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Abstract: If a mechanical system experiences symmetry, the 
Lagrangian becomes invariant under a certain group action. This 
property leads to substantial simplification of the description of 
movement. The standpoint in this article is a mechanical system 
affected by an external force of a control action. Assuming that the 
system possesses symmetry and the configuration manifold corre
sponds to a Lie group, the Euler-Poincare reduction breaks up the 
motion into separate equations of dynamics and kinematics. This 
becomes of particular interest for modeling, estimation and control 
of mechanical systems. A control system generates an external force, 
which may break the symmetry in the dynamics. This paper shows 
how to model and to control a mechanical system on the reduced 
phase space, such that complete state space asymptotic stabilization 
can be achieved. The paper comprises a specialization of the well
known Euler-Poincare reduction to a rigid body motion with forcing. 
An example of satellite attitude control illustrates usefulness of the 
Euler-Poincare reduction in control engineering. This work demon
strates how the energy shaping method applies for Euler-Poincare 
equations. 

Keywords: modelling, control, rigid body motion, Lagrange 
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1. Introduction 

A description of a mechanical system with forcing is addressed in this paper. It 
fo cuses on modelling of a particul ar system, a rigid body. The issue has been 
exhaustively analyzed in the literature of classical mechanics . This gives free
dom to treat it. from a Hamiltonian or a Lagrangian point of view, as a motion 
on: Riemannian, symplectic or Poisson manifold . The standard references on 
this subject are Goldstein (1980), Abraham and Marsden (1978) , l'vlarsden and 
Ratiu (1999). It is the variational principles that are assumed in this article 
as axioms and the equations of motion are derived therefrom. Let I s;; IR be 
an open interval. A motion in a set S denotes a smooth curve "f : I -t S. 
The equations of Illation are differential equations, whose How lines correspond 
to motions. If the configuration manifold is a Lie group and the Lagrangian 
becomes invariant under a group action, in this work the left translation, the 
motion can be transformed using Euler-Poincare reduction into two sets of c-~qua.
tions: kinematics and dynamics; Marsden and Rat iu (1999, Ch. 13.6 ) . This 
description is of p;nticular interes t for modelling in Morton (1994), control in 
Wisniewski and Kulczycki (2003) , and estimation in Bak (1999). 

The work merges two known techniques: the Euler-Poincare reduction of 
classical mechanics and the energy shaping of control engineering. Main focus 
in the literature on mechanics is on reducing differential equations describing 
the motion of a mechanical system, which are invariant. under the action of a 
Lie group. Hence, one obtains equations with fewer coordinates or even a glob
ally defined differential operator on a quotient manifold; Marsden and Sheurle 
(1993), Marsden and Ratiu (1999), Koiller (1992). Control of mechanical sys
tems with symmetry was treated before e.g. in Bloch, Leonard , Marsden (2000), 
Bloch et al. (1996). In these works the internal forces gave rise to the control 
action, however, the effect of general forces was not discussed. The energy sltap
ing method will Le applied in this paper. In its most common formulation it 
gives a control action , being the sum of the gradient of potential energy and the 
dissipation force; Nijmeijer and van der Schaft (1990, Ch. 12) and Koditschek 
(1989). In this article the energy shaping method will be adopted t.o a mechan
ical system with symmetry. It is shown that. the reduction of the motion of a 
mechanical system can be used for feedback synthesis , despite the symmetry 
breaking property of the control action. 

The article constitutes a tutorial on modell ing the motion of a rigid body. 
Relevant notions of classical mechanics are recalled first . Subsequently, the 
article introduces the Euler-Poincare reduction for a mechanical system with 
forring, which is then implemented for the rotary motion of a rigid body. Two 
configuration manifolds are of interest, the special orthogonal group S03 of 
particular interest in robotics, and the group of unit quaternions Sp1 used in 
aerospace for a global representat:on of attitude. An example of satellite atti
tude control, wh(~rein the Euler-Poincare description of the rigid body motion 



Euler-Poittcan; reduction of externally forced rigid body motion 299 

In this work M stands for a coo n-manifold with smooth structure {(Ua, 
tPo)} aEU. The system 7fTG : T M ---+ lvf defines the tangent bundle, and 7fT · n : 
r· M ---+ M the cotangent bundle of M. The main concern of this work \Yill he 
the motion of a system with forcing. 

DEFINITION 1 A foTce field on a confignmtion manifold M is a filwr presenFing 
u~ap, F : T l\1 ---+ T* M oveT the identity. It means that for each U0 , a E U the 
following d·iagram com:mutes 

The Lagrangc-d'Alemhert principle is in the sequel stated in terms of the 
variational calculus. If '"'( : [a, b] ---+ M denotes a piecewise smooth curve, a 
variation of'"'( means a family r : [ -t:, t:] x [a, b] ---+ M of piecewise smooth curves 
sucn that f 0 (t) = '"'((t) for all t E [a, b]. It is called a proper variation if, in 
a,idition, f 5 (a) = '"Y(a.) and f 5 (b) = '"'f(b) for all s E [-t:, E]. A variation field O'"'( 
of the variation r means the vector field along'"'(, O'"'f : [a., b] ---+ T'Y(i)]t.,f defined 
by 

O'"'((t) = (dft)o ( ~) = [)f~s., t) I - ' 

uS 8 s-0 

where ( df t) s : Ts !E. ---+ T r d s l M denotes the differential of r t at s, and t, stands 
for the basis of T8 !E.. A vector field 1/ along '"Y is proper if it vanishes at the 
endpoints, i.e. O'"'((a) = J'"'((b) = 0. Thus, the variation field of a proper variation 
is proper. For details, refer to Lee (1997). 

The next definition expresses the Lagrange-d 'Aleml>crt principle. It is an 
axiom stating the conditions for a mechanical system, with a given Lagragian 
and known external forces, to follow a motion ('"'(, 1') E T M. 

DEFINITION 2 (7.8.4 IN MARSDEN AND RAT!U, 1999) Given a Lagmngian L: 
T A1 ---+ !E. and a force field F : T M ---+ T* M, the integml Lagrange-rl 'Alembert 
principle for a cm·ve '"'((t) with the proper var-iation f 8 (t) is 

:, I '~" [ L(I'.,(t), t,(t))dt + t F(o(t), 'i(t))(b,(t))dt ~ 0. (1) 

The motion appears particularly simple for the configuration manifold being 
a finite dimensional Lie group G. The emphasis is put in this work on this class 
of configuration manifolds. The Lie algebra TeG of G is denoted by g. Every 
group element a E G defines a left translation £a : G---+ G, g f--7 ag. It also _, 
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DEFINITION 3 (2 .10 IN BROCKER AND DIECK, 1985) The adjoint n:pr·esenta
tion is a homomo-rphism 

Ad: G---+ Aut (g) , y H (dc9 )c = Ad9 , 

whe-re A.d9 means the d·iffe-rentia l of c9 at the nnit element ( dc9 )e : g ---+ g. The 
adjoint -rep-resentation Ad induces a homomorph:ism of Lie algebras 

ad: g---+ End(g), X H (dArlx )e = adx, 

wher·e Adx : G ---+ g, g H Ad9 X. 

The map ad sends X to the homomorphism Y H [X, Y]. Thus 

[X, Y] = adx Y. 

As mentioned before, the Lagrange-d'Alembert principle gives the condition 
for a curve on the tangent bundle TG to represent a motion. However, if the 
Lagrangian L : TG ---+ lR turns out to be invariant under the left translation, the 
equations of motion are particularly simple. They break up into two separate 
equations: the kinematics and the dynamics, hence the motiou corresponds to 
a curve I ---+ G x g. This constitutes the contents of Section 2. Rotary motion of 
rigid body comprises an important example of the above. Its motion is defined 
on a linear Lie group. Section 3. addresses the case of the special orthogonal 
group 503 , and Section 4. treats the group of unit quaternions Sp1 • Section 5. 
gives an example of a control application. It shows that the energy shaping 
method applies to systems modeled by the Euler-Poincare equations, and a 
controller for three-axis stabilization of a rigid body is synthesized. 

2. Euler-Poincare motion 

The Euler-Poincare equation with forcing will be formulated in this section. A 
mechanical system may experience a certain symmetry, expressed in the sequel 
by the invariance of the Lagrangian under the left translation. 

DEFINITION 4 The Lagmngian L : TG ---+ lR is left invar·iant ·if the following 
diagram commutes 

Assuming the Lagrangian invariant under the left t ranslation , the objective is 
to consider independently the dynamics, i.e. the motion on the Lie algebra g and 
the kinematics, the motion on the Lie group G. For this purpose, the translation 
of the variation vector field will be examined. Namely, the differential of the 

I l n 
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PROPOSITIOf\: 1 (5.1 IN BLOCH ET AL., 1996) Let f(s , t) : U C g c -t G /J c a. 
variation of a cu:rve 1 (t) on 11. Lie qmup G, and denote:=:, A : U -t g by 

_( (. ) (ar(s,t)) 
.::. s, t) = rLL J'(,,l)-1 rt-', ' l ot (2) 

and 

( ) ( , ) (Df(ii,t)) 
A ;;, t = di /'(s , l.)-1 ['(-<,!.) 08 . (3) 

Then 

a::::(s, t) - oA(s, t) = [=(. ) A( )] 
'-' >~ -s,t,ns,t. 
us ut 

(4) 

Conver::;, ly, if U is simply connected rmd :::: , ,\ : U -t g m·e smooth functions 
sati.~fyinq (4) then ther·e e.1:ists a smooth fun ction r : U -t G satisfying (2) and 
(:1). 

The tangent space T::::(s ,L) g in Proposition 1 is isomorphic to the Lie algebra 
£1 , and through the rest of t he paper T::::( s.t) £1 and g are canonically identified 
with !R", where n denotes the dimension of the manifold G. The theorem below 
sta.t.es the main results. 

TIIEOREl'vl 1 Let G be a Lie group with Lie algebra g, L : TG -t lR be a left 
invo.r·io:nt Lagm.ngio:n, l : g -t lR be its restriction to the Lie algehm. and F : 
TG -t T*G a force ficlrl. For a cv.rve -y : [a., b] -t G, let ~ : [a. , b] -t g, 

~(t) = (d£ ,·(1) - 1 ) ,·(/) "y(t). 
Then the ·inte.r;ml Ln.r;mnye-rl 'Alem.ber·t principle 

a 1 

1
.,, . 

1
./, 

Ds I s=O. a L(f 8 (t) , f 8 (t))dt +. o. F(t(t), "y(t))(b1(t))dt = 0 (5) 

holds for all pr·oper variations , and is equivalent to the E-u.ler-Po-incari eq1w.tion 
with forc-ing 

d 
-dlw ) 
rlt 

"y( t) 

cul~(t)dl~ ( t) + (di' 1 (t));. F('y(t) , 'Y(t)) 

(rLL'-y(l))c ~(t) . 

Equation (G) denotes the dynamics and (7) the kinematics. 

(6) 

(7) 

Prr•of of Theo·rcm 1. Vector fields:::: , A: U -to a.re defined as in Proposition (1) 

:=:(s . t) = (dl'rr .. "_,)_ 
(8f(s,t)) 
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( ) (
ar(s,t)) 

A(s, t) = d£ T(s,t) - 1 T'(s ,t) OS 

~(t) = ::::(0, t) and .A,(t) = A(s, t). 

Since L is left invariant, meaning 

( ar(s,t)) ( ar(s,t)) 
L f(s,t), ot =L £r(s,t)-1r(s,t),(d£r(s,t)-')r(s,t) ot 

= L(e, :=:(s , t) , 

the first part of ( 5) becomes 

a I Jb . a ~ L(f s(t), f(s, t)) dt = ~ 
uS s=O a uS 

s=O ~b l(:=:(s, t)) dt 

= j·b (dl)wJ (oUt)) dt. 
a 

(8) 

In (8) the chain rule was used 

o(l 
0 ~;s, t)) = (d(l 0 :=:t(s)))s ( :s) = (dlh(s,l)(d::::t(s))s ( :s) 

- (dl)- a:=:(s , t) 
- .=.(s ,t ) OS . 

According to Proposition (1) the variation field of :=:(s, t) is of the form 

a:=:(s, t) I OA(t) 
o~(t) = 

0 
= --~ + ad~(t)A(t). 

S s=O ut 
(9) 

Substituting (9) into (8) and using integration by parts gives 

! b ~b (o.A,(t) ) 
a (dl)wJ(o~(t)) dt = a (dl)wJ Tt + ad~(t)A dt 

= ~b (- ~1t(dl)~(t) +ad€(t)(dl)~(t)) (.A,(t)) dt. (10) 

The right hand side of (5) can be rewritten as 

!b /·b 
a F('y(t) , i' (t))(o')' (t)) dt =. a F('y(t) , 'Y (t))(((d£ -r(t)-1 )-y( t.J)- 1 .A,(t)) dt 

= ~b F('y(t), i'(t))((d£-rrtJ) e.A,(t)) dt 

\ * D I- .f;. \ _·.(;.\\I \ I;.\\ -1;. (11\ 
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Comparing (10) and (11) with (5) and using the fundamental lemma of calculus 
of variations, we obtain the Euler-Poincare equation (G). • 

Theorem 1 gives a. general expression of motion on a Lie group. The next 
two sections address equations of motion for a particular mechanical system, a 
rigid body. 

3. Reduction on 503 

The objective of this section is to derive equations of motion for a. rigid body. 
The special orthogonal group 

T G = 503 ={A E GL3(!R): A A = I and det(A) = 1} 

comprises the configuration manifold . The Lie algebra of 503 will be first iden
tified, and its properties will be subsequently examined. The sec tion concludes 
with formulation of the equation of motion for the rigid body with forcing. 

The Lie algebra of 503 consists of all skew symmetric matrices 

and it is spanned by E1, E2 and E3 

E1 = [~ ~ - ~] , E2 = [ ~ ~ ~] , E3 = [~ - ~ ~] 
0 1 0 -1 0 0 0 0 0 

The following isomorphism of vector spaces shall be introduced 

" !ll<3 --+ S S3 , (x ,, x,, xx ) r> x,E,+ x,E, + xxEx ~ [ _;; 

The maps can be used to represent the cross product a x b = s(a)b. This makes 
s a Lie algebra isomorphism 

taking ax b to [s(a) , s(b)]. Since 503 is a subgroup of GL3 (JR) the multiplication 
of matrices describes the differential of the left translation, i.e. 

The kinematics for a matrix group follows 

')'(t) = (d£-y(t)) e ~(t) = "((t)~(t). (12) 

Eqnation (12) defines relation between the velocity 'Y(t) E T-r( t)503 and ~(t) , 
"'"" ,.... 1,.. .......... ,. ~ +. ,.. f 4- l-. ...... T ! ...... .-. 1- .... 1.... - ... -~ 
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Define an angular velocity as w( t) = s- 1 (~(!:)) and the Lagrangian i 
l u s : JR3 -+ JR. The Lagragia.n comprises the kinetic energy only 

- 1 T 
l(w) = T(w) = 2w Jw, 

where J denotes the iner tia rnatrix. The Lagrangian turns out to be left inva ri
ant and the assumption of Theorem 1 is satisfi(xl. To establish the equations of 
motion, the differen tial of the Lagrangian 

and an explicit expression for rul~dldt) 

arl~dldX) = rlld[~ , X]), (13) 

where X E so:l, are provided. Since s is the Lie algebra isomorphism, Eq. (13) 
b0comcs 

Concluding, 

and the dynamics follows 

!!:._(Jw(t)) = Jw(t ) x w( t ) + s- 1 ('y (t)* F('y(t.), "f( t.))). 
dt 

(14) 

Equation (14) is indeed the celebrated equa tion of the rigid body dynamics, 
where the second summand corresponds to the external torque. However, it 
appears central for this work that the torque can be computed explicitly from 
the force field . Thus, the control algorithms derived from the Lagrangian or 
Hamil tonian formalism, which provide the control force fi eld , can be direct.ly 
implemented for an Euler-Poincare system. In particular , the energy shaping 
method in Section 5. applies for control of a rigid body. 

4 Reduction on unit quaternions 

Alternatively, a group of all unit quaternions co1tld be taken as the conflguration 
manifold. This attitude representation plays an important role in aerospace and 
robotics . Qua.temions owe their significa11CP dne to sirnple physical interpreta
tion of <:mangle and an axis of rotation. F,n· ~n;all angles the three components 
of the ,·ednr part of a. qnatemion approxill t<li (' pitch, roll a.11d yaw. Furthermore 
there is a variety of est imatio11 algorithms b;l~('d on quaternionic representation 
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It is vital for this exposition to examine its geometric and algebraic proper
ti es . The unit quatemions can be viewed as a three sphere imbedded in IR.'1 or 
more conveniently for computation as a complex matrix group. Both interpre
ta t ions are treated in this section. 

The quaternion algebra IHl will be defined fir st. The IR.-algebra IHI ( +, ·) is the 
division a lgebra. of 2 by 2 complex matrices of the form 

with matrix addition and multiplicat ion . Another definiti on of qua ternions is 
the algebra IR.4 

( +, ·) with standard addition in IR.4 and a product given by t he 
following formula: 

:c · y = Q(:r)y , 

where 

-xl 

:co 
:~: 3 

•) 

-x~ 

•) - :c-
-:c:3 

xo 
:rl 

(15) 

The a lgebras IHI ( +, ·) and IR.4 
( +, ·) are isomorphic with a ring isomorphism given 

by 

Since a configuration manifold of a Lie group is in focus, only the group 
properties of IHl will be fur t her exploited. Specifically, the quaternions with the 
norm 

N ( [ a b]) = ial2 + IW - b a 

equal one, are of interes t. The unit quaternions fo rm a group 

Sp 1 = {x E IHl : N (:c) = 1} , 

with the product inheri ted from IHI . In fact Sp1 is the same as the special unitary 
group 

S U2 ={A E GL2(C) : A.* A= I and dct(A) = 1} , 

and makes up a subgroup of the Lie group GL2 (C) . The matrix group SU2 
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The three-sphere constitutes the second interpretation of the unit qua.ter
nion. The differential manifold SU2 becomes indeed diffeomorphic to the three
sphere S3 = {X E IR4 

: llxll = 1} with a diffeomorphism 

It appears useful to treat the three-sphere as a Lie subgroup of (IR3 , ·), then the 
map w: (S3 , ·) -t (SU2 , ·)is a group isomorphism, and x · y = w- 1 (w(a:)w(y)). 

The Lie algebra of SU2 consists of the 2 by 2 skew-Hermitian traceless ma
trices suz C JH[ 

It shall be noted that the Pauli spin matrices 

[0 1] [0 -i] [1 0 ] 
O'J = 1 0 ' O'z = i 0 ' 0'3 = 0 -1 

defines a Lie algebra isomorphism (IR3 , x) -t (su2 , [·, ·]) taking X x Y to [r(X) , 
r(Y)] . It will be useful to writer as follows 

1 
r = -w a i, where i: IR3 

<-t IR\ (x1, xz, x3) H (0, x1, xz, x3), 
2 

then its left inverse becomes 

The remaining part of this section relies on Theorem 1 and the equations of 
motion for the rigid body are formulated. Since SU2 is a subgroup of GLz(C), 
the multiplication of matrices gives the differential of the left translation 

The kinematics follows 

'Y(t) = (d£-y(i)) e ~(t) = {(t)~(t) . 

Upon defining the angular velocity as w(t) = r- 1 (~(t)) and q(t) = w- 1 (l(t)) 
the kinematics takes the familiar form 

q(t) 
1 = (dw)~(~)'Y(t) = w- 1(w(q(t))r(w(t))) = 2w- 1(w(q(t))w(i(w(t)))) 

~n. ; (, ,(+\\- ~nfnf+\\;(, .(+\\ 
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Consider a Lagragian f = l o T : IR3 -+ JR. Now the Euler-Poincare motion 
can be written 

.:!:_dlw ( t) = ad:dzw ( t) + ( d1·) ; ( dLy(t ) ): F('-y( t), i( t)). 
dt 

Each term of the equation above will be computed separately in the sequel. As 
ir. Section 3. the Lagragian corresponds to the kinetic energy only 

- 1 T 
l(w) = T(w) = 2w Jw, 

where J denotes the inertia matrix. The Lagrangian is left invariant and The
orem 1 applies. As in the case of 503 , the differential of the Lagrangian equals 

dlw = Jw, 

and the expression for ad~dldt) takes on the form 

ad~dldX) = dld[~, X]), 

where X E su2 . Since T is the Lie algebra isomorphism, (16) becomes 

ad: dlw ( T -l (X)) = dlw · ( w x 1· -
1 (X)) = ( dlw x w) · T -

1 (X) , 

which gives 

ad:dfw = dlw x w. 

The external forcing is formulated as 

(16) 

(dr);((d£1 ) : F('-y,i))(V) = (d£1 ) : F(')',i)((dr-) e(V)) 
1 = 'Y* F('Y , i')((dr-)e(V)) = 'Y* F('-y , 1')(1·(11)) = 2'Y• F('-y , i')(w o i(V)) 

= ~1Tow*('-y* F('-y ,-y)(V)), 
where V E TeS 3 ~ Te(TeS 3 ) . With a definition j(q ,w) = w*(F(')',i')) the 
torque becomes 

(dr-) ; ((d£1 ) : F(')',i)) = ~11" o w*('-y* F('-y,i)) 

= ~11" 0 w* ((w*)- 1 (q*)(w*)- 1 (f)) = ~11" 0 w* ((w*)- 1 (q* . f)) 

= ~11" o q* · f(q ,w) = ~1r(Q *(q)j(q , w)). 
The dynamics of the rigid body follows 

d 1 
dt(Jw(t)) = Jw(t) x w(t) + "21r(QT(q(t))j(q(t),w(t)). (17) 

The second summand in (17) gives an explicit expression for the external 
torque. This form appears particularly useful for control synthesis. The energy 
shaping technique will be applied in the next section for computing the control 
(" ......... .-. ':> .......... ,... ry 
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5. Control synthesis 

The energy shaping has been formulated for a general mechanical system in 
Koditschek (1989) and I3ullo and Murray (1999). The idea is to produce a 
control input consisting of a term contributing to potential energy and a part 
providing dissipation. In a simplest case, if a system functions in IR" and has 
potential energy U : IR 11 -+ IR, the energy shaping puts forward a feedback con
trol of the form - a~~q) + Ma, where 11 : IR." -+ IR is a continuously differentiable 
function. The term 1\!Ir~ denotes a dissipative force. Assuming that the time 
deriYative of its work T·t' = MJ q is negative definite, and the minimum of the 
potential energy U + 11 is reached at a point p, the control law makes the system 
asymptotically stable to the equilibrium point (q(t), cj(t)) = (p, 0). The name 
"shaping" comes form the property of the feedback that shapes the potential 
energy of the system to the desired form using the controller contribution 1'. 

The energy shaping has its generalization for an arbitrary manifold G. Again, 
the control consists of a differential of a potential function ¢ : G -+ IR and a 
dissipative force field ft~ : TG -+ T*G as indicated in the following equation: 

(18) 

The dissipative force field !d satisfies ft~(v)(v) < 0 for all nonzero v E TG. If 
pis a local minimum of rp, then according to Theorem 1 in Koditschek (1989), 
(p, 0) becomes asymptotically stable equilibrium state of the closed loop system. 

It follows from Section 2. that the control law (18) applies to the systems 
described by the Euler-Poincare form. The control input becomes 

M(r(t),oy(t)) = -(d£,(t));,drjJ(-y(t)) + (d.L'-,(t ) ) ~ Jr~(r(t) ,i (t)) . (19) 

The first component in (19) will be called the conservative force and is denoteJ 
by !vic, whereas the second one constitutes the dissipative force , llfd. 

An illustration of the energy shaping for the Euler-Poincare system will 
be given in the remaining part of the article. Consider a. rigid body, e.g. a. 
spacecraft, to be stabilized in the inertial coordinate system with use of gas 
jets. The task is to design a suitable control law. For this purpose quaternionic 
parametrization of the attitude will be applied. 

Consider the inclusion j : 5 3 Y IR4 , and let the potential function rJ; pa
rameterize through some smooth func tion ¢ : llll." -+ IR, i.e. ¢ = ¢ o .i. Since 
(dc/J)q = (d¢)j(q)b~s3 , the differential (cl¢)'1 is 

(dc/J)q = Q(q)i7rQ*(q)(d¢) j(q) > (20) 

where q; are the canonical coordinate functions in IR11
, and (rl¢)j(q) = L~:=O g,~ dq; .. 

Making use of (17) and (20), we obtain the conservative force as equal 

M - -~_,.n'l'r ,., /J¢(q) - -~f,Jl,.f, rJ2,h rJ3,-i,lT (?11 
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where 

Taking a dissipative force field 

!rl = -Dq, 

where D indicates a positive definite matrix, and combining Eqs. (19), (21), the 
control law follows 

It was shown in Wisniewski and Kulczycki (2003) that for a particular choice 
of D = 4kr~E4 x 4 and the potential function ¢(q) = kp(1- qo) having the global 
minimum at the identity e and the maximum at-e the differential d¢(q) equals 

k [1 qo ql q2 ?3] . p - ,, (22) 

Now the control law reduces to the well known PD form 

(23) 

This shows that the energy shaping approach presented in this paper agrees with 
the previous results on the 3-axis attitude control summarized in Ting-Yung 
Wen and Kreutz-Delgado (1991). For other examples of potential functions 
used in guidance one is referred to Wisniewski and Kulczycki (2004). 

6. Conclusion 

This work applied the calculus of variations to derive the Euler-Poincare equa
tions of motion with forcing. It showed that if the Lagrangian L : TG -'t IE. 
was invariant under the left translation, the equations of motion broke up into 
two separate expressions: the kinematics and the dynamics. The rigid body 
motion considered comprised an illustrative example. The paper focused on 
two configuration manifolds: the special orthogonal group and the group of 
unit quaternions. It showed that the energy shaping method could be applied 
for the Euler-Poincare system. The findings were applied for the rigid body 
stabilization in three axes. The resulting control consisted of the sum of the 
conservative and the dissipative force fi elds. 
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