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A bstract: lVIodern telecommunication networks face an increas­
ing demand for services. Among these, an increasing number are 
services that can adapt to available bandwidth, and are therefore 
referred to as clastic traffi c. Nominal network des ign for elastic traf­
fic becomes increasingly significant . 

Typical resource allocation methods are concerned with the al­
location of limited resources among competing activit ies so as to 
achieve t he best overall performance of the system. In the network 
dimensioning problem for elastic traffic, one needs to allocate band­
width to maximize service Hows and simultaneously to reach a fair 
treatment of all the elastic services. Thus, both the overall efficiency 
(throughput) and the fairness (equi ty) among various services are 
important. 

In such applications, the so-called Max-Min Fairness (lVIMF) so­
lution concept is widely used to formulate the resource allocation 
scheme. This approach guarantees fairness but may lead to signifi­
cant losses in t he overall throughpu t of the network. In this paper 
we show how the concepts of mult iple criteria equitable optimization 
can be effectively used to generate various fair resource allocation 
schemes . We introduce a multiple criteria model equivalent to equi­
table optimization and we develop a corresponding reference point 
procedure to generate fair effi cient bandwid th allocations. The pro­
cedure is tes ted on a sample network dimensioning problem and its 
abilit ies to model various preferences are demonstrated. 

K eywords: mult iple criteria optimization, efficiency, fairness , 
equity, reference point method, resource allocation, network design , 
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1. Introduction 

Resource allocation decisions are concerned wit ll the allocation of limited re­
sources so as r.o achieve the best systr~m perfomtmtcP. This paper deals with 
problems of banclwicltlt allocation within telecommunication networks. The de­
velopment of the Internet It as led to an increased role of the traf-fic carried by the 
IP protocol in telecommunication networks. Due to the use of packet switclting, 
tb e IP protocol can provide greater network utilization (the so-called multiplex­
ing gain). For these reasons, network management cau be interested in designing 
networks which have a high throughput for the IP protocol. Nioreo\'er , a fair 
way of distribution of the bandwidth (or other network resources) among com­
peting demands becomes a key issue in computer 11etworks (Denci<:1 et a!. , 2000) 
and telecommunications network design, in general (Pioro and Medhi , 2004). 
Therefore, we focus on the approaches that, while allocating resources , attempt 
to provide a fair (equal) treatment of all the activities (Luss, 1999; Ogryccak 
and Sliwinski, 2002). 

Note that data traffic carried by the TCP protocol (which is the most fre­
quently used transport protocol in IP networks) has a unique c:hara.cteristic. 
The TCP protocol will adapt its throughput to the amount of available band­
width. It is therefore capable to use the entire available baudwidth, but it will 
also be able to reduce its throughput in the presence of contending traffic . This 
type of network traffic has been called elastic tm.ffic. Network design today 
often cousiders the problem of designing networks that carry elastic traffic . The 
network design problem reduces to a decision about link capacities and possibly 
flow routiug. Flow si,;es are an outcome of the clesigu problem, siuce it can be 
assumed that flows adapt to given network resources ou a. choseu path. 

If the network is also used for other types of connmllJication that require 
guaranteed quality of service, the net,x,;ork design problem can be decomposed 
in to two parts: first , design the network to carry non-elastic traffic in such a 
way that all demands for that communication arc satisfied. Next , usc the spare 
capacity to carry elastic traffic of the IP protocol. Resource allocation models 
may be used to help to solve such network design problems. 

vVithin a telecommuni cation network the data traffi c is generated by a ltuge 
number of nodes exchanging data. Iu such a uetwork, a relat ively small subset of 
nodes are chosen to serve as hubs which can be used as intennediat.e switchiug 
points or to define the so-called backbone network (Pioro and Medhi, 200cl). 
The hub-based network organi,;atiou allows the data traffic to be cousolidated 
on the inter-hub links. T he problem of network dimensioning with elastic traffic 
arises when there is a need to design the (inter- hub) link capacities to carry 
as much t raffic as possible betweeu a se t of network uodes . T his can occur iu 
the case described above, when the network capacity avai lable after considering 
all uon-elastic demands has to be used for elastic tra ffi c, or iu another case: 
when the netvvork capacity is insufficient to carry all non-clastic dema.uds. lu 
such a case, the problem is to determine how much traffic of the nou-elastic 
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ckma mls can be admitted into the network . To do so , t. he demands can be 
twatecl as elast ic traffi c. T he outcome of network des ign will also specify the 
liwits of t raffi c to be admitted into t he network fo r each demand (P i6ro aml 
Medhi , 2004) . 

Network management lllust stay within a budget of expenses for purchasing 
link lJandwid th. 1'\et\vork management \viii want to have a. high throughput of 
t he IP network , to increase t he mult iplexiug gains. T his t raffi c is offered only a 
best-effor t service, an d therefore nelwork management is not concerned with of­
fering guaranteed lP vels of bandwid th to the traffi c. Network dimensioning wi th 
elastic t raffic c:an t herefo re be thought of as a search for such network !lows t hat 
will maximi ze the Hetwork t hroughpu t (the sum of all liows in the network) 
wlnlc staying within a budget constra int fo r the costs of link bandwid th. l:-I0 \1·­

e·. er , such a prob lem fo nnulation 1vou ld lead to the stan·a.t ion of flows betwec~n 

certain network nodes. Looking at the problem from t he user perspective, t he 
network fiows between different nodes should be treated as fairly as poss ible. 
Titc users may be interested in high available bandwid th between any two nodes 
of t he network , or in high available bandwid th from all other network nodes to 
the user 's node, or in high available bandwid th from t he user's node to all other 
nodes. \Vlmtever the user preference, it would be expressed in terms of fa ir­
ness fo r a cer tain set of cri teria which depend on individua l fl ows. Let us fir st 
consider providing fairness for all fi ows between r.lllY two network uodes. Such 
a goal would clearly lead to lower levels of th roughpu t, since resomcc~s must lJ c 
allocated to distant nodes, which is more expensive than using t he en tire lJudget 
to purchase a high capacity for dose nodes. 

T herefmc, network management must consider two goals: iucrcasin g 
throughpu t aud providing fairness . These two goals arc clearly confii cting, if the 
budget constraint is to be satisfi ed . Network management could therefore be in­
terested in fi ncliug com promise solu t ions t hat do not starve-~ network fiows , and 
give satisfying levels of t hroughput. In particular , the so-ca lled Proport ional 
Fairn ess method (Kelly et al. , 1997) a llows for finding solut ions whi ch are fair 
wit h respect to flows in certain categories depending on t he d istaucc beL11·ee J1 
the source and destination of a fi ow. However , such nwthods give onl y one pos­
sible comprollli se solution . T he purpose of this work is t o show that there exists 
a lllethodology that allows the decision maker to explore a set of solu t ious that 
could sa t isfy his preferences with respect to throughput and fairness, aud choose 
t he solution which the decision maker finds best. T his intcrctctive appwach to 
decision making is superior to a black box approach , wheu the decision maker 
h r~s only one solut ion and cannot express his preferences (\Vierzb icki et al. , 2000) 

T he problem of uetwork dimensioning with elastic traffic can be formulated 
as a Linear Programllling (LP ) resource allocation problem as follows . Given 
a network routin g topology G =< 11, E >, consider a set of pairs of nodes as 
t!te set I of se rvices. For each service 'i E I , the elastic flow from source u j to 
destination u j1 will be denoted by x ;, whid1 is a variable representing t he model 
outcome. For each service, we are given the info rmation about t he routing path 
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in r.he network from the source to the destination. This information can l>e in 
the form of a matrix .6. = ((l0 ;)c EE, iEI, which satisfies the relation: Oei = 1 if 
link e belongs to the routing path connecting 'Lif with uj1 (the source and the 
destination of service ·i , respectively), otherwise Oei = 0. Further , for each link 
e E E, the cost of allocated bandwidth is defined. 

In the basic model of network dimensioning it is assumed that any real 
amount of bandwidth may be installed and marginal costs Ce of link bandwidths 
is given. l-Ienee, the corresponding link dimensioning function expressing neces­
sary capacity (bandwidth) to meet a required link load (Pioro and Medhi , 2004) 
is then a linear function (in fact ident ity function). In this basic model, the cost 
of the entire path for service i can be directly expressed by the formula: 

K.; = L Ce b ei for ·i = 1, ... , rn. 
eE E 

(1) 

The network dimensioning problem depends on allocating the bandwidth 
to several links in order to maximize fiows of all the services while remaining 
within available budget B for a ll link bandwidths. The decisions are usually 
modeled with (decision) variables: a e - representing the bandwidth allocated to 
link e E E. They have to fulfill the foll owing constraints: 

L Ceae -:;_B (2) 
cEB 

L bc;X.; -:;_ ae 'tie E E (3) 

where (2) represents the budget limit while (3) establishes the relation between 
service fl ows and links bandwidth (the quantity L iE / Oe; X; is the load of link e). 
Certainly, all the decision and outcome variables nmst be nonnegative: ae ~ 0 
for all e E E and J.;;. ~ 0 for all 'i E I. 

Links modulari ty (bandwid th granul at ion) is a. common feature in cornmuni­
caLons networks (Pi6ro am! Medhi , 2004). Therefore, in lllore realistic models, 
fc•r each link e E E, the minimum unit of baud width he is specified and the 
installed capacity ae must satisfy additional equation: 

(4) 

where Ze is an integer decision variable representing the numl>er of bandwidth 
units be installed at link e. In the case of modular links (discrete bandwidth units 
be), Ce represents the uni t cost. T he corresponding link dilllensiouing function 
is then a step wise function. Note that one ca.rmot uow define direc tly any cost 
"'; of the path (similar to (1)) , since this cost depends on possible sharing with 
other paths of the surpl us bandwidth arising due to links rnodula.ri t.y. 

Thus, in the basi c (continuous) case, the Ill ode! constraints dcfiue a linear 
programming (LP ) feasible set while for th e case of modular links it tums imo 
a mixed integer linear programming CVliLP) feasible se t. Constraints (2) aJl(l 
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(:3) may be then treated as equations. Together with formula (1) they allmv for 
elimination of va.riabks a", thus formulating the problem as a simplified resource 
allocation model wit·h only one constraint: 

/1}, 

L r;.;.T;=B 

·i= l 

(5) 

and variables :r; reprcseuting directly decisions. Such a sirnplificatiou is, cer­
tainly, impossible for a modular case, clue to additional discrete constraints ( 4). 

The uetwork dimensioning model could have various objective functions, 
dependiug on the choseu approach. One may consider two extreme approaches. 
The first extreme approach is the maximization of the throughput (the sum 
of flmvs) LiEl :.t ; . In the basic (continuous) case, due to possible alternative 
formulation (5), it is apparent that this approach would choose one variable 
:r;o which has the smallest marginal cost h~; o = _ min "'i and make that flow 

·l= 1, ... ,·tn 

maxirnal \vi thin the budget limit (:r; a = B / "'"), while limiting all other flows to 
zero. Alternatively, in the case of uot unique i 0

, oue rnay give equal values to all 
Hows which have marginal costs equal to the minimal marginal cost. However, all 
flows that have marginal costs larger than the minimum would have to be zero in 
a ::;olution that ruaximizes throughput. In the modular case, the direct formula 
for a path cost is not. available and the step wise link dimensioning function will 
cause some flows diversification with more small flows. Nevertheless, the main 
part of soluticm will be usually generated by one cheapest How. 

The so-called lVIax-Min Fairness (lviJVIF) solution concept is widely used in 
formulation of fair resource allocation schemes (.Jaffe, 1980; Bertsekas and Gal­
lager, 1987). The worst performance (minimum flow) is there maximized and 
additionally regularized, if necessary, with the lexicographic (sequential) max­
imization of the second worst performance, the third worst etc . The MMF 
concept is consistent with Rawlsian thl~ory of justice (Rawls, 1971; Rawls and 
Kelly, 2001). Actually, in the basic model with an LP feasible set, due to pos­
sible alternative formulatiou (5), the MMF concept would lead us to a solution 
that has equal values for all the flows (Ogryczak, 2001): 

xf1MF = B/L"'i 
i E f 

fori = 1, . . . ,m. 

Again, for the modular case some differentiation of flows usually occurs but for 
larger budget B it is relatively small. Allocating the resources to optimize the 
wo~·st performances may cause a large worsening of the overall (mean) perfor­
r11ance. Particularly, in the basic model, the MlVIF throughput (rnD/ "L-;:

1 
~>;) 

might be considerably smaller than the maximal throughput (B/ _ min ~>. ;). 
'/. = .1 , ... ,rn 

In an example built on the backbone network of a Polish lSP, it turned out 
that the throughput in a perfectly fair solution could be less thau 50% of the 
maximal throughput (Ogryczak, Sliwirrski and Wierzbicki , 200:3). 
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r\etwork management can be interested in seeking a cuu1promisc between 
tl:c two extreme approaclws discussed above. The approach called Pmpm·tional 
Fair·ness proposed in Kelly et al. (1997) rnaximizes the sum of logaritlnns of the 
flows :r:;. Actually, it corresponds to the so-called Nash criterion (Nash, 1950) 
wnich maximizes the product of additional utilities compared to the status quo. 
The use of the logarithlllic function makes it impossible to choose zero flows for 
any pair of nodes , and, on the other hand , makes it not profitable to assign too 
big flow to any imlividual demand. The optimization model of th e PF method 
takes the following form: 

'IH 

max L log(.x;) (G) 
i= l 

For the basic (continuous) model or network dimensioning wi th elastic traflic 
and unbounded flows, the solution found by the PF method has an iuteres t.i11g 
property (Pi6ro et al., 2002). The optimal flows x["F arc given by tlte expression: 

Pr :ci , = Bjn,i fori=1 , ... ,m. (7) 

This property implies that. the optimal flow in the P F model is inversely pro­
portional to the cost of the path that the flow travels in tlw network. Due 
to this property, it is not. necessary to so lve nonlinear ruodcls in order to find 
the PF optimal solut.ion. On the other hand, in the case of modular model 
one gets a complicated nonlinear optimization problem with integer variables . 
Moreover, network rnauagement. could be interes ted in choosing among a larger 
set of compromise solutions in order to satisfy their prdereuccs. In the fol­
lowing sections, we shall describe an approach that allows to search for such 
compromise solutions with multiple linear criteria rather than the use nonlinear 
objective functions. 

2. Fair allocations and equitable efficiency 

The generic resource allocation problem may be stated as follows. There is a 
system dealing with a set I of Tn services. There is given a measure of services 
realizat ion within a system. In applications we consider , the llleasure usually 
expresses the service flow. However, one lllay consider such Iue;.t.sures as service 
time, service costs, service delays as well as some more qualitative or subjective 
measures. Further , there is also giveu a se t A of allocatiou patterns (allocation 
decisions) . For each service i E I, its measure of realizatiou :r:; is a function 
:ci = .[;(a) of the allocation pattern a E A.. This function, called the individual 
objective fuuction , represents the outcome (effect) of the allocation pattern for 
service i. In typical formulations a larger value of the outcontc Ineans a. bet­
ter effect (higher service quality or client satisfaction). Otherwise, the outcomes 
cau be replaced with their complements to some large number. Therefore, with­
out loss of generality, we can assume that each individual outcome :r; is to be 
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maximized, which allows us to view the generic resource allocatiou problem as 
a vector maximization model: 

(8) 

where Q = {(:r: 1 , ... ,:J:11,): Xi= f;(a) for ·i = 1, ... ,rn., a E A} denotes the 
attainable set for outcome vectors x. For the network dimensioning problems, 
we consider, the set Q is an LP feas ible set defined by constraints (2) - (3) in 
the case of basic model, and a lVIILP feasible set (2)- ( 4) in the case of modular 
modeL 

Model (8) ouly specifies that we are interested in maximizat ion of a ll out­
comes Xi for i E I= {1 , 2, ... , m}. In order to make it operational, one needs to 
assume some solut ion concept specifying what it means to maximize multiple 
outcomes. The solution concepts are defin ed by properties of the corresponding 
preference model within the outcome space. The preference model is completely 
characterized by the relation of weak preference (Vinc:ke, 1992), denoted here­
after with c. Namely, the corresponding relations of strict preference >-- and 
indifference ~ are defined by the following formulas 

x' >-- x" 

x' ~ x" 

(x' c x" and not x" c x' ) 

(x' c x" and x" c x' ) 

(9) 

(10) 

The preference model related to the standard P areto- opti!ll a.l solut iou con­
cept also assumes that t he preference relation c is reflexive 

x>--x (11) 

t ransitive 

(x' c x" and x" c x"' ) =? x' c x"' (12) 

and strictly monotonic 

x + Eei >-- x for E > 0, i E I (13) 

where e.; denotes the i th unit vector in the outcome the space . T he last as­
sumption expresses the fact that for each individual outcome the larger value 
is bet ter (maximization) . The prefereuce relations satisfying axioms (11)- (13), 
c;:-lled hereafter rational preference relat ions, allow us to form alize the Pareto­
efficient solution concept with the following definitions. All outcome vector x' 
mtioHally dominates x" (x' >--r x"), iff x' >-- x" for all mtioual preference rela­
tions c. In other words, an outcome vector x" is clomiuated by x' , if no rational 
decision lllaker prefers x" to x ' . If x = f (a ) is rationally nondOJu i11ated , then 
the allocation pattern a E A is called P areto-efficient (Pareto-optimal) . 

The relation of weak rational dominance Cr may be expressed in terms of 
the vector inequality : x' c ,. x" iff :t:; 2 :C:' for all i E I. T his leads to the 
common ly used definition of the Pareto-optimal solu tions as feas ible solutio11s 
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for which one cannot improve a.ny criterion without worsening another (Steuer, 
1986) . However,· the axiomatic definition of the rational preference relation 
allows us to introduce additional properties of the preferences related to fairness 
concepts. The concept of fairness has been studied in various areas beginning 
from political economics problems of fair allocation of consumptiou bundles to 
ahstract mathematical formulation (Steinhaus, 1949). In order to ensure fairness 
in a system, all system entities have to be equally well provided with the system's 
services. This leads to concepts of fairness expressed by the equitable rational 
preferences (Ogryczak, 1997; Kostreva and Ogryczak, 1999). First of all, the 
fairness requires impartiality of evaluation, thus focusing on the distribution of 
outcome values while ignoring their ordering. This means that in the multiple 
criteria problem (8) we are interested in a set of outcome values without taking 
into account which outcome is taking a specific value. Hence, we assume that 
the preference model is impartial ( auonymous, symmetric) . In terms of the 
preference relation this may be writteu as the followiug axiom 

(14) 

for any permutation T of I. Further , fairness requires equitability of outcomes 
which causes that the preference model should satisfy the (Pigou- Dalton) prin­
ciple of transfers. The principle of transfers states that a transfer of any small 
amount from an outcome to any other relatively worse- off outcome results in 
a more preferred outcome vector. As a. property of the preference relation , the 
prin ciple of transfers takes the form of the following axiom 

:r;-;' > :J:;u :::} X - Ee; ' + Eei" )>- X for 0 < E < :£;' - Xi" (15) 

The preference relations satisfying all axioms (11)- (15) wi ll be called hereafter 
faiT (eqv,ita.IJle) mt·iona.l prefeT'ence rdat'ions. Note that according to any fair 
ra tional preference relation a solu t ion generating all three outcomes equal to 
2 is considered better than any solution generatin g individual outcomes: 4, 2 
and 0 (due to principle of transfers), while it remains worse than a. solution 
generating one outcome 4 and t-wo other equal to 2 (due to the monotonicity). 

The fair rational preference relations allow us to define the concept of fairly 
(equitably) efficient solution, similar to the standard efficient (Pareto- optimal) 
solution defined with the rational preference relations. \Ve say that outcome 
vector x' fa. iT'ly dominates x" (x' >-- c x" ) , iff x' >-- x" for all fair ra tional pref­
erence relations ~. An allocation pattern a E A is called eqv:itnbly effi cient if 
x = f(a) is fairl y nondomi11ated. Note that each fairly efficient solu tion is also 
P areto-eff-icient, but not vice verse. 

Typical solution concepts for multiple criteria problems are ckfiued by ag­
gregation function s g : Y --+ R to be maximized. Thus the multiple criteria. 
problem (8) is replaced with the maximization problem 

max {g(x) : x E Q} (16) 



Mult.i-criteria bandwidth a llo cat ion 435 

In order to guarantee the consistency of the aggregated problem (16) with the 
fair (equitable) maximization of all individual outcomes in the original multiple 
cri teria problem, the preference relation induced by the aggregation functiou 
maximization 

x' ~ 9 x" ¢:? g(x') 2:: g(x") 

must be a fair rational preference relation . 
The simplest aggregation functions commonly used for the multiple criteria 

problem (8) are defined as the sum of outcomes 

g(x) = L Xi (17) 
i = l 

or the worst outcome 

g(x) = . min :J;i · 
t=l, ... ,rn 

(18) 

In the network dimensioning problem, the former represents throughput max­
imization whi le the latter corresponds to the (simplified) IVIMF model. Both 
functions are symmetric and thereby their relations ?: 9 satisfy the impartiality 
requirement (14) but they do not satisfy the equitability requirement (15) (al­
though satisfying the weak form of this requirement ; Ogryczak, 1997). Hence, 
these aggregations do not guarantee the fairness of solutions. It turns out, how­
ever , that for any strict ly concave, increasing function s : R -t R, the function 
g(x) = L7~ 1 s(:r:;) generates the fair rational preference relation ~ 9 . This 
defines a family of the fair aggregations according to the following corollary 
(Kostreva and Ogryczak, 1999): 

COROLLARY 2.1 For any strictly concave, increasing function s : R -t R , the 
optimal solution of the problem 

'11l 

max {L s(xi) : x E Q} (19) 
i= l 

is a fair solution for resource allocation pmblem (8). 

In the case of the outcomes restricted to positive values , one may use loga­
rithmic function thus resulting in the proportional fairness model (6) or various 
root functions : 

m 

g(x) = L (xi)" for 0 < a < 1. 
·i=l 

For a common case of upper bounded outcomes x; < u* one may use power 
functions: 

'IH 

g(x) = - L (u*- .x;)P for 1 < p, 
i= l 
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which corresponds to the minimization of of the well-known Holder p-nonu 
distances from the upper bound. Various other concave functions s can be used 
to define fair aggregations (19) and the resulting resource allocation schemes. 
However, the problem of network dimensioning we consider is originally an LP 
model and a MILP in the case of link modularity. Therefore, it is important if 
various fair allocation schemes can be geuerated with LP tools. 

The theory of majorization (Marshall and Olkin, 1979) includes the results 
which allow us to express the relation of fair (equitable) dominance as a vec­
tor inequality on the cumulative ordered outcomes (Kostreva and Ogryczak, 
1999). This can be mathematically formalized as follows. First, introduce the 
ordering map e: nm ---+ R1

" such that 0(x) = (Br (x) ,82(x), ... ,Bm(x)), where 
ej (x) ~ e2(x) ~ ... ~ Bn,(x) and there exists a permutation T of the set I 
such that B;(x) = xT(il for i = 1, ... , m. Next , apply to ordered outcomes 
0(x) a linear cumulative map thus resulting in the cumulative onlering mo.p 
El(x) = (tJ1(x),IJ2(x), ... ,Bn,(x)) defined as 

IJ;(x) = L Bj(x) for ·i = 1, ... , m. (20) 
j=l 

The coefficients of vector El(x) express, respectively: the smallest outcome, the 
total of the two smallest outcomes, the total of the three smallest outcomes, etc. 
The theory of majorizat ion allow us to derive the following theorem (Kostreva 
and Ogryczak, 1999): 

THEOREM 2.1 Ov.tcome vector- x' fair-ly dominateii x", if and only if iJ.;(x') 2: 
iJ; (x") for· all i E I where at least one str-ict inequality holds. 

Vector El(y) can be viewed graphically with the absolute Lorenz curve which 
can be mathematically formalized as follows. First, we introduce the right­
continuous cumulative distribution function: 

if :r; ~ ~ 
otherwise 

\vhich for any real value ~ provides the measure of outcomes smaller or equal to 

~ Next, we introduce the quantile function F~~l) as the ldt-coutinuous inverse 
of the cumulative distribution function Fx: 

F~~l)(v) = inf {~: Fx(O 2 v} for 0 < 1J S 1 

Dy integrating F~ ~ 1 l one gets F~ ~ 2 ) (0) = 0 and 

F~~ 2 ) (v) = r F~~ ll (n)dO' for 0 < v ~ 1. 
./o 

Graphs of functions J.~ - 2 ) (u) (with respect to u) take the form of con­
vex curves (Fig. l) , the aiJsolu t;e Lrncnz cu:rvcs. In our case of 'Ill. outcomes, 
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F~- 2 )(ijrn) = ~B; (x) for i = 1, . .. , m. and t he absolute L(~enz cmve is a 
piece wise linear curve connec tiug point (0,0) and points (i/rn , fJ;(x)/rn) fori = 

1, ... , nL The fair clomiuance x' ~:c x" means then that F~ ;- 2 ) (1J) 2: F~~2 ) (I/) 
for all 0 :::; 11 :::; 1. We will usc absolute Lorenz curves to demonstrate and 
compare various allocations patterns. 

e,(x) 
rn 

0 i.. I/ 
rn 

F igure 1. Vectors G(x) as the absolu te Lorenz curves. 

Note that Theorem 2.1 permits one to express fair solution s of problem (8) as 
Pareto-efficient solu t ions to tlw mult iple criteria problem with objectives G(x) 

max {(1) 1,1/'!. , ··· ,TJm): Tj;= iJ.;(x ) for i= 1, ... , m , xEQ}. (21) 

Moreover , t he multiple cri teria problem (2 1) may serve as a source of fair 
allocatiou schemes . Although the definitions of quantiti es Bh(x ), used as cri­
ter ia iu (21), arc very complicated, the quantities themselves can be modeled 
with simple auxiliary variables and constraints . It is commonly known that 
the worst (smalles t) outcome may be defined by the following optilllization: 
01 (x) =max {t;: L :::; :c; fori= 1, ... ,m}, where tis an umestrictcd vari­
aJle. It turns out that t hi s approach can be generalized to provide an efFective 
model ing technique for quantities iJh(x ) with arbitrary k (Ogrycza.k and Tamir , 
2003). Namely, for a given outcome vector x the quantity Oh(x) may be found 
by solving the following linear program: 

'11/ 

il.,(x) max kt- 2::'.: d; 
·i= l 

(22) 

s.t. t - X; :::; d;, d; 2: 0 fori = 1, ... , rn 
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where t is an unrestricted variable while nonnegative variables di represent, for 
several outcome values x;, their downside deviations from the value oft. 

Formula (22) allows us to formulate problem (21) as the following multiple 
criteria optimization problem: 

max (r11, TJ2, .. . , TJm) 

subject to x E Q 
'111 

T)k = ktk - L dik fork= 1, . .. , m 
i= l 

t~.,- d;~.; ::=:;xi, dik 2:0 for 'i,k = 1, ... ,rn. 

(23) 

(24) 

(25) 

Note that problem (23)- (25) adds only linear constraints to the original attain­
able set Q. Hence, for the basic network dimensioning problems with the set 
Q defined by constraints (2)- (3), the resulting formulation (23)- (25) remains in 
the class of (multi-criteria) linear programs. Certainly, the problem becomes a 
MILP for the modular dimensioning model with the attainable set (2) - ( 4). 

3. Multiple criteria analysis 

Tl1eorem 2.1 allows one to generate fairly efficient solutions of (8) as efficient 
solutions of problem (21). The aggregation maximizing the sum of outcomes, 
corresponds to maximization of the last (m-th) objective in problem (21). Si­
milarly, the maximin scalarization corresponds to maximization of the first ob­
jective in (21). For better understanding of the multiple criteria problem (21), 
one may consider normalized objective functio11s: 

1 -
lvi.~ (x) = kBk(x), fork= 1, ... , m (26) 

thus representing for each k the mean outcome of the k worst-off services, 
called the worst conditional mean. Note that for k = 1, M J... (x ) = 111 (x) = 

fh (x) = M(x) thus representing the minimum outcome, <;;~d for k = rn., 
M!!l(x) = .l.(Jm(x) = .l. "~.·~ .1 f)i(x) = .l. "''.:_ 1 :r; = " (x) which is the mean 

In '/11 '/H 01,-_ 'I ll L,,_ /""" 
outcome. Formula (22) allows us to rnaximize the worst conditional means for 
various intermediate values k and it can be effectively applied to network traffic 
engineering problems (Ogryczak and Sliwiliski, 2002). 

For modeling larger gamut of fair preferences one may use some combinations 
of criteria in model (21). In particular, for the weighted sum on gets 

nL '111 

L 11Ji1J; = L wJl;(x), w; > 0 for 'i = 1, . .. , 'tn. (27) 
i=l i = l 

Note that clue to the definition of map G with (20), the above function can be 
expressed in the form with weights v; = I:7~ i WJ (i = 1, . .. , m) allocated to 
coordinates of the ordered outcome vector. Such an approach to aggregation of 
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outcomes was introduced by Yager (1988) as the so- ca lled Ordered \Veighted 
Averaging (OWA). The OWA aggregation is obviously a piece wise linear func­
tion since it remains linear within every area of the fixed order of arguments. 
If weights V i are strictly decreasing and positive (as for strictly positive wi in 
(27)), then the OWA problem 

max {L v; Bi(x) : x E Q} (28) 
·i=l 

is LP solvable with respect to given values Xi (Ogryczak and Sliwinski , 2003) . 
When differences among weights tend to infinity, the OWA aggregation ap­

proximates the lexicographic ranking of the ordered outcome vectors. That 
me.1ns, as t he limiting case of t he OWA problem (28), we get the lexicographic 
problem: 

lexmax {(B1 (x) ,B2(x) , .. . ,Bm(x)) X E Q} (29) 

wi1ich represents the MMF (lexicographic maximin) approach to the original 
resource allocation problem (8) . Problem (29) is a regularization of the st andard 
maximin optimization, but in the former , in addition to the worst outcome, we 
maximize a lso the second worst outcome (provided that the smalles t one remains 
as la rge as possible), maximize t he third worst (provided t hat the two smallest 
remain as large as possible), and so on. 

If weights v ; are strictly decreasing and positive, i. e., the corresponding 
weights Wi in (27) are strictly positive, t hen each optimal solution of the OWA 
problem (28) is a fa ir solution of (8). Moreover, in the case of LP models, as 
the basic network dimensioning one, every fair allocation scheme can be identi­
fied as an optimal solution to some OWA problem with appropriate monotonic 
weights (Kostreva. and Ogryczak, 1999). \Vhile equal weights define linear ag­
gregation , several decreasing sequences of weights provide us with various piece 
wise linear aggregations. Indeed , our earlier experience wi th application of the 
OWA cri terion to the basic (continuous) problem of network dimensioning with 
elastic t raffi c ( Ogryczak, Sliwii1ski and 'vVierzbicki , 2003) showed that we were 
able to generate easily allocations representing the classical fa.i ruess models. On 
the other hand, in order to find a larger variety of new compromise solutions 
we needed to incorporate some scaling techniques origin ating from the reference 
point methodology. Actually, it is a common flaw of the ·weighting approaches 
that they provide poor coutrollabili ty of the preference modeling process and 
iu the case of multiple criteri a problems wi th discrete (or more geueral noncml­
vex) feasible sets, they may fa il to identify several compromise efficient solu tions 
(Steuer , 1986). Better cont rollability and the complete pa ram eterization of non­
dominated solutions can be achieved with t he direct use of the reference poin t 
methodology. 

The reference point method was introduced by V/ierzbicki (1982) and 
later extended leading to effi cient implernenta tions of the so-called aspira-
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tionfrcserva.tion based decision support (ARBDS) approach with many success­
ful applications (Lewandowski and Wierzbicki, 1989; Wierzbicki et al. , 2000). 
The ARBDS approach is an interactive technique allowing the DM to specify the 
requirements in terms of aspiration and reservation levels, i. e., by introducing 
acceptable and required values for several criteria. Depending on the specified 
aspiration and reservation levels, a special scalarizing achievement function is 
built which may be directly interpreted as expressing utility to be maximized. 
Maximization of the scalarizing achievement fun ction generates an efficient so­
lution to the multiple criteria problem. The solution is accepted by the DM 
or some modifications of the aspiration and reservatiou levels are introduced 
to continue the search for a better solution. The AR.BDS approach provides 
a complete parameterization of the effi cient set to multi-criteria optimization. 
Exactly, all properly efficient solutions with bounded trade-off's can be identi­
fied with this approach (Kaliszewski, 1994), while in LP and MILP problems 
with bounded feasible sets that we consider, the approach covers the entire ef­
ficient set (Ogryczak, 1997) . Further, when applying the AR.BDS mdhodology 
to the ordered cumulated criteria. in (21), one may generate all (fairly) equitably 
effici ent solutions of the original resource allocation problem (8). 

While building the sca.larizing achievement function the following properties 
of the preference model are assumed. First of all , for any individual outcome 1)i 

more is preferred to less (maximization). To meet this requirement. the function 
must be strictly increasing with respect to each outcome. Second , a solution 
with all individual outcomes T/i satisfying the corresponding reservation levels is 
preferred to any solution with at least one individual outcome worse (smaller) 
than its reservation level. Next, provided that all the reservation levels are 
satisfied, a solution with all individual outcomes 'l} i equal to the correspond­
ing aspiration levels is preferred to any solution with at least one individual 
outcome worse (smaller) than its aspiration level. That means , the scalarizing 
achievement function maximization must enforce reaching the reservation levels 
prior to further improving of criteria. In other words , the reservation levels 
represent some soft lower bounds on the maximized criteria. When all t hese 
lower bounds are satisfied, then the optimization process attempts to reach the 
aspiration levels. 

The generic scalari2ing achievement function takes the following form 
(Wierzbicki, 1982): 

·tn 

dr1) = min { ai(r/i )} + c "' ai(1Ji) 
l <t<·m 6 

(30) 
-- ·i= l 

where c is an arbitrary small positive number and a.i, for i = 1, 2, . . . , m , are 
the partial achievement functions measuring actual achievement of the individ­
ual outcome rJ; with respect to the corresponding aspiration and reservation 
levds (rJi and TIL respectively). Thus, the scalarizing achievemeut function is , 
ec;senti a.lly, defined by the worst partial (individual) achievement but addition-
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ally regularized with the sum of all par tial achievements. The regularization 
term is introduced only to guarantee the solution efficiency in the case when 
the maximization of the main term (the worst partia l achievement) results in a 
non-unique optimal solution. 

The parti al achievemeut funct ion ui can be interpreted as a measure of the 
DM's satisfact ion with the current value (outcome) of the i-th cr iterion . It is 
a strictly increasing function of outcome 1]i with value u ; = 1 if 7]-i = 'l].j', and 
u; = 0 for TJ.i = TJi . Thus, the partial achievement functions lllap the outcomes 
values onto a normalized scale of the DM's satisfaction. Various functions can 
bs built meeting those requirements (\Vierzbicki et al., 2000). We use t lte piece 
wise linear partial achievement fuuction introduced in Ogryczak (1997). It is 
given by 

{ 
rC'li - TJi'J/(''Ji'- 17i) , 

u;(rJ.i) = (TJi - rJi')/(1).j'- IJ.i'), 
(3(17i - TJi')/(rri'- rJi') + 1, 

for TJi S '!Ji. 
for 11.r < r1, < 7Ji' 
for TJ; 2: 17? 

(3 1) 

where (3 and r are arbitrarily defined parameters satisfying 0 < (3 < 1 < r · 

TJi' rri' 'l]i 

Figure 2. Partial achievement function u; and fu zzy membership function /-li 

For outcomes between the reservation and the aspiration levels , the partia l 
achievemeut function O"i can be interpreted as a membership fuuction fl·i for a 
fuzzy target . However , such a membership function would be neither strictly 
mouotonic nor concave. In the partial achievement function (31), parameter (3 
represents addit ional increase of the DlVl 's satisfaction over level l when a cri­
terion generates outcomes better than the corresponding aspiration level, while 
parameter r > 1 represents dissatisfaction connected with outcomes worse than 
the reservation level. Hence, the partial achievement function can be viewed 
as an extension of the fuz~y membership fun ction to a strictly monoton ic aud 
concave utility function (Fig. 2). In other words, maximization of the scalariz­
ing achievement function (30) is consistent with the fu zzy methodology in the 
case of not attainable aspirat ion levels and satisfable all reservation levels while 
modeling a reasonable utility for auy values of aspirat ion and res·ervaticm levels. 
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Uuder the assumption that the parameters fJ and 1 satisfy inequalities 0 < 
fJ < 1 < 1, the partial achievement function (31) is strictly increasing and 
concave. Hence, it can be expressed in the form : 

( ) . { '17i - rJ[ ''7i - 17[ r-~ rJi - rri.' 1} 
CJ.· · - rnm :.~ 

! '111. - I a _ ·r ' o. _ , . r ' n. _ . ·r + 
1}; '11i '17i 1}; 17; 1J.; 

which guarantees LP computability with respect to outcomes 17·i · Finally, maxi­
mization of the entire scalarizing achievement func tion (30) can be implemented 
by the following auxiliary LP constraints: 

rn 

max §. + E ~Si 
i=l 

s. t. Si > §. fori= 1, ... , m 
Si < I (rJi- rJ[)/(rJ;'- 17[) fori= 1, ... , m 
8; < (17;- TJ[)j(rJ?- 'IJ[) fori= 1, . .. , m 
Si < fJ ('17·i- rJ't)/(rJi' - TJi) + 1 fori= 1, ... , m 

where s; fori = 1, . .. , m and§. are unbounded variables introduced to represent 
values of several partial achievement fun ct ions and their minimum, respectively. 

Recall that in our model outcomes 17k represent cumulative ordered Hows x;, 
i.e . TJk = 2::~= 1 Bi(x) . Hence, the reference vectors (aspiration and reservation) 
represent , in fact , some reference distributions of outcomes (Hows). Moreover, 
due to the cumulation of outcomes , while considering equal flows .'Ei = a for 
i = 1, ... , m as the reference (aspiration or reservation) distribution, one needs 
to set the corresponding levels as '17i = ia. 

4. Computational results 

The methods described in preceding sections have been tested on a sample net­
work dimensioning problem with elastic traffic. Recall that in the case of elastic 
traffic, the outcome of the network dimensioning procedure are the capacities of 
links in a given network, and that the Hows will adapt to the bandwidth avail­
able on the links in the designed network. The input to a network dimensioning 
problem with elastic traffic consists of a network topology (without specified 
link capacities), of pairs of nodes that specify sources and destinations of Hows , 
of sets of network paths that could be used for each How, and of optional con­
straints on the capacities of links or on How sizes. The user must also specify 
a budget for purchasing link capacity, prices of a unit of link capacity (possibly 
different for each link) , and may specify module sizes and prices for a link. 

The network topology of the presented problem (Fig. 3) is patterned after 
the backbone network of a Polish ISP (Ogryczak, Sliwii1ski and Wierzbicki , 
2003). The network consists of 12 nodes and 18 links. Flows between any pair 
of different nodes have been considered (therefore, there can be 144 - 12 = 132 
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Figure 3. Sample network topology. 

flows), and all flows use the shortest network path for transport. All links have 
unit costs equal to one, and the budget for link bandwidth is B = 1000. Since 
all links have equal costs of one, path costs are equal to the path length (1, 2, 3 
or 4 in the illustratiYe topology). All flows are unbounded. However, it is clear 
that due to the budget constraint no flow can exceed B. 

The presented problem has been studied wi thout additional constraints and 
with e(1ual link costs , since in such a case it was simple to understand the 
best choices with respect to fairness and overall throughput. The fairest out­
come would have all fl ows of equal sizes . On the other hand, the bes t network 
throughput could be achieved by purchasing link capacity only for the cheapest 
fkrws (with path costs equal to 1) , at the expense of starvation of some other 
flows . 

Additionally, a modular version of the problem was considered. T he size of 
a link capacity module was se t to 5 (typical outcomes had most link capacities 
in the range of 20 to 40). For each link , an integer variable has been introduced 
(thus there are 18 integer variables in the modular version of the model). 

The fin al input to the model consisted of the reservation and aspiration 
levels for the sums of ordered criteria . For simplicity, all a~ pi ration levels were 
set close to the optimum values of the criteria , and only reservation levels were 
used to control the outcomes . One of the mos t significant parameters was the 
rr>servation level for the sum of all criteria (the network throughput ). T his value 
will be denoted by 17;;, . 

The other reservation levels were chosen in such a way that they formed a. 
linearly increasing sequence with slope (step) r fo r the ordered criteria fJ i (x ). 
l-Ienee, for the final criteria TJi = e, (x) representing the sums of ordered outcomes 
in model (23) - (25), the sequence of reservation levels increased quadrati cally. 
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800 
sum reservation=450, slope=0.02 (1) 

700 
sum reservation=500, slope=0.02 (2) 
sum reservation=550, slope=0.02 (3) 
sum reservation=600, slope=0.02 (4) 

600 sum reservation=650, slope=0.02 (5) 
Cll sum reservation=700, slope=0.02 (6) .2 sum reservation=750, slope=0.02 (7) 
"5 500 sum reservation=800, slope=0.02 (8) 
u; Proportional fairness 
0 400 ~ 
c 

0 
E 

300 
:J 

(f) 
200 

100 

n 

Figure 4. Varying throughput reservation for continuous link capacit ies. 

Thus, only two parameters were used to control the outcomes: the reservation 
level 17~1 for the total throughput and the slope T for the linearly increasing 
sequence. 

The first experiment consisted of a search for compromise solutions that 
traded off fairness against efficiency. The throughput reservation was varied 
from 450 to 1000. For values of rr;;1 above 800, some flows were starved, and 
therefore these outcomes were not considered further. The linear increase of the 
other reservation levels was varied as well. For r = 0, all outcomes divided flows 
into at most two groups (in one group, all flows were equal). For larger values 
of r, some outcomes (especially for large throughput reservations) divided flows 
into four groups that were determined by the prices of the shortest paths that 
were used to transport the flows. The results of the experiment for T = 0.02 
are shown in Fig. 4. For higher values of r, the increase of the throughput 
reservation above 750 resulted in How starvation. 

Note that the t hroughput reservation was effectively used to find outcomes 
w1th the desired network throughput. On the other hand, the optimization 
procedure automatically found outcomes that divided flows into categories ac­
cording to their path costs. This shows that the presented methodology is 
cost-aware, and that it is possible to guarantee fairness to all flows with tlH~ 
same path cost . For the lowest throughput reservation of rJ;;, = 450, the out­
come was a perfectly fair distribution. For comparison, the solution obtained 
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Figure 5. Varying throughpu t reservation for modular link capacities . 

by Proportional Fa.imess is also shown in Fig. 4. Note that the outcome for 
rr;;, = 550 is very close to the outcome obtained by Proportional Fairness. Us­
ing the methodology descr ibed in this paper , the user can choose from a large 
u ~nnbcr of different outcomes and control the tradeoff between fairness and ef­
fi ciency. 

The second experiment repeated the search for compromise solutions for 
modular link capacities usiug the same parameter configurations as in the fi rst 
cxperimeut.. Here the choice of the reference point methodology should allow the 
user to find solutions closest to his preferences. Predictably, the introduction 
of modular link capacities makes it more difficult to find fair solutions. The 
results shown in F ig. 5 indicate t hat the excess capacit ies of modules were used 
by the cheapest flows, leading to a higher network throughput than in the case 
of a problem without modular link capacities . On the other hand the cheapes t 
flows were not equal for some outcomes . Note that in the second experiment , 
the perfectly fair solutiou was not found for 11;;, = 450. 

Overall, the experiments on the sample network topology demonstrated the 
versatili ty of the described methodology for equitable optimization. The use of 
reservation levels, controlled by a small number of simple parameters, allowed 
to search for solutions best fitted to the preferences of a network designer. The 
obtained solutious divided flows into categories determined by How cost. For 
modular solu tions, the cheapest fl ows consumed the excess link capacity. T hese 
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characteristi cs deruonstrate that the model is cost-aware and fulfills t he axioms 
of equitable optimization. 

5. Concluding remarks 

While designing systems which serve many users, like the telecommunications 
networks, there is a need to respect the fairness rules, i.e. to allocate resources 
equitably among the competing services. Allocating the resources to optimize 
the worst performance may cause a large worsening of the overall (mean) per­
formance. Therefore, several other fair allocation schemes are searched and 
analyzed. 

Our earlier computational experiments with application of the OWA crite­
rion to the basic (continuous) problem of network dimensioning with elastic 
tr<tffic (Ogryczak, Sliwinski and Wierzbicki, 2003) showed that we were able to 
gell erate easily allocations represent ing the classical fairness models. On the 
other hand , in order to find a larger variety of new compromise solut ions we 
needed to incorporate some scaling techniques originating from the reference 
point methodology. Actually it is a common flaw of the weight ing approaches 
that they provide poor controllability of t he preference modeling process and 
in the case of multiple criteria problems with discrete (or more general noncon­
vex) feasible sets, they may fail to identify several compromise efficient solutions 
(Steuer , 1986). 

In standard multipl e criteria optimization, good controllability and the com­
plete parameterization of nondominated solutions can be achieved with the di­
rect use of the reference point methodology. While looking for fairly effi cient 
bandwidth allocation the reference point methodology can be applied to the 
cumulated ordered outcomes. Our init ial experiments with such an approach 
to the problem of network dimensioning with elastic traffic have confirmed the 
theoretical advantages of the method. We were able able to generate easily 
various (compromise) fair solutions for both continuous and modular problems. 

The search for fairly efficient compromise solutions was controlled by only 
two parameters. One of these parameters was a reservation level for network 
throughput. The network designer could therefore specify how much throughput 
was required, while the more expensive flows were treated as fairly as possible. 
T he second parameter allowed the network designer to control the difference in 
throughputs of cheaper aucl more expensive flows. Still , flows with the same 
cost were always treated fairly. T hus, the use of the reference point method 
for equitably fair optimization can be made simplex for less experienced users, 
while at the same time the model fully exploits the theoretical advantages of 
these methods for network design. 
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