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Abstract: Motivated by the integrated complexity of real-time
intelligent control and optimization of industrial/manufacturing pro-
cesses, this paper discusses hybrid modelling and asymptotic peri-
odic behavior of a class of switched discrete event systems, and shows
how to evaluate the asymptotic performance/efficiency of such sys-
tems. We prove that, under some mild conditions, the switched dis-
crete event system will achieve asymptotic periodic dynamics, and
its performance/efliciency can be evaluated by calculating the eigen-
value of certain matrix in max-plus algebra. Illustrative examples
are provided.
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1. Introduction

Modern technologies have created some open complex gigantic systems char-
acterized by large-scale, high-dimensions, hierarchy, parallelism, networking,
multi-patterns, uncertainties, nonlinearities, hybrid dynamics, time-delays, in-
terconnections and interactions. Typical examples include contemporary inte-
grated manufacturing systems (CIMS), air traffic systems, computer communi-
cation systems, etc. It is widely believed that informationization is an important
diiving force in modernization, whereas automation is a bridge between infor-
mation technology and modern industry/society (Cheng Wu, 2000). Motivated
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by the integrated complexity of real-timme intelligent control and optimization of
industrial/manufacturing processes (Cheng Wu, 2000; Cohen et al., 1984, 1985;
Ramadge and Wonham, 1987; Cunninghame-Green, 1979), this paper studies
the asymptotic behavior of a class of Innman-machine interactive reconfigurable
manufacturing processes, and establishes a simple efficient method to evaluate
the asymptotic steady-state performance/efficiency of such complex systems.

Based on max-plus algebra, a class of discrete event processes can be de-
scribed by linear recursive equations (Cohen et al., 1984, 1985; Ramadge and
Wonham, 1987). Such a system exhibits asymptotic periodic behavior, and its
steady-state performance/efficiency (i.e.. the mean time of production cycles)
can be evaluated by calculating the eigenvalue of the system matrix in max-plus
algebra. On the other hand, control techniques based on switching among differ-
ent subsystems have been explored extensively in recent years, where they have
been shown to achieve better robustness, flexibility, and dynamic performance
(Liberzon and Morse, 1999; Wang and Xic. 2002a, b, ¢, d, e, 2004).

This paper proposes a new model for a class of switched discrete event sys-
tems. Such a model consists of a finite set of discrete event subsystems, and
a switching rule that orchestrates the switching among them. We show that
the switched system can be transformed into an ordinary discrete event system
without switching and under certain conditions the switched system exhibits
asvimpftotic oriodic behavior. i.e., after a finite-time transient process, the sys-
tem achieves steady-state periodic dynamics, and its performance/cfficiency can
be evaluated by caleulating the eigenvalue of certain matrix in max-plus algebra.

2. Preliminaries

In this section, we first define some basic operations in max-plus algebra,
Cunninghame-Green (1979). Denote

R, = RU{-00}

€= —00
and for any x,y € It,, define

iy = max{mn,y}

ray=c+y

A matrix A = (a;;) € R}*" is said to be irreducible, Horn and Johnson
(1990} liV!} 3(.‘1 A Iy | R [ J). Sl gyt Qi tocatb @y gy > =00
For any matrices 4, B € R, define, Cunninghame-Green (1979},

A @ B = (a0 bi)

An B = (Plai © b)) = AB
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Given any matrix 4 € R?*™, the corresponding directed graph (digraph) is
a graph with n nodes, and there is a directed arc from node j to node i with
weight a;; if and only if a;; # —o0.

In a digraph, a circuit is a directed path that starts and ends at the same
node. In a circuit, the sum of the weights of all its arcs divided by the number
of arcs is called the mean weight. The circuit with the maximal mean weight in
a digraph is called the critical circuit.

A zero vector is a vector with all its entries equal to —oo.

For an irreducible matrix A € R}*", if there exist a real number A and
a nonzero vector h € R™ ! such that Ah = Ah, then A and h are called the
eigenvalue and eigenvector of A, respectively.

LEMMA 2.1 (Cohen et al., 1984, 1985) For an irreducible matriz A € R},
there is a unique eigenvalue X, and it equals the mean weight of the critical
circuit of its corresponding digraph.

LEmMA 2.2 (Cohen et al., 1984, 1985) For an irreducible matriz A € RI*",
there exist positive integers ko and d such that

Abtd = Napk B>k
where d is called the period order of A.

LEMMA 2.3 (Cohen et al., 1984, 1985) For an irreducible matric A € R}*™,
suppose its eigenvalue is X, and its period order is d. Then there exists a positive
integer ko such that the solution of

X(k+1)=AX(k)
satisfies
X(k+d) = XX(k), k> ko

This shows that the system will exhibit periodic behavior asymptotically.
The mean period is exactly equal to the eigenvalue of A. Hence, the eigenvalue
of A is an important performance index of the system.

3. Switched Systems

For notational simplicity, we first discuss switching between two subsystems
(Liberzon and Morse, 1999). That is, the switched system is governed by

X(k+1) = A; X (k) (1)
where A; € R}*™, and the switching law is

i:J 1 k even

v PRy
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Namely

X (1) = 4, X(0)
X(2) = 4:.X(1)
X(3)= A X(2)
X(4) = 4, X(3)

That i

N2y =AX(1) = 4,4, X(0
X(4) = A, X(3) = A4, X(2)

Let
Y (k) = X(2k) (2)
Then

Y(1) = A20,1(0)
Y (2) = A4, Y (1)

Y(k +1) = A4, Y (k). (3)

In this way, we transform a switched system into a non-switched system. Thus,
the following problem naturally arises: Suppose 4, and A, are irreducible ma-
trices, is their product A4, still irreducible?

The answer is NO in general case. Consider the two irreducible matrices

e 1 € S|
Ai=|e € 1|, =11 € ¢
1 € € e 1 €

Then, their product is

,‘lgAl =

m ™ B

€ €
2 €
e 2

Clearly, A, 4, is reducible. However, if every main diagonal entry of 4, (or 4,)
is not the null element e, then the answer to the question above is YES.

THEOREM 3.1 Suppose A, B € R!'*" are irreducible matrices, with all the main
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Proof. Without loss of generality, suppose all the main diagonal entries of A
are not equal to e. Then, for any 1 < s, < n. (AB)g # € whenever (B)y # .
Moreover, since B is irreducible. by definition, AB is irreducible, too. [ ]

THEOREM 3.2 Suppose Ay, As € R are irreducible matrices, with all the
main diagonal entries of Ay (or Az) not equal to €. Then, there exist positive
number A, positive integers d and kg, such that the switched system (1) satisfies

X(k+d)=XX(k), k>k.

Proof. By the transformation (2), the switched system (1) can be transformea
into a non-switched system (3). That is

Y(k+1) = A A Y (k)

By Theorem 3.1, 454, is irreducible. Hence, by Lemima 3.3 and by the triis-
formation (2), we get the result. ]

ExAMPLE 3.1 Consider two irreducible matrices

2 ¢ 3 € 3 ¢
A=]16 2 e |; B=|& ¢ 2
e 4 3 4 € €

It is easy to see that A(A) = 12, A(B) = 3. Moreover

is also irreducible, and \(AB) = 9. Note that \(AB) > MA) + A(B). But this
inequality is not always true in general case.

EXAMPLE 3.2 Consider two irreducible matrices

10 1 € 1 1 ¢
A= e 1 11, B=|¢ 1 1
1 € 1 1 ¢ 10

It is easy to see that A(A) = 10, A(B) = 10. Morcover

11 11 2
AB=| 2 2 11
2 2 1

15 also irreducible. and MAR)Y = 11. Henee MARY « M AY L M)
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4. Some extensions

More complicated switching laws can be accommodated for performance eval-
uation. Suppose 4; € RIM*™, ¢ = 1,2,...,m are irreducible matrices, with all
their main diagonal entries not equal to e. This switched system is governed by

X(k+1)=A;X(k) (4)
with switching law
1 k=0,1,2,...,kymod(K)
2 k=k +1,k +2,..., kamod(K)
= 3 k=ky+1,ks+2,...,kamod(K)
m k=kna+1,kn-1+2,...,kpmod(K)

where K = k,, + 1.
In this case, the transformed system is

Y(k+1) = Abn—bmer | ghs—kz gha—ks ghatly (g

m
and
Y (k) = X(Kk).
Similar asymptotic periodic properties can be established as follows.
TuEOREM 4.1 Suppose A; € RIM™, i = 1,2,...,m are irreducible matrices,

with all their main diagonal entries not equal to €. Then, for any positive

integers Iy, 1t =1,2,...,m, Af;;' ,...’iff.»ig*A';' is irreducible, too.

THEOREM 4.2 Suppose A; € RM", i = 1,2,...,m are irreducible matrices,
with all their main diagonal entries not equal to €. Then, there exist positive
number X, positive integers d and ko, such that the switched system (4) satisfies

X(k+d) =\ X(k), k> ko.

Note that even if the matrix A is irreducible, its power A' can be reducible
for some integer l. For example, let

e 1 ¢
A= ¢ € 1
1 € ¢
Then
J € ¢
AA=1|€ 3 ¢
€ 3

which is reducible. This is why we assume that all the main diagonal entries
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5. Illustrative example

Inspired by the mathematical models of a class of reconfigurable manufacturing
processes (Cheng Wu, 2000; Cohen et al., 1984, 1985; Ramadge and Wonham,
1987; Cunninghame-Green, 1979), we will illustrate our results in two different
switching cases.

Consider a system switched alternatively between two subsystems, more
specifically,

pm. _ A X(k) k even
b= { AX(k)  kodd

1 1 ¢ 4 ¢ 2
A]Z e 2 1 4 Ag: 1 3 ¢
2 ¢ 3 e 2 1

It is easy to get

with

9 & 5
.‘13,‘11 = 2 5 4
3 4 4

It can be verified that they are all irreducible (Cohen et al., 1984, 1985; Cun-
ninghame-Green, 1979), and A(A4;) = 3, A(42) =4, A(424,) =5.
The evolution of the switched system can be easily calculated:

0 1 5
X(0) = l 0 ] , X(1) = A4, X(0) = l 2 ‘ . X(2) = 424, X(0) = l 5 ] ;
0 3 4

G 10
X(3) = A1 A4, X(0) = , X(4) = AsA; ArA,X(0) = [ 10 ] :
9

15
(5) = 4 A*}A A A X 0) [ } Y(ﬁ} AgAl."‘lz.",lIAg."tl.Y(O) - [ 15 ] :
14

X(7) = A1 As Ay Ag Ay A> 4, X (0) { ]

X(8) = 4341 A A1 A 4; A2 A X(0) = [ 20 :! :
19
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From the evolution of the switched system, we can see that:

1. Initially, the system does not exhibit periodic behavior, since

. X@)-x)=]|5].
4

2. A few steps later, the system begins to exhibit periodic behavior

W v Ot

X(2) - X(0) = [

o

X(4) - X(2) = X(6) - X(4) = X(8) — X(6) = !5 :]

=X2n+2)—-X(2n), n>1

X(5)-X3B)=X(T)-X(B)= =X2n+1)-X2n-1), n>2

oy Lt on

[y

X(5)-XM4)=X(7)-X(6)=

(]
I

X2n+1)—-X(2n), n>2

X@) -XG)=X@®) -X(7)=|3

Xn+2) -X@n+1), n>2

This is consistent with the theoretical results established in the previous scc-
tions.
Now consider a switched system with a more complex switching rule

4:X(k) k=0 (mod3)
Xk+1)=4q 4X(K) k=1 (mod 3)
A X (k) k =2 (mod 3)

with

A-l = €

)
o] —
[ -
Qo = m
| F—— |
-~

i

[}

11
| e |
L
B o m
— M bJ
| PR |

It is easy to get

It can be verified that they are all irreducible (Cohen et al., 1984, 1985; Cun-
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The evolution of the switched system can be easily calculated:

0 1 3
XO0=|0]|, XM=4X0=|2|, X@=4X1)=|4],
0 3 6
[ 8 9
.Y(?)) = ‘42X(2) = 7 y 4\’(4) = .41/Y(3) = 9 )
7 10
[ 10 ] 15
XG)=AX@=|11]|, X6 =4XG) =] 14|,
|13 | 14 |
[ 16 | [17 ]
X(N=4X0)=]|16 |, X®) =4X"=]18 |,
17 | 20 |
[ 22 ] 23
X(9)=AX@®) =21 |, X10)=A4X(09) =] 23|,
| 21 | 24

Again, from the evolution of the switched system, we can see that:

1. Initially, the system does not exhibit periodic behavior, since

8 8
XB)-XO0)={7]|, X@-X1)=1|7
7 7
2. A few steps later, the system begins to exhibit periodic behavior
7T
XOG)-X2)=XQ®)-XOB)=|7|=XBn+1)+2)—X(3n+2),
7
L n>0
F o
X6)-X3B)=XO9)-X6)=|7]|=X@Bn+3)-X@Bn), n>1
L 7]
7
X(MN-X4)=X10)-X(T)=|7 | =XBn+1)+1)-XBn+1),
7

w21,

This is, again, consistent with the theoretical results established in the previous

il s e o
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6. Future research

Two issues are under investigation:

1. What is the necessary and sufficient condition for the product of some matri-
ces to be irreducible? in some cases, even if each individual matrix is reducible,
their product can still be irreducible; for example

=[] e=[1 1]

This issue is important in performance evaluation of the switched discrete event
svstems.

2. How is the eigenvalue of the product of some matrices related to the the
eigenvalue of each individual matrix? The eigenvalue of the product of some
matrices represents the asymptotic mean period of the switched system, and
thereby plays an important role in performance evaluation.

Yet another interesting research direction is to study the asymptotic behavior
of general 2-D discrete-event systems (Roesser, 1975; Kurek, 1985)

Xm+1ln+1)=A4X(m+1,n)d AX(m,n+1)d 43X (m,n)
with the boundary condition

X(m,0) = Xpno, X(0,n)=Xo,, mn=0,1,2,...
Under what conditions does the system exhibit periodic behavior (with respect
to m,n) asymptotically? and how to evaluate its asymptotic performance?

A popular model for 2-D systems is the so-called Roesser model (Roesser,
1975):

X" +1,5)
Xv(i,5+1)

_ [ A Ap } X*(i,75)
A Ax X*(i,4)

with the boundary condition
o 3 o R = .
Xh0,5) = X, XV(,0)= X!, i,j=0,1,2,...
How the system (in the max-plus algebra sense) evolves asymptotically, and how

to evaluate its asymptotic performance are the subjects of current research.
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