
Control and Cybernetics

vol. 33 (2004) No. 2

Cost-efficient synthesis of multiprocessor heterogeneous
systems

by

Stanislaw Deniziak

Department of Computer Engineering,
Cracow University of Technology

Warszawska 24, 31-155 Cracow, Poland
e-mail: pedenizi@cyf-kr.edu.pl

Abstract : In this paper an algorithm for co-synthes is of dis­
tributed embedded systems is presented . The algorithm is based
on iterative improvement heuristics, taking into consideration so­
phisticated modifications and possibilities of further improvements.
Starting from the solution with the highest performance, architec­
ture of the system is modified until it achieves the lowest cost. It
has been observed that the algorithm presented has the capacity of
getting out of the local minima. Experimental results showed high
efficiency of the algorithm. Almost all results obtained with the help
of the algorithm were significantly better than the results obtained
with the help of Yen-Wolf algorithm presented in the literature.

Keywords: HW /SW co-synthesis, distributed systems, SOC.

1. Introduction

In recent years Hardware/Software (HW /SW) co-synthesis has become an al­
most standard procedure for designing various types of embedded systems. The
problem of HW /SW co-synthesis, taking into consideration the cost and per­
formance objectives is illustrated in Fig. 1. The area S comprises all possible
solutions. Maximal cost (line C:r) and minimal performance (line Cy) con­
straints reduce the search space to the area S'. Solutions nearest to the point
C are the best, as far as both factors (cost and performance) are considered.
Point B' (A') is the co-synthesis goal when only system cost (performance) is
min:mised (maximised).

Distributed embedded sys tems are usually specified in terms of communi­
cating tasks . HW /SW co-synthesis (Gupta and De Micheli, 1993) is the process
of partitioning system specification into hardware and software processing ele-. -

342 S. DEN IZIAK

architecture satisfying given constraints e.g. maximal cost or minimal speed.
For many practical embedded systems, multiprocessor heterogeneous architec­
tures are the most efficient ones. Today, it is possible to implement such a
system on one chip (System On a Chip - SOC). Design reuse is widely used to
reduce time to market for SOCs. The number of available hardware and soft­
ware reusable IP (Intellectual Property) modules increases significantly every
year. The IP-based design becomes the dominating technique for SOCs, and
should be taken into account in the hardware/software co-synt hesis methods,
too.

Cost Cy H~w=

~~~~~:~~~~~~~~~ 
A 

Cx A' 

. ' .. .. : ·: 
· . .:· ········ 

/ c 
Soflw.ile 

S p;!ed 

Figure 1. Search space in co-synthesis 

The synthesis of multiprocessor heterogeneous systems consists of the fol­
lowing tasks: 

- allocation; determines the quality and quantity of resources (processing 
elements - PEs and communication links - CLs), to be used, 

- assignment; determines tasks to be executed on each PE, and a CL for 
each transmission, 

- task scheduling; determines time of execution for each task and each trans­
mission. 

Allocation, assignment and scheduling are each NP-complete and so co-synthesis 
is computationally a very hard problem. 

In this paper an algorithm for co-synthesis of distributed embedded systems 
is presented . In this algorithm all of the co-synthesis t asks are executed si­
multaneously. Dependencies between allocation, assignment and scheduling are 
taken into account. The algorithm is based on iterative improvement heuristics, 



Cost-effic ient synthes is of multiprocessor hete rogeneous syotcms 343 

in:provements. Starting from the solution with the highest performance, archi­
tecture of the system is iteratively modified until it achieves the lowest cost . It 
has been observed that the algorithm presented has the capacity of getting out 
of the local minima as far as the system cost is concerned. 

The paper is organized as follows. Next section reviews related previous 
work. In Section 3 basic concepts and definitions are presented. The co-synthesis 
algorithm is presented in Section 4. In Section 5 experimental results are given. 
Section 6 presents the conclusions. 

2. Previous work 

Related work often considers one-CPU-one-ASIC (Application Specific Inte­
grated Circuit) target archi tectures (Gupta and De Micheli , 1993; Henkel and 
Ernst,1997; Kalavade and Lee, 1995). In such approach co-synthesis is formu­
lated as a hardware/software partitioning. However, most real-life embedded 
systems are distributed and heterogeneous i.e. composed of multiple general­
purpose processors, microcontrollers, digital signal processors, protocol con­
trollers , et c. Therefore, practical co-synthesis method can not be limited to 
the mono-processor based systems. 

Due to the complexity of co-synthesis, t he algorithms giving best solutions 
(e.g. mixed integer linear programming, Prakash and Parker, 1992, or exhaus­
tive exploration, D'Ambrosio and Hu, 1994) are limited to small systems, only. 
Other approaches are based on constructive or iterative refinement heuristics. 
Some probabilistic optimisation methods e.g. simulating annealing (Eles, Peng, 
Kuchcinski , and Doboli , 1997) or genetic algorithms (Dick and Jha, 1997) have 
been applied to the co-synthesis problem, as well. 

Construct ive algorithms (Dave, Lakshminarayana and .Jha, 1997; Bianco, 
Auguin and Pegatoquet, 1998; Dave and .Jha, 1998) build a system allocating in­
crementally new components. Since such approach is capable of inspecting only 
local effects of changes, difFerent performance estimation methods were used to 
predict the global impact of these changes. The methods, usually based on the 
best- and worst-case analysis, prefer PEs with the highes t speed or with the low­
est cost and disregard the remaining PEs. Although constructive algorithms are 
fast and are capable of producing high quality results (Dave, Lakshminarayana 
and .Jha., 1997), they are prone to becoming trapped in local minima. 

Iterative improvement algorithms (Yen and Wolf, 1995A,B; Hou and Wolf, 
1996) start with a sub-optimal solution and try to improve the system quality 
by making local changes to the system. Existing iterative algorithms also tend 
to be trapped in local minima. The main reason is that iterative improvement 
methods consider only local changes driven by immediate gain . In sensitivity­
driven co-synthesis algorithm (Yen and Wolf, 1995A) the movements of one 
process from one PE to another PE are only considered. Allocation of a more 
expensive PE that will reduce total system cost due to accommodation of more 



344 S. DE NIZIAI< 

Probabilistic optimisation al)!;orithms arc capable of escapiug from local min­
ima .. However, performance of these methods strongly depends on selected pa­
rameter values. For example, in the MOGAC genetic algorithm (Dick and .Jha, 
1997) each task graph has a different random seed for which the algorithm 
finds the best solu tion most rapidly. On the other hand, the hardware/software 
part itioning algorithms based on simulated annealing turned out to be less ef­
ficient than the iterative improvement algorithms like tabu search (Eles, Peng, 
Kuchcinski and Doboli, 1997). 

Recently, most of research has addressed specific problems of co-synthesis, 
like multi-mode embedded systems (Oh and I-Ia, 2002), euergy optimisation 
and utilisation of dynamic voltage scalable processors (Schmi tz, Al-Hashimi 
and Eles, 2002) , partitioning and scheduling of hierarchical specification models 
(CLatha and Vemuri , 2001; Haubclt , Teich , Richter and Ernst , 2002) or condi­
tioual task graphs (Eles, Kuchcinski , Peng, Doboli and Pop , 1998; Xie and \iVolf, 
2001) , and co-synthes is for system-on-a-chip architectures (Dick and .Jha, 1999). 
Finding an efficient co-synthesis algorithm for distributed embedded systems is 
sUI an open problem. First , most of existing approaches are not suitable for 
large systems because of time requirements. Second, quality of results obtained 
usiug different methods indicates that there is a lot of \vork to do in order to 
improve the efficiency of co-synthesis algorithms. 

3. Basic concepts and definitions 

A task graph G = (V, E) will be used as an abstract model of system specifica­
tion. The task graph is a directed acyclic graph. Each node v i corresponds to 
one task and each edge Cij is associated with communication between tasks cor­
r~sponding to nodes v i and Vj. Weights d;j associated with edges describe the 
amount of data (iu bytes) that must be t rausmitted between the two connected 
tasks. An example of a task graph is presented on Fig. 2. 

Two types of processing elements ( P E) are considered: universal programm­
able processors (PPs ) and dedicated hardware cores (HCs). A PP executes all 
t he assigned tasks sequentiall y. Each HC executes exactly one task. Hardware 
Ltllits which can execute more than one task arc defined as PP (not HC). In 
this way hardware sharing is possible in the presented algorithm. With each 
P E; the following parameters are associated: 

- cost of given tasks ci (vj), 
- t ime of execution of given tasks T; ( Vj) . 

Values of Ci (vi) and T;(vj) are known for IP modules. For other tasks they can 
be computed using performance and hardware effort estimation methods (Yen 
and Wolf, 1998; Henkel and Ernst, 1998). 

With each PE a resource type (RT) is associated. PEs with the same RT 
may be located in the same integrated circuit (JC). With each IC; the following 
parameters are associated: 



Cost.-effi c icnt. sy nt hes is o f mu lt iprocessor heterogeneous systen1s 345 

Figure 2. An example of a task graph 

- maximal cost CMi, which defines maximal cost of all tasks mapped to 
IC ;. 

CU; is independent of the number of tasks allocated to PEs located on the 
IC ; (e.g. it is a cost of PPs or a cost of PP cores) . Maximal cost defines the 
maximal size of the IC;. 

Communication between processing elements is established using communi­
cation links ( CLs). Sharing of communications links is allowed. Communication 
links are treated similarly as PP . During synthesis link allocation and schedul­
ing of transmissions are performed. Each type of communication link CLi has 
the following parameters: 

- cost of the link CC i for each available P E type 
- bandwidth bi (Bytes/s). 
The time Tk (vi, Vj) required for data transfers between tasks Vi and Vj using 

communication link CLk is evaluated using the following rule: 

if tasks are assigned to different PEs , 

otherwise. 

It is assumed that t ransmissions do not interfere with computations. Such 
--- _1 _ 1 - , . 



346 S. DENIZIAI\ 

using dual-port buffers between PEs and buses or with communication using 
shared memory. 

Assuming that a cost is cldined by the Iota! ASIC area, t he total cos t of il 
system may be-~ specified using t h e-~ followiug cqnatio11: 

C = L (CU; + L C; (vA-r(iJ)) + L CC; (1) 
i= I M ( i.) i= l 

where r is the nmnbPr of ICs , lid (i) is t he list. of tasks mapped to PEs l oca.t(~d 

on IC i, a.nd c is the number of C:Ollll!lllllic:aJions links. 
Illust rative values of resource parameters for task graph from Fig. 2 are 

presented in Tables 1 alld 2. It is assumed t hat tcclmology librmy conta.ins 4 
types of resources (2 programmablP processors and 2 ASIC technologies) and 2 
ty pes of communi cation links ( CL2 is not availnble for PEs of type RT1). 

Table ~ 1. Resource parameters 

PP1(RT1) PP~(RT2) HC;(RT:l) HC;( RT,,) 

PE CUI =100 cu._,_ =20o C U:l = 500 cu., =300 
CM, =30 CM._,_ =50 CM:1 =500 CM1 =1 00 

'I! ; T,(v ,) c,(v,) T 2(v ,) c ._,_ (v,) T :,(vl) C:1(v1) T ,,(v,) c,(v,) 

vo 30 3 10 2 3 50 4 10 
'li t 50 ij 20 4 G so 5 20 
/1'_! 20 :l 10 3 3 60 5 20 
V:~ 10 3 8 1 1 20 2 5 
IJ4 30 3 l J 2 4 70 10 30 
Vr, 50 J 30 3 5 s o 5 15 
VH 40 3 15 2 10 70 12 15 
V7 30 3 15 2 5 50 s 18 
V x 20 3 5 1 2 30 4 Hl 
Vq 10 :l 5 1 :1 LlQ -J 12 

Tabk! 2. Conlllllllli catiou liuk parilme ters 

CL J 
Cost 

I~ RT, RT._,_ R1\ RT, 

CLJ 2 0 1~~ -.. -~ () I 8 

I CL2 () 8 16 

4. Co-synthesis a lgorithm 

T ltc goal of co-synl ltesis is to fi ud t.lw chea 1 <'SI system an:bi tecturc sat.i sfyiug 
givc·u t ime coust. r<liuts . Tlw algori llun is h <.~sr!d 0 11 iten.1ti\·e improvements of sub­
op t imal solu tions. It starts wit h au initi a l solntiou , <tt caclt st.C'p ~ Ollie> cha nges 
to the <t d. ual solu tiou an! conside red an d then the solution givi 1 11 w best. gain 



Cost-cfficiellt. s.vnt.hesi:-; of 111UI ti pro cessor heterogeneous 1;yst e111~ 347 

- the initial solution, 
- the metric of the gain, 
- system refinement methods 

The above components were defined in such a way that the algorithm is capable 
of escaping from local minima. 

4.1. Initial solution 

The fastest architecture of the system is always sekcted as an initial solution. 
In this solution, the PE with fastest execution t.ime is allocat<:d to each task. 
If any time constraint is not satisfied then the algoritlun stops (there is no 
solution), otherwise the algorithm continues with refinements reducing the cost 
ol· the system. For the example from Fig. 2 the initial solution consists of 10 
PEs (8 * RT3 and 2 * RT,1). The cost is 5025 and execution time equals Hi. 

4.2. Gain 

The value of gain defines the quality of an improvement.. Since the goal of re­
finement is to reduce cost of the system , so this cost should be the main factor 
influencing the gain. However, greedy algorithms, taking into consideration only 
cost, are quickly trapped into local minima. Hence, usually more sophisticated 
gain metric:s are used. For example, in Yen and Wolf (1995A) the cost of least. 
utiliz,ed PEs is increased in order to force the idle PE elimination. In construc­
tive algorithm; more sophisticated metrics are used, too (Bianco, Auguin and 
Pegatoquet, 1908). 

The ma.in idea of the algorithm presented here is to define the gain in such 
a way that it accounts for the global impact of the considered improvement. 
Usually, execution time is longer for PEs with lower cost, and moving a task to 
a Jess expensive PE may decrease system performance. Obviously, not all tasks 
have the sam<' influence on system performance. For the example from Fig. 2 
the longer the execution time of task v0 the longer the execution times for all 
paths in the graph, and finally for the whole system. In the same example the 
execution time of task v8 inH uences only the path containing tasks v0 , v2 and v1 . 

From this we may deduce that. moving task v8 to a slower PE has less impact 
on the possibilities of refinements in the next steps of the algorithm than the 
same change for task v0 . 

In the approach presented the possibilities of modifying system architec­
tun! in the subsequent steps of the algorithm are defined using the following 
parameter: 

II 

n = L (L;- si) 
i=l 

where: 



348 S. DENIZIAK 

L.; - is the latest time to start the execution of the i-th task, ensuring satisfac-
tion of all time constraints. 

S; and L ; are evaluated using ASAP (As Soon As Possible) and ALAP (As Late 
As Possible) algorithms for the current architecture . If for any of the tasks we 
have L; < S; then the current solution docs not satisfy time requirements. This 
condition is verified for each solution. Bigger L; - S; usually means more pos­
sibilities of allocating the i-th task. During system refinement task assignments 
and scheduling are changed, and so L.; and S; should be computed after each 
step. For example, assume that we want to find the best architecture executing 
the graph from Fig. 2 in time Tmru = 50. Then values of parameters L; and S; 
for the initial solution are presented in Table 3. 

Table 3. Parameters L; and S; 

vo V! '1!2 V3 V4 '1!5 V6 '1!7 'VB Vg 

IS; 0 3 3 8 6 8 6 9 10 13 
IL; 34 37 37 44 44 42 40 45 48 47 

The global impact of any modification is defined as the increase of n caused by 
the modification: 

Finally, the gain !J..E taking into consideration cost reduction and the global 
impact of the system refinement is defined as follows: 

for !J..D < 0 

f or !J..D = 0 
for !J..D > 0 

where !J..J(s denotes the cost increase. 
Gain is defined only for modifications decreasing the cost of a system ( oth­

erwise the modification is not. taken into consideration). From the three cases 
o! the above formula the first one (!J..D < 0) corresponds to modifications that 
could decrease the system cost as well as the system performance. Thus, the ar­
chitecture with the best cost t o performance ratio is selected. In the second case 
(!J..D = 0) modification might not change the performance, so the system with 
the lowest cost is selected. The last case (!J..D > 0) corresponds to modifications 
that could increase system performance. 

4.3. System refinement methods 

In each step of an iterative improvement algorithm different modifications of 
the current solution are considered and the modification giving the best gain 



Cost.-cllicient synt.hcs is of mull.iproccssor h etc rogcneou~ systems 349 

very large then only few of these changes should be taken into considerat ion. 
Otherwise, the algorithm would be not suitable for large systems due to time 
requirements. For this reason the existing approaches apply only simple modifi­
cations like moving one task to another PE, removing or allocating one PE etc. 
(Yen and Wolf, 1995A) . But such local changes have no possibility of getting 
the a.lgorithms out of the local minima during cost vs. speed optimisation. 

In the algorithm presented more complex modifications are considered. The 
main goal of such approach is to increase the possibility of getting out of local 
minima. The following system changes arc considered during refinement: 

1. Allocation of one PE and assigning to it as many tasks as possible, so 
as to achieve the highest gain. After the allocation and assignment is 
terminated, all PEs which have no task allocated to them arc removed. If 
the graph contains n tasks and the technology library contains r resource 
types then in the worst case there are 1· · n possible modifications. 

2. Removing one PE, with all tasks, which were allocated to it , being moved 
to other PEs. All transfers are done according to the highest gain principle. 
In the worst case there arc n 2 such modifications. 

The same modifications are considered for communication links and trans­
missions. It is possible to perform both kinds of changes in the same step, in 
this way task transfer from some P Es to other ones can be done. Hence, in the 
worst case r · n3 system modifications are considered. In practice, this num­
ber is significantly lower because solutions with higher cost and solutions not 
satisfying time constraints are not considered. 

It should be noticed that such complex system modifications allow for global 
changes of system architecture. Moreover , simple modifications are still possible. 
For example, allocation of one PE, assigning of one task to it and then removal of 
tl:is PE and t ransfer of the task to some other PE, corresponds to task movement 
from one PE to another. Observations showed that such an approach has greater 
capacity of escaping from local minima than other algorithms based on iterative 
improvements. 

4.4 . Algorithm description 

The scheme of the co-synthesis algorithm is the following: 

Cr·eate an initial architec ture A 
Comp1de cost K 8 ; 

repeat 
Gain= 0; 
for each ava'ilable r-esour·ce type RT; do 

A'= AU PE(RTi); 
repeat 

Find task Vi.; g·iving highest oE after moving it to PE(RTi) ; . -



350 

until there ex·ists no task giving 6E > 0 ; 
A'= A'- PEs with no task nss·iynerl; 
if !J.E > Gain then 

Gain = /J. E ; A best = A'; 
endif; 
for each process·ing element P E i E A' do 

A"= A'- PEj; 
for each task vk E PE j do 

S. DENIZ!AK 

Find PEl E A." giving highest 6E after· moving tnsk Vi.: to it ; 
Assign task v; to PEt 

endfor; 
if !J.E > Gain then 

Gain= !J. E; Abest =A" ; 

endif; 
endfor; 

endfor ; 
if Gain > 0 then A= A/Jest; 

until Gain = 0; 

where fJE means the gain achieved by moving one task to another PE (taking 
into consideration task costs , only), while !::,£ means total gain (indudiug all 
costs). 

The outer for loop examines all possible allocations of a new PE. Task 
transfers to a new PE are performed in the inner repeat loop. After allocating 
a new PE, a possibility of removing one PE is examined in the second for loop. 
If removing one PE increases gain, then such modification is accep ted. In each 
step the modification giving the best gain is accepted aud becomes the current 
solution for the next step of the algorithm. Only solutions with positive gain 
and satisfying all t ime constraints are considered. This reduces the search space 
and assures that the algorithm is convergent . 

When a task is moved to PP, task scheduling should be performed. In such 
case all possible schedules of a new task are examined (the schedule of the 
previously assigned tasks is not changed) and the schedule giving the bes t. gain 
is selected. Because scheduling has no influence on cost, then the best gain 
means lower global impact (!J.H) and higher performance. 

5. Experimental results 

The resul ts of co-synthesis of the task graph from Fig. 2 are presented in Fig. 3. 
These results have been obtained for time constraint Tmax = 50, while commu­
nication times were neglected. The system consists of 2 PEs: one programmable 
processor and one dedicated hardware core. It should be 11oticed that very high 
utilisation of R2 was obtained . The cost of the system equals 582, and it is the 



Cos t-dficient. sy nt.li es is o f ntult.iproccsso r li et.erog<· nco ns syst.cn•s 

ch aractr~ri st i cs given in Table 1) . 

I 
I 

• 
I 

v,-, 
:· l 
I 
; 

V-z . ! ;-.;.. 

lv, 

v4l v.,. lv.-. .. ";,,J ,~,. ~< ! 

I I 
i i 

1 3 3 I I 

RT-~ • 

o l __ J.!ll ___ ~o_i_ __ J21 ___ {Oj ___ I~~- --~~t--

351 

F igure 3. Results of synthesis (a Gantt. chart ) for t he task graph from F ig. 2 

To es ti mate the efficiency of the presented a lgorithm a modified version of the 
Yen-Wolf a lgorithm (Yen and Wolf, 1995a) was implemented. In this algori thm 
the cost funct io11 (1) was w.;t~ d, and then the algorithm was modified to minirni .~P 

only sys tem cost. For the graph from Fig. 2 t he systern consisting of 3 PEs was 
obt;l ined with the Yen-Wolf method. The cost of such system is equa.l to 757 
aml t h<) time of execution is 47. The results obtained for other exmnplcs are 
presented in Table 4. 

Table 4. Experimental results for example t<1sk graphs 

Graph N T ime Tmax Yen- Wolf EWA 
min. Cost T ime CPU Cost T ime CPU 

PSzP2 9 3 7 10 7 0 01 G 7 () 01 
P &P2 9 3 15 8 15 0.01 5 4 0.01 
H ou1&2 20 97 150 250 149 0.05 200 147 0.14 
Hou3&4 20 82 150 3GO 150 0.05 250 142 0.14 

Gr; tpli : Ham e of the graph ; N : munb cr of tasks: T inw mill.: minimum tim e 

ll<' l'dr'd for ex<~cu ting all ta~ks; Tmax: t ime COllSt:mint ; Ye u- \ Volf: rcs lllts 

for t. lt c ~ Yc ~u - \ Volf a lgori t: l11H ; E lVA: res ul ts for t he all thor 's a lgori t h111 ; Cost : 

cost of t.hP obta ined ;trchi tP.ct m c; T inw: execution tim e for the ohtailiC~d 

;_trch iwctnrc; CPU: time of algori t hm cxccutiou. 

Do1l1 c:o nsidcred a lp;orithrns were implemented in C and run on P C Cd ero n 
1 o r -j 1' 



357 S. DENIZIAK 

1992). Hon1&2 and Hon3& 4 are Hou's task graphs (Hou and Wolf, 1996). All 
graphs have zero communication delay, zero communication lillk cost and costs 
of all tasks are equal to 0 (the total cost of a system is the sum of unit costs of 
all PEs). 

The efficiency of the presented algorithm was also estimated using ten ran­
domly generated tas k graphs. The results are given in Table 5. Four P E types 
were available. The table compares results obtained using Yen-Wolf cost func­
tion ( C; (vj) = 0 for all tasks) with the results obtained using the cost function 
presented in this work ( Ci ( V j) are randomly generated for each task). In both 
cases the efficiency of the presented algorithm is significantly higher than that of 
the Yen-Wolf method. Moreover, in the second case EWA obtains better results 
with a much shorter CPU time than the Yen-\Volf method . 

Table 5. Experimental results for random task graphs 

Graph N T ime Tmax C;(v ) ; 0 C; ( v · ) # 0 

m i n . Yen-Wolf EWA Y e n -Wolf EWA 

Cost Ti1ne CPU Cost Time C PU Cost Time CPU Cost T i me CPU 
Gl 10 183 200 2111 1~8 0.00 21 11 188 0.0 I 3959 18:J 0 .00 3959 183 0.00 
G2 :JO 259 600 2204 589 0. 11 1077 3 19 0.·19 7490 598 0.25 5770 506 0.39 
G3 50 248 1000 345 1 1000 1.03 1034 122 2 .58 11075 n1 2.47 8027 988 2.33 
G4 70 3 00 1400 3·15 1 14 00 4.08 10311 455 lO.H ll!JG3 l :Ji t 12.53 93 10 1396 9 .26 
GS 90 437 1800 3451 1800 14 .04 1077 555 30 .03 14617 178•1 40.14 \ 0363 l i fl l 28.23 
G6 110 377 2200 3452 2199 29.3 11 10 77 490 65.92 46357 :!15 7 83.04 11701 2193 57. 09 
G7 130 340 2600 3910 2502 7 5 .55 1034 562 125 .71 11 930 2506 :270. 86 10550 250 0 144 . 5 1 

' GS 150 441 3000 345 1 2996 \30.98 1034 792 225.12 14003 250 1 437.50 12337 2992 238.08 
GO 170 110 3100 3651 3308 252.<18 1077 56,1 382 .HS 58270 :1398 593.52 12211 3399 ·HiH .58 

G l O 200 532 4000 369 7 3903 -11 2.85 1077 802 731 .65 65638 3966 1205. 16 130 11 397 1 916.73 

6. Conclusions 

In this work an algorithm for cost-efficient synthesis of distributed heterogeneous 
systems was presented. The algorithm optimises the cost of the target sys tem 
taking into consideration time requirements. Experimental results showed high 
efficiency of the algorit hm. Almost all results obtained with the help of the 
algorithm were significantly better than results obtained with the help of the 
Yen-Wolf algorithm. The proposed approach is especially suitable for the IP­
based SOC designs , when cost is associated with each t ask. For such systems 
performance is also significantly better than of the Yen-Wolf method. 

Future work will concentrate on expanding the system model so as to include 
conditional graphs and loops in it. 

References 

B IANCO, L ., AUGU IN, M. and PEGATOQUET, A. (1998) A Path Analysis Ba­
sed Partitioning for Time Coustrained Embedded Systems. Proceedings 
of the 6t.h Intenwtional Wor-kshop on Hardware/Software Codes·ign. IEEE 



C:ost.-efficient synthes is of multiprocessor hNcrogeneous syst.cms 353 

CHATHA, K.S. and VEMURI, R. (200 1) MAGELLAN: IVIultiway Hardware­
Software Partitioning and Scheduling for Latency Minirniz.ation of Hierar­
chical Control-Dataflow Task Graphs. Proceed·ings of the 9th Intcnw.t·ion(/,1 
WoTkshop on HaTdwaTejSoftwar·c Codesign. ACM Press, Nevv York, 42-
47. 

D'AlVIBROSIO , J. and Hu, X. (1994) Configuration-Level Hardware/Software 
Partitioning for Real-Time Systems. Pmcccrhngs of the 3'"<1 Intenwtional 
Wo1·kshop on HanlwaTejSoftwur·e Codesign. IEEE Computer Society Press, 
Los Alamitos, 34-41. 

DAVE, B.P., LAKSIIMINARAYANA, G. and JHA , N.K. (1997) COSYN: Hard­
ware-Software Co-Synthesis of Embedded Systems. Proceedings of the 
.'14th Design Automation Conference. ACM Press, New York, 703- 708. 

DAVE, B.P. and JHA, N.K. (1998) CASPER: Concurrent Hardware-Software 
Co-Synthesis of Hard Real-Time Aperiodic and Periodic Specifications of 
Embedded Systems. Proceedings of the Conference on Design A·u.tomution 
and Test in Eumpe. IEEE Computer Society Press , Los Alamitos , ll8--
124. 

D EN IZIAK, S. and SAPIECHA, K. (2001) Kosynteza rozproszonych system6w 
heterogenicznych. III Krajowa Konferencja: Mctody i systcmy kom.]mt­
emwc w badaniach nav.kowych i projektowaniu iniynierskim .. 
AGH , Krakow , 437- 442 , in Polish. 

DI CK, R..P. and .JHA , N.K. (1997) MOGAC: A multiobjective GeneticAl­
gorithm for the Co-Synthesis of Hardware-Software Embedded Systems. 
Pmceed·ings of the IntCTnational Confe7·encc on Computer Aided Design. 
IEEE Computer Society Press, Los Alamitos, 522- 529. 

Drc K, R .P. JIIA , N.K. (1999 ) l\IIOCSYN: Multiobjective Core-Based Single­
Chip System Synthesis. Proceedings of the Conference on Design A'll.toma­
tion and Test in Eur·ope. IEEE Computer Society Press, Los Alamitos, 
263·-270. 

ELI~S , P ., PENG, Z., KUCHCINSI<I , K. and DO BOLl, A. (1997) System Level 
Hardware/Software Partitioning Based on Simulated Annealing and Tabu 
Search . Des·ign Av.tomation for Embedded Systems 2 {1), 5- 32. 

ELES, P. , PENG, Z., KUCHCI NSK I, K., DOBOLI, A. and POP , P. (1998) 
Scheduling of Conditional Process Graphs for the Synthesis of Embedded 
Systems. Pmceedings of the Conference on Design A ntomation and Test 
in Eur-ope. IEEE Computer Society Press , Los Alamitos , 132- 138. 

GuPTA , R.J . and DE .tviiCHELI , G. (1993) Hardware-Software Co-syuthesis 
for Digital Systems . IEEE Design f:'j Test 10 (3), 29- 41. 

HAUBELT, C., TERICH, .J., RICHTER, K. and ERNST, R.. (2002) System De­
sign for Flexibility. Proceedings of the Conference on Design A v.tonwtion 
and Test in E-umpe. IEEE Computer Society Press, Los Alamitos , 854-· 
861. 



354 S. DENIZIAK 

HENKEL, J. and ERNST, R . (1997) A Hardware/Software Partitioner using 
a dynamically determined Granularity. Proceed·ings of the 34th Design 
Automation Confer·ence. ACM Press , New York , 691- 696 . 

H ENKEL, J . and ERNST, R . (1998) High-Level Estimation Techniques for Us­
age in Hardware /Software Co-Design. Proceedings of the Asia and South 
Pacific Automation Conference. IEEE Computer Society Press, Los Alami­
tos, 353-360. 

Hou, J . and WoLF, W. (1996) Process partitioning for distributed embed­
ded systems. Pmceedings of the 4th Inter-national Workshop on Hard­
ware/Software Codesign. IEEE Computer Society Press, Los Alamitos, 
70- 76. 

KALAVADE, A. LEE, E.A. (1995) The Extended Partitioning Problem: Hard­
ware/Software Mapping and Implementation-Bin Selection. Proceedings 
of the 6th International Workshop on Rapid Systems Prototyping, IEEE 
Computer Society Press, Los Alamitos , 12- 18. 

LEE, T.Y., HSIUNG, P.A. and CHEN, S.J. (2001) Hardware-Software Multi­
Level Partitioning for Distributed Embedded Multiprocessor Systems. IE­
ICE Trans. Fundamentals E84-A (2), 614- 626. 

OH, H . and HA , S . (1999) A Hardware-Software Cosynthesis Technique Based 
on Heterogeneous Multiprocessor Scheduling. Proceedings of the 'lth In­
ter-national Workshop on Hardware/Software Codesign. ACM Press, New 
York, 183- 187. 

OH, H . and HA, S. (1999) Hardware-Software Cosynthesis of Multi-Mode 
Multi-Task Embedded Systems with Real-Time Constraints. Proceed­
ings of the 1Oth Inter-national Workshop on H arrlwm·ejSoftwar·e Codesign. 
ACM Press, New York, 133--138. 

PRAKASH, S. and PARKER, A . (1992) SOS: Synthesis of Aplication-Specific 
Heterogeneous Multiprocessor Systems. Journal of Parallel and Distrib. 
Cornp. 16 , 338- 351. 

SAHA, D ., MITRA, R.S. and BASU , A . (1997) Hardware Software Partition­
ing using Genetic Algorithm. Proceedings of the International Confe-rence 
on VLSI Design. IEEE Computer Society Press, Los Alamitos, 155- 160. 

SCHMITZ, M .T., AL-HASHIMI, B.M. and ELES , P. (2002) Energy-Efficient 
Mapping and Scheduling for DVS Enabled Distributed Embedded Sys­
tems. Pmceedings of the Conference on Design A·u.tomation and Test in 
Europe. IEEE Computer Society Press, Los Alamitos, 514- 521. 

SUZUKI, K. and SANGIOVANN I- V!NCENTELLI , A. (1996 ) Efficient Software 
Performance Estimation Methods for Hardware/Software Codesign. Pro­
ceedings of the 33r-d Design Automation Confer-ence. ACM Press, New 
York , 605- 610. 

XIE, Y. and WOLF, W. (2001) Allocation and scheduling of conditional task 
graph in harware/software co-synthesis. Pmceedings of the Confe-rence on 
Design Automation and Test in Europe. IEEE Computer Society Press, 



Cost-efficient synthesis of mu ltiprocessor heterogeneous systems 355 

YE N, T .Y. and WOLF, W.H. (1995A) Sensitivity-Driven Co-SynthesisofDis­
tributed Embedded Systems. Proceedings of the International Syrnposi'IJ.rn 
on System Synthesis. ACM Press, New York , 4- 9. 

YE N, T.Y. and WOLF', W.H. (1995A) Communication synthesis for distri­
buted embedded systems. Proceedings of the International Conference on 
Cornpnter Aided Design. IEEE Computer Society Press, Los Alamitos, 
288--294. 

YEN , T.Y. and vVOLF , W.H. (1998) Performance Estimation for Real-Time 
Distributed Embedded Systems. IEEE Tr·ansactions on Parallel and Dis­
tribnted Systems 9 (ll) , l125- l136 . 




