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Abstract: ivlotivated by the integrated complexity of real-t ime 
intelligent control and optimization of industrial/manufac turing pro­
cesses, this paper discusses hybrid modelling and asymptotic peri­
odic behavior of a class of switched discrete event systems, and shows 
how to evaluate the asymptotic performance/ efficiency of such sys­
tems. We prove that , under some mild conditions , the switched dis­
crete event system will achieve asymptotic periodic dynamics, and 
its performance/efficiency can be evaluated by calculating the eigen­
value of certain matrix in max-plus algebra. Illustrative examples 
are provided . 
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1. Introduction 

Modern technologies have created some open complex gigantic systems char­
acterized by large-scale, high-dimensions, hierarchy, parallelism, networking, 
multi-patterns , uncertainties , nonlineari t ies, hybrid dynamics, t ime-delays, in­
terconnections and interactions. Typical examples include contemporary inte­
grated manufacturing systems (CIMS) , air traffic systems, computer communi­
cation systems, etc. It is widely believed that informationization is an important 
d1iving force in modernization, whereas automation is a bridge between infor­
mation technology and modern industry/society (Cheng Wu , 2000). Motivated 

1 Supported by Nat ional 973 P rogram (Cheng Wu and T ianyou Chai 2002CB312200) , 
Nati onal Nat ural Science Fo undat ion of China (1 3072002), Nat ional Key Basic Research 
and Development P rogram (2002CB312200) and National Hi-Tech R&D 863 Project (No. 
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by the integrated complexity of real-time intelligent control aucl optimization of 
indnstrial/manufacturing processes (Cheng Wu, 2000; Cohen ct. a!., 1984, 1985; 
Hamadge and \Vonham, 1987; Cunninghame-Green, 1979), this paper studies 
the asymptotic behavior of a class of lnnnan-machiiJe interactive reconfigurable 
manufacturing processes, and estal>lishes a simple efficient method to evaluate 
the asymptotic steady-state perfonnancc/ efficiency of such complex systems. 

Based on max-plus algebra , a class of discrete event processt~s can be de­
scribed by linear recmsivc equa tions (Cohcu et a!., HJ84, 1985; R()madge <l.lld 
Wonham, 1987). Such a system exhibits asymptotic periodic behavior, and its 
steady-state performance/efficiency (i.e., tlw nwan time of product.ion cycles) 
can be evaluated by calculating the eigenvalue of the system rnatrix in max-plus 
algebra. On the other hand, control techniques based on switching among differ­
ent subsystems have been explored extensively in recc~nt years, where they have 
been shown to achi eve bctt.cr rolmstness, flexibility, and clynmni c perfonnance 
(Liberum and Morse, 1999; Wang and Xie, 2002a, b, c, d, e, 200-1). 

This paper proposes a rw1v model for a class of switclwd discrete event sys­
te1ns. Such a model consists of a fini I.e set of discrete event subsystems , and 
a switching rule that orchestrates the switching among them. We show that 
the switclwd systt~m can be transformed into all ordinary discrete t~ vcnt system 
w~thout s11·i: ,·hing and under c: r rtain couditions the switched system exhibits 
asymptotic 1 1 ·r i()dic behavior, i.e., after a finite:- time transient process, the sys­
tem ;1chiun · ~ s1 c'ady-stat.e period ic dyna.mics, and its perfonnance/ efficiency ca11 

he evaluated by calculating thP eigenva.lue of certain matrix in max-plus algebra. 

2. Preliminaries 

In this section, we first define some basic operations in max-plus algebra, 
Cunningharnc-G rccn ( 1979). Denote 

R1• = RU {-oo} 
( = -CX) 

and for any :z;, !J E Re, dd ine 

:r CD y = max { :r , y} 

:r @ y = :r+y 

A matrix A = (a;j) E n;:IXn is said to be irreducible, Horn and Johnson 
( 1990), if V-i, .i, :3(1: 1 = i , i'2, ... , ·i,_ 1 , i, = j), s. t. a;; 2 + a; 2 ; 3 + ... +a;, _ 1 .i > - oo. 

For ally matrices A, BE R.~' x ", define , Cmlllingltame-Green (19i9). 
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Given any matrix A E R~'·xn, the corresponding directed graph (digraph) is 
a graph with n nodes, and there is a directed arc from node .i to node i with 
weight a ij if and only if a;j =j:. - oo. 

In a digraph, a circuit is a directed pat h that starts and ends at the same 
node. In a circuit, the sum of the weights of all its arcs divided by the number 
or arcs is called the mean weight. The circuit with tlw maximal mean weight in 
a digraph is called the critical circuit. 

A zero vector is a vector with all its entries equal to -oo . 
For an irreducible matrix A E R~txn, if there exist a real number A and 

a nonzero vector h E R~tx 1 such that Ah = Ah , then A and h are called the 
eigenvalue and eigenvector of A, respectively. 

LEMMA 2 .1 (Cohen et al., 1984, 1985) For an irreducible matri:r; A E R~' x n , 
the1·e is rJ. uniqne eigenvalue A, and it equ.als the mean weight of the cr·itical 
circuit of its corresponding digraph. 

LEMMA 2.2 (Cohen et al. , 1984 , 1985) For an irTeducible rnatr·i:E A E R~xn, 
there exis t positive integers k0 and d su.ch that 

Ak+rt = ArtAk , k 2: ko 

where d is called the period ordeT of A . 

LEMMA 2.3 (Cohen et al., 1984 , 1985) For an irreducible rnatri:r; A. E R~ xn, 

suppose its eigenvalne is A, and its period order is d. Then there e:r:ists a positive 
integer ko such that the solu.tion of 

X(k + 1) = AX(k) 

satisfies 

This shows that the system will exhibit periodic behavior asymptotically. 
The mean period is exactly equal to the eigenvalue of A. Hence, the eigenvalue 
of A is an important performance index of the system. 

3. Switched Systems 

For notational simplicity, we first discuss switching between two subsystems 
(Liberzon and Morse, 1999). That is , the switched system is governed by 

X(k + 1) = AiX (k) (1) 

where Ai E R~txn, and the switching law is 

k even 
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Namely 

X(l) = A1X(O) 

X(2) = A2X(l ) 

X(3) = A1X(2) 

X(4) = A2X(3) 

That i ~ 

Let 

_\ (::! ) = A2X(l) = A2A 1X(O 

X(4) = A2X(3) = A2A1X(2) 

Y(k) = X(2k) 

} · ( I ) = .· \c. I 1) "(il) 

Y(2) = A.2A1Y(l) 

L. WANG 

(2) 

(3) 

In this way, we transform a switched system into a non-switched system. Thus, 
the followiug problem naturally arises: Suppose A1 and .rb are irreducible ma­
trices, is their product A2 A1 sti ll irreducible? 

T he auswer is NO in general case. Collsider the two irreducible matrices 

Then , their product is 

Clearly, A:2A1 is reducible. However, if every main diagonal entry of A1 (or A2 ) 

is not the null clement E, then the answer to the question above is YES. 

THEOREM 3.1 SYppose A , B E R~'x"' a-re ·irTeducible m.atr-ices, with all the main 
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Pmof. 'Vithout loss of generality, suppose all the main diagonal entries of A 
are not equal tot. Then, for any 1 :::; s, t:::; n, (AB) 81 f- E whPnever (B),1 f- f . 

Moreover, since B is irreducible, by definition, A.B is irreducible, too. • 

THEOREM 3.2 Suppose A 1 , lb E R~'x" are irreducible matrices, wdh all the 
main d·iagonal entries of A 1 (or A2 ) not cqu.al to f. Then, the1·e e:tist zws'itive 
number>., pos-itive integers d and k0 , such that the switched system (1) satisfies 

X(k +d) = xtx(k), k 2: ko. 

Proof. By the transformation (2) , the switched system (1) can be trausfonneu 
into a non-switched system (3). That is 

By Theorem 3.1 , AzA 1 is irreducible. Hence, by Lemma 3.3 and by t.l w Lr; ,: :,;­

formation (2), we get the result. • 

EXAMPLE 3.1 Consider two ·irredncible matrices 

A =[~~!] 
f. 4 3 

It ·is easy to see that >.(A) = 1~1 , >.(B) = 3. Moreover 

[ 

7 5 f. ] 
A.B = c. 9 4 

7 f. 6 

is also in'CfluciiJle, and >.(AB) = 9. Note that >.(AB) > >.(A)+ >.(B). D11.t this 
inequality is nut always tnw in geneml case. 

EXAMPLE 3.2 Consider two ir-reducible matrices 

[ 

10 

A= ~ 
1 
1 
f. 

1 
1 
f. 

It is easy to see that >.(A)= 10, >.(B)= 10 . Moreover 

[ 

11 

AB = ~ 
11 
2 
2 

is also irreducible. and >. ( AB) = 11. H e:n.r.P. .xr A m < H A) + ~ r Rl 
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4. Some extensions 

More complicated switching laws can be accommodated for performance eval­
uation. Suppose Ai E R~ xn, i = 1, 2, ... , m are irreducible matrices, with all 
their main diagonal entries not equal to f.. This switched sys tem is governed by 

X(k + 1) = AiX(k) 

with switching law 

i= 

1 
2 
3 

k = 0, 1, 2, ... , k1rnod(I<) 
k = k1 + 1, k1 + 2, ... , kzrrwd(K) 
k = k2 + 1, kz + 2, . . . , k3mod(I<) 

rn k = km - 1 + 1, km-1 + 2, .. . , kmrnod(K) 

where ]{ = km + 1. 
In this case, the t ransformed system is 

Y(k + 1) = A~~" -" "'- 1 . .. A~rk2 ,4~2-kl Ai'I +1Y(k) 

and 

Y(k) = X(Kk). 

Similar asymptotic periodic properties can be established as follows. 

(4) 

TJ.IEOREM 4.1 Suppose A i E R~' xn, i = 1,2, .. . ,m are irreducible matrices, 
with all their main diagonal entries not eq'ual to f.. Then, for any positive 
. t l . 1 2 A1 413 A12 A1' . . d "bl t m egers 1 , z = , , ... , rn, .;;~ .. .• 3 2 1 zs zrre ucz e, oo. 

TH EOREM 4.2 Suppose A i E R~'x", i = 1,2, ... ,m ar·e irred'uci !Jle matrices, 
with all their main diagonal entries not equal to f.. Then, there exist positive 
number>., positive integer·s d and k0 , such that the switched system (4) satisfi es 

X ( k + d) = >. rl X ( k), k 2: ko. 

Note that even if the matrix A is irreducible, its power A1 can be reducible 
for some integer l. For example, let 

Then 

which is reducible. This is why we assume that all t he main diagonal entries 
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5. Illustrative example 

Inspired by the mathematical models of a class of reconfigurable manufacturing 
processes (Cheng Wu, 2000; Cohen et al. , 1984, 1985; Ramadge and Wonharn, 
1987; Cunninghame-Green, 1979) , we will illustrate our results in two different 
swi tching cases. 

Consider a system switched alternatively between two subsystems, more 
specifically, 

with 

A,~ [ ~ ~ n, 
It is easy to get 

[ 
5 5 5 ] 

AzA1 = 2 5 4 . 
3 4 4 

k even 
k odd 

lb=[~; ~ l -
E 2 1 

It can be verified that they are all irreducible (Cohen et al. , 1984, 1985; Cun­
ningharne-Green, 1979) , and -\(AI)= 3, -\(A2 ) = 4, -\(A2A1 ) = 5. 

The evolution of the switched system can be easily calculated: 

X(O) ~ [ ~ l , X(!) ~ A,X(O) ~ [ ~ l , X(2) ~ A,A ,X(O) ~ [ ! l , 
X (3) ~ A, A, A, X(O) ~ [ ! l , X(4) ~ A,A,A,A,X(O) ~ [ :~ l , 
X(5) ~ A,A,A,A,A,X(O) ~ [ ;~ l ' X(6) ~ A,A,A,A,A,A,X(O) ~ [ H l ' 
X(7) ~ A,A2 A,A2 A,A,A,X(O) ~ [ :; l , 
X(8) ~ A,A,A,A,A2 A,A2 A,X(O) ~ [ :~ l , 
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From the evolution of the S\vitc:hed system, we can see that: 

1. Initially, the system does not exhibit periodic behavior, since 

X(2)- X(O) ~ [ ~ l , X(3)- X(!)~ [ n . 
2. A few steps later, the system begins to exhibit periodic behavior 

X(4)- X(2) = X(G)- X(4) = X(8)- X(G) = [ ;)~~ --] 
= X (2n+2)-X(2n) , n~ 1 

X(5)- X(3) = X(7)- X(5) = u 

[ ~5~ l = X(2n + 1)- X(2n- 1), 

L. WANG 

X(S)- X(4) ~ X(7) - X(O) ~ [ ~ l ~ X(2n + 1)- X(2n) , n ~ 2 

X(6)- X(S) ~ X(8)- X(7) ~ [ ~ l ~ X (2n + 2)- X(2n +I), n ~ 2. 

This is consistent with the theoretical results est ablished in the previous scc­
til)!lS. 

!\ow consider a switched system with a more complex switching rule 

with 

.4. ~ [; ~ n. 
It is easy to get 

k: = 0 (mod 3) 
k: = 1 (mod 3) 
k: = 2 (mod 3) 

It can be verified that they are all irreducible (Cohen et al., 1984, 1985; Cun-
- - ' ~ - • ' ' ' ' ' I ' ' & \ -
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The evolution of the switched system can be easi ly calculated: 

X(O) ~ [ ~ l , X(!)~ A1X(O) ~ [ ~ l , X(2) ~ .V(l) ~ [ : l , 
X(3) ~ AzX(2) ~ [ ~ l , X(4) ~ A1X(3) ~ [ l;O l , 
X(5) ~ .4,X(4) ~ [ H l , X(6) ~ A,X(") ~ [ :: l , 
X(7) ~ A,X(G) ~ [ :~ l , X(S) ~ A,X(7) ~ [ i~ l , 
X(9) = A2 X(8) = [ ;~ l , X(lO) = AlX(9) = [ ;~ l , 

21 24 

Again, from the evolution of the switched system, we can see that : 

1. Initially, the system does not exhibit periodic behavior, since 

X(3) - X(O) ~ [ ! l , X(4)- X(l) ~ [ ~ l . 
2. A few steps later, the system begins to exhibit periodic behavior 

X(5)- X(2) ~ X(S)- X(5) ~ [ ; l ~ X(3(n +I)+ 2) - X(3n + 2), 

n 2: 0 

X(G)- X(3) ~ X(9)- X(6) ~ [ ; l ~ X(3n + 3)- X(3n) , n ~I 

X(7) - X(4) ~ X(IO) - X(7) ~ [ ; l ~ X(3(n + 1) + 1) - X(3n + 1), 

n2:1. 

This is , again , consistent with the theoretical results established in the previous 
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6. Future research 

Two issues are under investigation : 

1. What is the necessary and sufficient condition for the product of some matri­
ces to be irreducible? in some cases, even if each individual matrix is reducible, 
their product can still be irreducible; for example 

A=[:~] , B=[~ ~ ] · 
This issue is important in performance evaluation of the switched discrete event 
systems . 

2. How is the eigenvalue of the product of some matrices related to the the 
eigenvalue of each individual matrix? The eigenvalue of the product of some 
matrices represents the asymptot ic mean period of the switched system, and 
thereby plays an important role in performance evaluation. 

Yet another interes ting research direction is to study the asymptot ic behavior 
of general 2-D discrete-event systems (Roesser, 1975; Kurek, 1985) 

X(m. + 1, n + 1) = A1X(m. + 1, n) EB A2X(rn, n + 1) EB A3X(m., n) 

with the boundary condition 

X(m.,O)=Xmo, X(O,n) =Xon, m.,n=0,1,2 , ... 

Under what conditions does the system exhibit periodic behavior (with respect 
tom., n) asymptotically? and how to evaluate its asymptotic performance? 

A popular model for 2-D syst ems is the so-called Roesser model (Roesser, 
1975): 

[
X"(i +1,j)] [ 
.. P(i,j + 1) 

with the boundary condition 

] [ Xh(i ,j ) 
... P(i,j) 

X"(O , j)=XJ' , x v(i, O)=Xi' , i,j=0,1,2, ... 

How the system (in the max-plus algebra sense) evolves asymptotically, and how 
to evaluate its asymptotic performance are the subjects of current research . 
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