , all shape data can be retrieved 
t!u·ough this primary key. These data can be passed to a 3D shape rendering 
system to display the fuzzy shape. 

8. Implementation and test results 

In the actual implementation , we did not use a special data structure for im
precise data representation . Instead , we cast the fuzzy data modelling in a 
conventional crisp data modelling fr ame, that is, any fuzzy attribute with a 
fuzzy set value is represented as a set of ordinary attributes whose values range 
over the underlying distribution domain. 

Since the domains of different attribu tes may be different but all normal 
membership functions have the same value range [0 , 1], we represent each fuzzy 
set using a family of a-cuts, so that all fuzzy sets have uniform representation. 
The a -cut. of a fuzzy set is a crisp set of elements , for which membership grades 
are equal to or greater than a. Since a fuzzy set can be uniquely represented 
by a family of a-cuts (Klir and Yuan, 1995), we predefine a set of a values and 
each a-cut is characterised by two endpoints of the fuzzy set at this a-level. 
In some cases, the two endpoints at one a -level may converge to one point. 
Since the set of a levels are the same for all fuzzy sets, we can save it in a 
separate table and do not need to save it fo r each fuzzy set . Hence, all fuzzy 
sets can be represented by a set of a -level endpoints in the same representation 
scheme and have the same precision determined by the number of a -levels used. 
For example, if we partition the interval [0 , 1] into five equal intervals, the set 
of a level values may be a = {0.0001 , 0.2 , 0.4, 0.6 , 0.8, 1.0}. The support and 
core of a fuzzy set (when a ---+ 0 and a = 1 respectively) are also naturally 
r8present.ed in this representation scheme. Hence, this representation scheme is 
also consistent with the support-core indexing scheme for fuzzy set proposed in 
Bose and Galibourg (1989) and discussed in Section 5. T he family of a -cuts can 
represent any shape of fuzzy sets within a finit e domain. 

The development of a real Fuzzy Relational Management System is generally 
expensive and t ime consuming. However , using an existing system, we can 
concentrate on the conceptual and logical design of a database and need not 
spend much time on physical design (Bose and Galibourg, 1989) . Therefore , 
an existing popular commercial Relational Database Management System is 
employed as the basis of implementation in order to take advantage of some 
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known access methods already in use. Implementing a fuzzy relational database 
in a conventional database allows us to incorporate fuzzy functions into existing 
relational databases , an effective way of developing a fuzzy database (Bose and 
Galibourg, 1989). 

The fuzzy shape database is mapped into a conventional relational database 
by storing the fuzzy set values in separate tables. The crisp and fuzzy shapes 
can be stored in one database because they can be represented uniformly using 
possibility distribution (currently we got only fuzzy shapes) . Microsoft AC
CESS is chosen as the implementation environment because of its popularity, 
easy availability and its friendly user interface as well as its convenience for 
communicating with other software packages. 

Fuzzy sets provide the imprecise values of single-valued attributes in the 
shape database, so they are processed in a 'compact ' form and users do not 
need to access their elements separately. Since fuzzy sets take complex data 
structures , we can also treat them as objects which have data and associated 
methods by building a top level on the current relational database systems to 
simulate the object features in an object-relational model. 

A GUI is constructed within Microsoft ACCESS to provide a user-friendly 
ir~.terface to accept query input. A set of commonly used shape descriptors are 
displayed on the screen and are grouped into different option groups . Users 
need only to click appropriate shape descriptors. Once query conditions and 
an overall degree of fulfilment of all conditions are selected, users click Get It 
button and the system will perform querying and display the searched shapes 
on the screen. 

Rules for query generation are stored in a knowledge base which along with 
an inference engine is called a translator. The initial query generated in query 
GUI is used as the input of the translator. The standard query is generated by 
the built-in backtracking facility of a PROLOG programming language, then 
it is sent back to the database to perform query through the fuzzy processing 
module. A hierarchical matching process based on possibility/ certainty degree 
if employed to perform shape searching. Since the selection results are fuzzy 
shapes which have fuzzy set as parameter values, only typical crisp shapes are 
displayed on the screen in multiple views. Typical shapes can be obtained by 
dduzzifying shape parameters using typical defuzzification approaches such as 
minimum of maximum, maximum of maximum, centroid of area etc. More 
details on these approaches may be found in Berkan and Trubatch (1997) and 
many other books. 

EXAM PLE 1 A series of tests have been perfoTmed on this pmtotype system. 
Here we use an example to explain the usage of this shape database. To make 
the meaning clear and save space, we list out only the attTibute values that need 
iu be compared in this example. All fuzzy sets take piece-wise linear membership 
functions and are Tepresented by a set of a -cut endpoints from left to right at 
the a levels a = [0 .0001, 0.2, 0.4, 0.6, 0.8, 1.0]. 
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Figure 6. Typical shape elements of an extremely square fuzzy shape (Shp1) 

We assume three fuzzy shapes are generated using the descriptive terms 
extremely square with threshold 0. 6, ellipsoidal with threshold 0.4 , and ellip
soidal and extremely bent with threshold 0.8. Typical shape elements of the 
three fuzzy shapes are shown in Figs. 6, 7, 8. The membership function 
of the fuzzy predicate extremely round is a triangle characterized by points 
{(0.7, 0),(1 ,1),(1.3, 0)}. The membership function of the fuzzy predicate ex
tremely bent is a piece-wise linear function characterized by points { (0 .14, 0), 
(0.4, 1) ,(1, 1) ,(1, 0)}. The corresponding fuzzy set values of the descriptors Des1 
(ro1mdness l ) and Des2 (bendness) derived from the above two fuzzy predicates 
are shown in Fig. 4 and in the form of family of a -cuts in Table 3. 

Table 3 Fuzzy set values for shape descriptors 
shpiD Des 1 (bendness) Des2 (roundness 1) 
Shp1 0 (not bent at all) <I> (empty set) 
Shp2 0 (not bent at all ) [0.82, 0.82 , 0.82 , 0.88, 0.94, 1, 1, 

1.06, 1.12 , 1.18, 1.18, 1.18] 
Shp3 [0.35, 0.35, 0. 35, 0.35 , 0.35 , [0.94, 0.94 , 0.94, 0.94 , 0.94, 

0.4, 0.4, 1, 1, 1, 1, 1] 1) 1, 1.06, 1.06, 1.06, 1.06, 1.06] 

The fuzzy shape retrieval process is as follows. 
1. Inputting descriptive words: ellipsoidal, extremely bent with threshold 0.6. 
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Figure 7. Typical shape elemen'ts of an ellipsoidal fuzzy shape (Shp2) 
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Figure 8. Typical shape elements of an ellipsoidal and extremely bent fuzzy 
shape (Shp3) 
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2. Translating input words into standard words. 
The word ellipsoidal is translated into ext1·emely round in two directions, 
keeping the descriptive term extremely bent because it is a standard word . 

3. Evaluating the input fuzzy words according to the threshold and the pre
defined fuzzy predicates . 
We use the descriptive words and corresponding thresholds, extremely 
bent/ 0. 6, extremely mund/0. 6 and the predefined membership function 
for the predicates extremely bent and extTernely mund, to derive pattern 
sets which are represented by family of a -cuts P1 = [0.3, 0.3 , 0.3, 0.3 , 0. 35, 
0.4, 1, 1, 1, 1, 1, 1], and P2 = [0.88, 0.88, 0.88, 0.88, 0.94, 1, 1, 1.06, 1.12, 1.12, 
1.12, 1.12]. 

4. Retrieving data sets which are also represented by family of a -cuts from 
database . We obtain two fuzzy data sets for shape Shp3: D1 = [0.35 , 0. 35, 
0.35 , 0.35 , 0.35 , 0.4, 0.4, 1, 1, 1, 1, 1], and D2 = [0.94, 0.94, 0.94, 0.94, 0.94, 1, 
1, 1.06, 1.06, 1.06, 1.06, 1.06]. 

5. Comparing the supports and cores of corresponding data set and pattern 
set. 
We first compare the supports of the data sets and the cores of the cor
responding pattern sets. If all supports of the data sets fall in the cores 
of the pattern sets, then the data sets definitely lie in the pattern sets 
and the corresponding tuple can be retrieved. The core of the pattern set 
P2 is (1, 1) and the support of the datum set D2 is (0.94, 1.06) , so the 
support of the datum set is not within the core of the pattern set and fm
ther calculation is needed. Then we compare the support of the pattern 
set P 2, (0.88, 1.12), and that of the datum set D2, (0.94, 1.06). \Ve can 
see that they intersect. We can also see that the support of the pattern 
set P1 and the datum set D1 also overlap. Hence, the tuple containing 
the attribute value (D1, D2) possibly satisfy the condition (P1, P2) and 
further calculations are needed. We can easily see that not all supports of 
the fuzzy sets in Shp1 and Shp2 intersect with those of the corresponding 
pa.ttern sets, so that these two shapes cannot satisfy the query conditions 
and are discarded in this step. 

6. Calculating the possibility and certainty degree . 
If the possibili ty degree is lower than a required threshold then the cer
tainty degree need not be calculated, otherwise calculate the certainty de
gree. The possibility degree of P1 and D1 is poss1 = poss(P1, D1) = 1.0, 
the corresponding certainty degree of these two sets is sd1 = sd( P 1, D 1) = 
1.0. Accordingly, we can obtain the possibility degree of P2 and D2 , 
poss2 = 1.0 and the corresponding certainty degree scl2 = 1.0. Once the 
possibility and certainty degrees are obtained, \ve store them in interme
diate tables for Boolean selection. 

7. Performing ANDing or OR.ing operation. 
Since the attribute values of shape descriptors are independent, we can 
use the decomposability properties of possibili ty and certainty degrees . 



168 J. ZHA NG, B. PHAM, P. CHEN 

Once we calculate all possibility and certainty degrees for all elemental 
querying conditions, we perform the conjunction or disjunction operation 
using min/max method. Take the ANDing operation for example, the 
overall possibility degree of a tuple is the minimum of the component 
possibility degrees. In this example, the component possibility degrees are 
all1 .0, so the overall possibility degree of this shape, the minimum of them, 
is 1.0 (P = 1nin(poss1, poss2) = min(l.O, 1.0) = 1.0). The component 
certainty degrees are 1.0 and 1.0, the minimum of these two, 1.0, is the 
overall certainty degree (SD = min(sd1, sd2) = (1.0, 1.0) = 1.0). 

8. Performing Boolean selection. 
Assume the thresholds for the overall possibility and certainty degrees are 
0.9 and 0.6. Since the overall possibility and certainty degrees, 1.0 and 1.0, 
are higher than the required thresholds, the tuple containing the attribute 
value (D1 , D2) are retrieved, otherwise this tuple will be discarded. 

9. Displaying shape. 
Once we get all possibility and certainty degrees of all possible matching 
records, a Boolean selection is used to cull out some shapes for which the 
possibility and certainty degrees are lower than predefined thresholds. In 
this example, Shp3 is retrieved and the other two shapes are discarded. 
Fig. 8 shows the fuzzy shape Shp3 which is a set of extremely bent shapes. 
The upper-left shape with the membership grade 0.8 means the possibility 
of this shape to be considered as extremely bent. As the shape becomes 
increasingly bent , the membership grade increases. The las t shape has 
membership grade 1 because everybody will consider it to be an extremely 
bent shape. 

9 . Conclusions and future work 

A possibility-based fuzzy shape database has been constructed within a con
ventional relational database. A fuzzy shape is represented by a set of shape 
descriptors and shape parameters. It is indexed and retrieved by fuzzy shape de
scrip tors. A graphical user interface is constructed to provide human consistent 
and natural-language-like queries. A 3D shape rendering system is developed 
to display the retrieved shapes. 

This fuzzy shape database provides a perceptual shape indexing and retrieval 
mechanism, hence the users can query this database using higher level shape 
descriptions in a natural way. The system is only a prototype, but we have seen 
tne power of combining the fuzzy set approach and visual display in supporting 
the fuzzy shape querying. It also provides evidence that a fu zzy database with 
fuzzy attribute values can be implemented in a well-developed commercial re
lational database management system in an effective and economical way. The 
main contribution of this paper lies in the method we employed to index and 
retrieve 3D shapes using descriptive terms . The perceptual shape indexing and 
retrieval mechanisms allow users to query the shape database using semantic 
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shape descriptions. They also form an important aspect of introduction of the 
fuzzy set approach into CAD systems for supporting conceptual design when 
designers have only vague ideas and need fast prototyping. 

Future work will involve improving and refining this prototype shape database 
and extending it to facilitate the management of composite fuzzy shapes. A 
composite shape consists of primitive shape elements (simple shapes) and other 
composite shapes . Therefore, composite shapes have more complex structural, 
physical, technical and other information than simple shapes . It is inefficient to 
represent such complex shapes in a conventional relational data model. Thus , a 
more powerful model which can reflect the hierarchical and modular nature of 
composite shapes and a more efficient manipulation mechanism , which can bring 
together all information about a composite shape, are needed . Since the object
oriented data model organizes and manipulates abstract concepts and real things 
in terms of objects with collec tions of data and operations on the data, it can 
svpport complex data structure and reflect the design process . Hence, it is a 
promising candidate for handling complex shapes in CAD systems. Therefore, a 
commercial environment with object features will be employed to manage com
posite fuzzy shapes, and relevant issues for handling fuzzy information wi ll be 
explored. 
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