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Abstract: The paper considers a discrete stochastic multicrite­
ria problem. This problem can be defined by a finite set of actions 
A. a set of attributes X and a set of evaluations E. It is assumed that 
the performance probability distributions for each action on each at­
tribute are known. A new procedure for such a problem is proposed. 
It is based on two concepts: stochastic dominance and interactive 
approach. Stochastic dominance is employed for comparing evalua­
tions of actions with respect to attributes. The STEM methodology 
is employed in the dialogue procedure between decision maker and 
decision model. In each step a candidate action a; is generated. The 
decision maker examines evaluations of ai with respect to attributes 
and selects the one that satisfies him/her. Then the decision maker 
defines the limit of concessions, which can be made on average eval­
uations with respect to this attribute. The procedure continues until 
a satisfactory action is found. 

Keywords: multiple criteria analysis, interactive approach, un­
certainty modeling, stochastic dominance. 

1. Introduction 

Rational decision making is possible if we are able to evaluate possible actions. 
In many real-world decision problems decision maker (DM) can evaluate the 
performance of actions only in a probabilistic way. In such situations the com­
parison of two actions leads to the comparison of two probability distributions. 

Mean-risk analysis and stochastic dominance (SD) are the main concepts 
used for comparing uncertain prospects. The former is based on two crite­
ria: one measuring expected outcome (usually mean) and the second repre­
senting variability of outcomes. Various risk measures are proposed: variance 
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(Markowitz, 1952a), semivariance (Markowitz, 1959) , probability of loss, risk 
measures based on below-target returns (Fishburn, 1977) all([ others. Mean­
risk analysis is usually used to model preferences of a risk-averse decision-maker 
and as is noticed by Ogryczak and Ruszczyski ( Hl99) this model is not capa­
ble of modeliug even the entire gamut of risk-aw~ rsc preferences . Although the 
model of risk-averse preferences is widely exploited in decision theory, it is not 
suitable for all situations. The paradox of risk-seeking in choices bet.wceu neg­
ative prospects was noticed by Markowitz (1952b) and justified by experiments 
conducted by Kahneman and Tversky (1979). 

The concept of SD was proposed in 1930s. The fundamental papers on SD 
theory were published in 1969-70 (Hadar and Russell , 1969; H:moch and Levy, 
1969; Rothschild and Stiglitz, 1970; Whitmore, 1970). Initially, SD was used 
in models of risk-averse preferences only. Goovaerts (1984) and Zaras (1989) 
p1oposed rules for risk seeking decision-makers. Thus, stochastic dominance 
rules can be employed in modeling preferences of various groups of decision­
makers: risk-averse and risk-seeking. 

Real-world decision problems usually involve multiple and conflicting ob­
jectives. Numerous approaches have heen propos<xl in multicriteria decision 
making for the last 40 years. Prominent among these developments has been 
the methodology known as interactive approach. Various reasons have been 
mentioned for implementing this technique. First of all, it is pointed out that 
a limited amount of preference information is required from DM as compared 
to other methodologies. It is only assumed that Dl'vf is able to define attributes 
that influence his/her preferences and to provide local preference information to 
given solution or small subset of solutions. Thus, it is not necessary to ask DM 
to make a lot of hypothetical choices between alternatives like in approaches 
based upon multiattribute value (u tility) theory. As such choices are often of 
no practical applicability, it is not easy to motivate DM to consider and evaluate 
them. On the other hand it is also indicat ed that as in interactive procedures 
DM actively participates in all phases of the problem solving process, he/she 
puts much reliance in the generated solution and in consequence, the final so­
lution has a better chance of being implemented . 

First interactive techniques for deterrninistic continuous multiple criteria 
problems were proposed in early 1970s. One of the first was the SLep Method 
(STEM) proposed by Benayoun eta!. (1971). Other approa.ches were proposed 
by Geoffrion et a!. (1972), Zionts and vVallenius ( 1976), Nijkamp and Spronk 
(1980) , Wierzbicki (1980, 1982), Steuer (1986) , Korhonen and Lakso (198G) and 
many others. Procedures for discrete problems have also been presented: Roy 
(1976) , Spronk (1981), Zionts (1981), Korhonen et a!. (1984), Vanderpooten 
(1989) , Lotfi et a!. (1992) , Habenicht (1992), Sun and Steuer (1996). All 
these techniques and a lot of others are applicable under the circumstances of 
certainty. Up to now only few methods have been devised for the case of risk . 

The aim of this paper is to present an interactive procedure for discrete 
decision making problems under risk. On the oue hand we base on stochastic 
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domiuance rules, on the other on the STEM method. In each step rankings of 
actions with respect to attributes are constructed. The SD rules are employed in 
this phase. Next, a candidate action is chosen and the Dl\11 is asked to analyze its 
evaluat ions with respect to attributes and to decide which of them is satisfying. 
The DM is also expected to indicate minimal acceptable level of t he average 
evaluation with respect to the considered attribute. The procedure continues 
until the satisfying action is generated . 

The paper is structured as fo llows . A discrete multiattribute decision making 
problem is formulated in Section 2. Next section deals with the SD approach 
and the relationships between SD rules and the decision-maker's utili ty function. 
In Section 4 the interactive procedure is presented . Section 5 gives an example. 
The last section contains conclusions. 

2. Discrete multiattribute decision making problem under 
risk 

A discrete multiattr ibute decision making problem may be conceived as a. model 
(A, X, E), where A is a finite set of actions a;, i = 1, 2, ... , n, X is a finite set 
of attributes X~.;, k = 1, 2, ... , m and E is the set of evaluations of actions with 
respect to attribu tes e;k , i = 1, 2, ... , n, k = 1, 2, ... , m. In the stochastic case 
considered in this work, the evaluations of actions with respect to attributes 
are probability distributions and as a result the comparison of two actions is 
equivalent to the comparison of two vectors of probability distributions. It is 
assumed that attributes are defined in such a way that a larger value is preferred 
to a smaller one ("more is better") and that the distribution functions j ;(xk) 
are known. 

Various concepts for solving such a problem have been proposed. The clas­
sical approach is based on the multiattribute utility theory. In order to employ 
this technique one has to estimate DM's mult iattribute utili ty function. Unfor­
tunately, the assessment of such a function is not easy. Keeney and Raiffa (1976) 
show that if additive independence condition is verified , then multiattribute 
comparison of two actions can be decomposed to n one-attribute comparisons. 
Thus , estimating one-attribute uti lity functions and assessing the form of the 
aggregate function can solve the problem. In practice, however, both estimating 
one-attribute utility functions and assessing the aggregate function is difficult. 

A lot of other techuiqucs for a multiattribute decision making problem under 
risk have also been proposed. Saaty and Vargas (1987) present the analytical 
hierarchly process (AHP) procedure that includes uncertainty. Various methods 
based 0 11 the outranking approach have a lso been presented. Jacquet-Lagreze 
(1977) constructs a probabilistic preference relation and probabilistic indiffer­
er;ce relation for each pair of actions and for each attribute. T hese relations are 
then integrated in a degree of credibility and processed as in ELECTR.E III. The 
procedure proposed by Dendrou et al. (1980) is based on probabilities that one 
action will dominate another. Such probabilities are obtained by the Bayesian 
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avproach and used for generation of joint probabilities, which are ranked in the 
decreasing order. Martel et al. (1986) use fuzzy outranking relation on the set 
of actions. This relation is obtained from an overall index of confidence and 
overall index of doubt regarding the supposition that an action is at least as 
good as another. D'Avignon and Vincke (1988) construct strength and weak­
ness distributions for all actions , two part ial rankings and a final ranking based 
on a measure of the proposition "action ai outranks aj" and a measure of the 
risk level for the same proposition. 

3. Stochastic dominance in multiattribute analysis 

Stochastic dominance approach is based on the multiattribute utility theory's 
axioms. Thus, it is assumed t hat the preferences of the DM can be explained by 
a multiattribute utili ty function. Instead of estimating this function, however, 
we base on SD rules . If certain assumptions on the type of the decision-maker's 
utility functions are fu lfilled, then stochastic dominance rules are equivalent to 
the expected ut ility rules . 

Two groups of SD rules for two classes of DM's ut ility function are usually 
considered. The first one includes first degree stochastic dominance - FSD (see 
Appendix A for definitions of SD relations and Appendix B for decision rules), 
second degree stochastic dominance - SSD , and third degree stochastic domi­
nance- TSD. The FSD rule is equivalent to the expected utili ty maximisation 
rule for increasing utility functions (u' > 0) . Two other rules are more restric­
tive: the SSD rule may be employed in the case of increasing concave utility 
functions (u' > 0 and u" 2: 0), while TSD rule is for the decreasing absolute risk 
aversion (DARA) utility function. Thus FSD/SSD/TSD rules are equivalent to 
expected ut ility maximisation rule for risk-averse preferences. 

The second group of SD rules includes FSD , second degree inverse stochastic 
dominance - SISD , and two kinds of third degree inverse stochastic dominance 
- TISD1 and TISD2. The SISD rule is equivalent to the expected utility max­
imisation rule for increasing convex utility function (u' > 0 and u" 2: 0) , while 
TISDl and TISD2 are limited to increasing absolute risk aversion (INARA) util­
ity functions. Thus, FSD / SISD /TISD1/TISD2 rules are equivalent to expected 
utility maximisation rule for risk-seeking preferences. 

In this work we assume that additive independence condition formulated by 
Keeney and Raiffa (1976) is fulfill ed. In such a case additive multiattribute util­
ity function can be used. Thus, the multiattribute comparison of two actions 
can be decomposed into n one-at tribute comparisons. As these comparisons 
are based on SD rules, they are expressed in terms of "ai is at least as good 
as aj" in relation to each attribute and for all pairs ( ai, aj) E fl x fl. The 
following question arises: how the SD concept can be implemented in mod­
elling DM's global preferences? Huang et al. (1978) propose the Multiattribu te 
Stochastic Dominance (MSD) rule. According to this rule, action ai is at least 
as good as aJ in the sense of MSD, if and only if the evaluations of action ai 
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dominate corresponding evaluations of aj according SD rules with respect to 
all attributes . In practice this rule is rarely verified. Zaras and Martel (1994) 
suggest weakening the unanimity condit ion and accept ing a majority attribute 
condit ion. T hey propose 1\!ISD,. - multiat t ribute stochastic rlomiuance rule for 
a reduced number of attribu tes. The approach of Zaras and Martel is based 
on the observation that people tend to simplify the mul tiattrilm Le prol>lem by 
taking into account only the most important attributes. The procedure consists 
of ~wo steps. In the first one SD relations are ver ified for each pa.ir of act ions 
with respect to all attributes. The second phase is aggregation of the mul tiple 
at tributes. The ELECTRE I methodology is used to obtain the final rauking of 
actions. First, actions are classified considering all attributes. If the ranking is 
not clear enough then new classification is constructed taking all bu t the least 
important attribute into account. T he procedure proceeds unt il the Drvi accepts 
the ranking and the majority condit ion is valid. Employment of this techni que 
is possible if the DM is able to express his/her prefereuces iu a way that makes 
it possible to se t values of weighting coefficients express ing importance of at­
tributes . T his task is usually inconvenient and time consuming. iVIoreover, as 
only the most important attributes are taken into account when final ranking 
is constructed, it can happen that an action very weakly evaluated with respect 
to less important attribute is chosen as a final solution. 

One can avoid such problems by employiug the interact ive approach. The 
DM is expected to analyze evaluations of a proposed solu t ion and specify which 
of them satisfi es him/ her. Thus, the Dl\II has to provide only a limi ted amoun t 
of preference info rmation, whi ch is based on a solu tion or a subset of so lu tions 
that are known to be feasible. 

4. Interactive procedure based on SD rules 

A new interactive technique for a discrete stochastic mult icriteria problem is 
proposed here. It is based on two concepts: SD and interac tive appro<tch. The 
idea of our technique comes from the STEM method (Benayoun ct al. , 1~)7 1 ) . In 
tbc STEM method the concept of the ideal solu tions is used. T he clerncuts of the 
ideal solu t ion arc the maximum values of the attribu tes, which are indiv idually 
attainable within the set of actions. In the STETvl method a canclidatn action 
is generated and presented to the DM in each step. It is the one that is t he 
closest to the ideal solu tion according to the minimax rule. If the D;vr accepts 
the proposal, then the procedure ends, otherwise the DlVI is asked to defin e~ the 
lllargins of relaxation for these attri butes , whose values are already sat isfacr.ory. 
T hen new set of actions is generated taking into account the restri ctious defined 
by the DM. T he procedure cont inues until an action with satisfactory attribute 
evaluations is foun d. 

In our technique, like in the STE:VI method, a candidate action ai is gener­
ated . We apply SD rules for doing this. In the dialogue phase of the procedure 
average evaluations are used. T he DM exam ines aver(lge evaluations of a ca.mli-
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date a; with respect to attributes and selects the a ttribute with respect to which 
the ca11didate action is satisfactory for him/ her. Then the DM defines the limit 
of concessions, which can be made on average evaluations of the attribute X~.;. 

Let us assume following notation: 
F;~.; - cumulative distribution fun ction representing evaluation of action a; with 

respect to attribute X~.;, 

Jlik - average evaluatio11 of action ai with respect to attribute X 1.;, 

SD - stochastic dominance rela tion consistent with DM's uti lity function. 

The operation of the proposed procedure is as follows: 

1. Identify SD relations between actions with respect to attributes, calculate 
average evaluations of actions with respect to attributes Jlik , i = 1, ... ,n , 
k = 1, ... , m ; 

2. l := 1, A1 :=A, K := {1, ... , m}; 

3. Identify candidate action a ;: 

a1 := arg min max{ d_/J.:} 
ai E At kEK 

where d/J.: is the number of actions a; E At such that the evaluation of a.; 
dominate the evaluation of aj with respect to attribute X~,, according to 
SD relation consistent with DM's utility function: 

dA card D/J.: 
Dj~: {a; : a.; EAt; F;~.: SD Fjd· 

In the case of a tic choose a ny ai minimising the value of rna~{d/d. 
i.: El' 

4. Present the data to the DM: 

- the average evaluations of the candidate action a; with respect to all 
attributes- p,.; ~.; , k = 1, ... , rn , 

- the values of dA for k = 1, ... , m, 

- the maximal average evaluations p.r, for k = 1, .. . , rn : 

Jl; = max {IL;} . 
t:a ;EA t 

5. Ask the DM whether he/she is satisfied with the candidate action . If the 
answer is YES - the final solution is action a; - go to 9, else - go to 6. 

6. Ask the DM whether the candidate action is satisfactory with respect to 
at least one attribute. If the answer is YES - go to 7, else - it is impossible 
to find an action with satisfactory attribute evaluations by the procedure 
- go to 9. 

7. Ask the DM to select the attribu te with respect to which the candidate 
action is satisfactory for him / her , say attribute Xk , and to define 6k -
the limit of concessions, which can be made on average evaluations of the 
a ttribute X~,:. 
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8. Generate the set At+l := {aj : aj E At, f.Ljk ~ bk}, assume l := l + 1, 
K := ]( \ {k}, if J( = 0 then K = {1, ... , rn}, go to 3. 

9. The end of the procedure. 

Comments: 

Step 2: ]( is the set of attributes that are considered when a candidate 
solution is generated. Once the DM accepts the evaluation of the candidate 
solution with respect to Xk, the number of this attribute is removed from K. 
If ]( is empty and the satisfactory solution has not been identified, then again 
all attributes are included in]{ (step 7). 

Step 3: As the evaluations are probability distributions, so we are not able to 
generate candidate action in the same way as is done in the STEM method . We 
apply SD rules instead: the distance from the ideal solution is measured by the 
number of actions with evaluations dominating the evaluation of the considered 
action according to SD relation. 

Step 4: Two types of data are presented to the DM. The number of evalu­
ations dominating the evaluation of candidate action with respect to attribute 
xk provide the information on the position of the this action in a "ranking" of 
actions with respect to Xk, constructed according to SD rules. At the same time 
the average evaluation f.Lik together with P.'k inform the DM about the distance 
between the best action with respect to Xk and the proposed action. Thus, the 
Dl\II is able to evaluate the candidate action and decide whether he/she accepts 
the evaluation of the candidate action with respect to Xk . 

Step 6: If the DM does not accept any evaluation of the candidate action for 
any k = 1, ... , rn then it is not possible to identify the solution of the problem 
by the proposed procedure. In such case there is no attribute evaluation to 
compromise on. 

Step 7: In order to define the limit of concessions for the attribute Xk the 
DM is asked to define the minimal value of average evaluation for that attribute. 
Obviously, as the DM accepts the evaluation of ai with respect to Xk, so bk 
should not be greater than f.Lih' . 

5. Illustrative example 

To illustrate our procedure let us consider a project selection problem. Twenty 
proposals are evaluated with respect to three attributes : X 1 , X 2 , and X 3 . The 
evaluations of actions with respect to attributes are presented in Table 1. 
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Table 1. Evaluations of actions with respect to attributes 

xj P rojects 

2 3 4 5 6 7 8 9 10 11 12 13 1t1 15 16 17 18 19 20 

1 0.2 0.4 0.2 0.4 0.2 0.6 0.4 0.4 

2 0.4 0.2 0.6 0.4 0.4 0.4 0.6 0.2 0.4 0.2 

3 0.4 0.2 0.2 0.6 0.4 0.4 0.2 0.2 0. 2 0.2 0.2 0.6 0.4 0.2 0.6 

4 0.2 0.4 0.2 0.2 0.4 0.2 0.6 0.2 0.4 0.2 0.8 0.6 0.2 0.4 0.2 

5 0.6 0.6 0.6 0.'1 0.4 0.2 0.2 0.2 

x2 Projects 

2 3 4 5 6 7 8 9 10 ll 12 13 14 15 16 17 18 19 20 

0.4 0. 2 0.6 0.2 0.4 0.2 0.2 0.4 0.6 

2 0.4 0.2 0.2 0.4 0.2 0.2 0.6 0.4 0.2 

3 0.2 0.4 0.2 0.4 0.2 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 

0.6 0.4 0.6 0.2 0.4 0.8 0.2 0.2 0.6 0.4 0.6 0.2 0.6 0.4 0.6 

5 0.2 0.6 0.~ 0.2 0.2 0. 4 0.4 0.6 0.4 0.2 

x.3 
P rojects 

2 :3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.2 0.6 0.6 0.2 0.4 0.6 0.4 0.2 0.8 

2 0.2 0.2 0.4 0.2 0.2 0.4 0.2 02 0.2 

3 0.2 0.4 0.6 0.4 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0. 11 

4 0.6 0.2 0.2 0.6 0.6 0.2 0.6 0.2 0.2 0.2 0.4 0.6 0.8 0.2 0.8 

5 0.2 0.4 0. 6 0.8 0.2 0.2 0.6 0.2 0.6 

To apply our approach, it is necessary to establish FSD relations for each 
pair of actions with respect to each attribute. As attributes are defined in 
the domain of gains, so we assume tha.t DM's utili ty function is DAR.A. Thus, 
FSD /SSD /TSD rules can be used to model DM's preferences. 

Step 1: SD relations are identified and average evaluations ·m ik are calculated 
(Table 2). 

Step 2: l := 1, A1 :=A, ](:= {1, 2, 3} 
Step 3: Values of d)k arc calculated (Table 2) ; act ion u.2o is selected as the 

candidate action. 
Step 5: Let us assume that the candidate actioll is not satisfac tory for the Dl'VI. 
Step 6: Let us assume that the candidate ac tion is satisfactory for the DM with 

respect to attribute x2 . 
Step 1: T he DM defines 62 = 3.4 as the minimum average evaluation with 

respect to attribu tc X 2. 

Step 8: The set of actions satisfying the condi tion formulated by the Dl\!I is 
generated: .42 = {u.I , a2,a5,a7,as, aJ2,a.l:~ ,a. lG,aJ s,a ia Jl2o}; l = 2; J( = 
{1,3} . 
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Table 2. f.Lik and d~•· 
J.Lik dl 

max {d\} Project ''" XI x2 X3 x1 x2 X3 kE{ l,2,3} 1 

1 2.8 4.0 Li.O 10 5 6 10 

2 2.8 4.2 2.6 12 5 12 12 

3 4.4 1.8 3.0 2 16 10 16 

1.6 3.0 4.4 18 11 18 

5 2.8 4.4 1.8 11 0 17 17 

6 4.6 2.0 1.4 0 16 18 18 

7 4.2 3.6 3.4 5 9 9 9 

8 2.4 4.2 2.6 15 1 12 15 

9 t1. 4 2 .6 2.8 1 13 12 13 

10 2.'1 2.0 4.4 14 15 2 15 

II [.tj 2.4 4.8 19 14 0 19 

12 4.2 3.8 2.0 4 8 15 15 

13 3.2 4.2 1.8 8 3 15 15 

14 4.2 3 .0 2.8 2 12 II 12 

15 4.0 1.6 3.8 5 17 8 17 

16 2.6 1.4 1.2 11 19 19 

17 2.2 1.4 4.2 16 19 2 19 

18 3.2 3.4 4.4 7 10 2 10 

19 1.8 4.2 4.2 l7 3 2 17 

20 3.0 4.0 4.2 8 5 6 8 

J.L'; 4.6 4.4 4.8 

Step 3: Values of dfk are calculated (Table 3) ; action a 18 is selected as candidate 
action. 

Table 3. f.Lik and d~k 
/Lik d2 

max {dTd Project tk 

x1 x2 X3 x1 x2 x3 k E {I ,:l} 

2.8 4.0 ;J.O 5 5 2 5 

2 2.8 4.2 2.6 7 5 5 7 

5 2.8 1.'1 1.8 6 0 9 D 

7 4.2 3 .6 3.4 1 9 4 '1 

8 2.4 1.2 2.6 9 1 5 9 

12 4.2 3.8 2.0 0 8 7 7 

13 3.2 1.2 1.8 3 3 7 7 

16 2.6 4.4 1.2 6 10 10 

18 3.2 3.4 '1.4 2 10 0 2 

19 1. 8 4.2 '1.2 10 3 0 10 

20 3.0 1 0 4.2 3 5 2 3 

J.Li,. 4.2 4.4 4.4 
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Step 5: Let us assume that the candidate action is not satisfactory for the DM. 
Step 6: Let us assume that the candidate action is satisfactory for the DM with 

respect to attribute x3. 
Step 7: The DM accepts 53 = 3.4 as the minimum average evaluation with 

respect to attribute x3. 
Step 8: The set of actions satisfying the condition formulated by the DM is 

generated: A3 = {at ,a7,ats,atg,a2o }; l = 3; K = {1}. 
Step 3: Values of dfk are calculated (Table 4) ; action a7 is selected as the can­

didate action. 
Step 5: Let us assume that the DM accepts the candidate action as the final 

solution . 

Table 4. f.l ik and drk 
Jl·ik d3 

max {d[d Project 
, . 

x1 x2 X3 X1 x2 X3 k E{ 1} 

2.8 4. 0 4.0 3 1 2 3 

7 4.2 3.6 3.4 0 3 4 0 

18 3.2 3.4 4.4 4 0 

19 1.8 4.2 4.2 4 0 0 4 

20 3.0 4. 0 4.2 2 2 2 

J.L·, 4.2 4.2 4.4 

6. Conclusions 

Sr:veral motivations have been mentioned for employing interactive methodology 
in multiple criteria decision making. It is usually pointed out that this approach 
requires limited amount of preference information from the DM as compared to 
other approaches. It is also indicated that as the DM is more closely involved 
in the process of problem solving, the final solution has a better chance of being 
implemented. 

Up to now interactive techniques have rarely been implemented in stochastic 
environment. The main reason for this is that in stochastic case it is not easy for 
the DM to analyze action 's evaluations and to compare them with evaluations 
of other actions. Thus, the DM is often incapable of providing local preference 
information that is required in interactive techniques. 

In this paper a. new methodology for a discrete stochastic multicriteria. de­
cision making problem was proposed. The approach combines two concepts: 
stochastic dominance and interactive approach . Taking into account the pref­
erences deduced from the SD rules in relation to each attribute, we use the 
dialogue procedure to identify the final solution of the problem. Two types of 
data are presented to the DM: the number of evaluations dominating the eval­
uation of a. considered action according to SD rules in relation to each attribute 
and the average evaluations of actions with respect to each attribute. Thus, 
the DM is able to provide local preference information either by accepting the 
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considered action , or by constraining the set of admissible actions from which 
subsequent candidate actious are selected. 

Appendix A 

Notation: 
F(:c), G(:c) - cumulative distribution functions , 
F(x), G (.T) - decumulative distribution functions. 

Stochastic dominance relations are defined as follo>vs: 

Defini t iou 1: 
F(:r) FSD G(x) if and only if F(x) # G(x) and H1 (x) = F(1:)- G(x)::; 0 
for all x E [a, b]. 

Definition 2: 
F(x) SSD G(:r) if and only if F(.r) # G(:c) and H2(.t:) = .C H 1 (y)dy :S: 0 
for a ll :c E [a.,b]. 

Definition 3: 
F( x) TSD G(:c) if and only if F(:c) # G(x) and H:J(J;) = .J ~" H2 (y)dy::; 0 
for a ll :c E [a. , b]. 

Definition 4: 

F(x) SISD G(x) if a nd o~ily if §'(x) # _9(:c) and H2 (:r) = .f~ H1 (y)dy 2: 0 
for all x E [a. , b], where: H 1 = F(x) - G(x). 

Definition 5: 
F(:c) TISD1 G(x) if and only if F(.1:) # G(x) and H3 (x) = ./ ~~~ H2 (y)dy 2: 0 
for a ll .1: E [a., b]. 

Definition 6: 
P(:c) TISD2 G(x) if and only if F(.1:) # G(x) and H3(x) = r: fi2(y) dy 2: 0 
for all x E [a,b]. 

Appendix B 

Notation: u(x) - utility function . 

R.ule 1 (Hadar, Russel , 1969): 
If H 1 (:r) ::; 0 for a ll .T E [a. , b] then EF[u(.t:)] - EG[v.(:r:)] > 0 for a ll 
u(:c) E U1 , where U1 = {u(x) : v/(.1:) > 0}. 

Rule 2 (Hadar, Russel, 1969) : 
If H2(.1:) :S: 0 for a ll x E [a., b] then Ep[u(x)] - EG[u(:r) ] > 0 for all 
u(x) E Ui , where Ui = {-u (:c) : u'(x) > 0, n" (x) ::; 0}. 

Rule 3 (Whitmore, 1970): 
If f-i.F 2: f-i.G and H3(x) :S: 0 for a ll x E [a. , b] then EF[u(x)]- En[v.(:c)] 2: 0 
for a.ll tt(x) E Uj , where Uj = {v. (:r) : v.'(x) > 0, ·u." (x) ::; 0 , u " '(:r) 2: 0 
and v.'(.1:) · u"' (:c) 2: [v." (:r}F }. 

R.ule 4 (Goovaer ts , 1984): 
If H2(.1:) 2: 0 for all :r E [a.,b] then Ep [u(.T)]- Ec[u(:r) ] > 0 for all 
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u(x) E U], where U] = {u(x): u'(x) > 0, u"(.T) 2:: 0}. 
Rule 5 (Goovaerts, 1984): 

If fi:l(x) 2': 0 for all x E [a,b] then Ep[u(x)]- Ec;[u(x)] 2': 0 for all 
u(x) E Ui where U} = {u(x) : u' (x) > 0, u"(x) 2': 0, u"'(x) 2:: 0 and 
·u'(:c) · u"'(x) ~ [u"(x)j2}. 

Rule 6 (Zaras, 1989): 
If fi~l(x) 2': 0 for all x E [a, b] then Ep[u(x)] - Ec[u(x)] 2': 0 for all 
·u(:c) E U}, where U} = {u(x): u'(x) > 0, u"(x) 2::0, ·u"'(x) ~ 0}. 

References 

BENAYOUN, R.., DE MONTGOLFIER, J., TERGNY, J. and LARICHEV, C. 
(1971) Linear Programming with Multiple Objective Functions: Step Me­
thod (STEM). Mathematical Programming 8, 366-375. 

D'AVIGNON, G. and VINCKE, PH. (1988) An outranking method under un­
certainty. Enmpean Jonmal of Operational Research 36, 311-321. 

DENDROU, B.A., DENDROU, S.A. and HOUTIS, E.N. (1980) Multiobjective 
decisions analysis for engineering systems. Compv.teTs 8 Opemtions Re­
sea·rch 7. 

FISHBURN, P .C. (1977) Mean-Risk Analysis with Risk Associated with Below­
Target Returns. The AmeTican Economic Review 67, 116-126. 

GEOFFRION, A.M., DYER, J.S. and FEINBERG A. (1972) An Interactive Ap­
proach for Multi-Criterion Optimization with an Application to the Op­
eration of an Academic Department. Management Science 19, 357-368. 

GOOVAERTS, J. (1984 ) Insnmnce Pr·emium. Elsevier Science Publishers. 
HAI3ENICIIT, W. (1992) ENUQUAD: A DSS for discrete vector optimization 

problems. In: M. Cerny, D. Gltickaufova, D. Loula, eds., Mv.lticr-iteria 
DeC'is·ion Mak'ing: Methods - Algorithms - Applicat-ions. Institute of Eco­
nomics, Czechoslovak Academy of Sciences, Prague, 66-7 4. 

HADAR, J. and RussEL, W.R. (1969) Rules for ordering uncertain prospects. 
The American Economic Review 59, 25-34. 

HANOCH, G. and LEVY, H. (1969) The efficiency analysis of choices involving 
risk. Review of Economic Studies 36, 335-346. 

HUANG, C.C., KIRA, D., VERTJNSI<Y, I. (1978) Stochastic dominance rules 
for multiattribute utility functions. Review of Economic St·udies 41, 611-
616. 

JACQUET-LAGREZE, E. (1977) Iviodelling preferences among distributions us­
ing fuzzy relations. In: H. Jungermann, G. Zeeuw, eels., Decision Making 
and Change in Hu:ma:n Affairs. D. Reidel, Dordrecht. 

KAJJNEMAN, D. and TVERSI<Y, A. (1979) Prospect theory: an analysis of de­
cisions under risk. EconometTica 47, 263-291. 



Interactive approach based on stochastic dominance 475 

KEENEY, R.L. and RAIFFA, H. (1976) Decisions with Multiple Objectives: 
Prefer·ences and Value Tradeoffs. Wiley, New York. 

KORHONEN, P. and LAAKSO, J. (1986) A visual interactive method for solv­
ing the multiple criteria problems. European Journal of Operational Re­
search 24, 277-287. 

KORHONEN, P., WALLENIUS, J. and ZIONTS, S. (1984) Solving the discrete 
multiple criteria problem convex cones. Management Science 30, 1336-
1345. 

LOTFI, V., STEWART, T.J. and ZIONTS, S. (1992) An aspiration-level inter­
active model for multiple criteria decision making. Computers 8 Opera­
tions Research 19, 671-681. 

MARKOWITZ, H.M. (1952a) Portfolio selection. Journal of Finance 7, 77-91. 
MARKOWITZ, H.M. (1952b) The utility of wealth. Journal of Political Econ­

omy 60, 151-158. 
MARKOWITZ, H.M. (1959) Portfolio Selection. Wiley, New York. 
MARTEL, J .M., D' AVIGNON, G. and COUILLARD, J. (1986) A fuzzy relation 

in multicriteria decision making. European Journal of Operational Re­
sear·ch 25, 258-271. 

NIJKAMP, P. and SPRONK, J. (1980) InteractiveMultipleGoalProgramming: 
an Evaluation and Some Results. In: G. Fandel and T. Gal, eds., Multiple 
Decision Theory and Application. Springer, Berlin. 

OGRYCZAK, W. and RuszcZYNSKI, A. (1999) From stochastic dominance to 
mean-risk models: Semideviations as risk measures. European Journal of 
Operational Research 116, 33-50. 

ROTHSCHILD, M. and STIGLITZ, J.E. (1970) Increasing risk: I. A definition. 
Journal of Economic Theor·y 2, 225-243. 

RoY , B. (1976) From optimization to multicriteria decision aid: Three main 
operational attitudes. In: H. Thiriez and S. Zionts, eds., Multiple Criteria 
Decision Making. Spr:r.gcr-Verlag, Berlin, 1-34. 

SAATY, T.L. and VARGAS, L.G. (1987) Uncertainty and Rank Order in the 
analytic hierarchy process. European Journal of Operational Research 32. 

SPRONK, J. ( 1981) Interactive Multiple Goal Programming. Martinus Nijhoff, 
The Hague. 

STEUER, R. ( 1986) Multiple Criteria Optimization: Theory, Computation and 
Application. Wiley, New York. 

SuN, M. and STEUER, R.E. (1996) InterQuad: An interactive quad tree based 
procedure for solving the discrete alternative multiple criteria problem. 
European Journal of Operational Research 89, 462-472. 

VANDERPOOTEN, D. ( 1989) The interactive approach in MCDA: a technical 
framework and some basic conceptions. Mathematical and Comp·uter- Mod­
elling 12, 1213-1220. 

WHITMORE, G.A. (1970) Third-degree stochastic dominance. The Amer-ican 
Economic Review 60, 457-459. 



476 lv!.NOWAK 
-------------------------------------------------------------

vVIERZBICKI, A. (1980) The use of reference objectives in multiobjective opti­
mization. In: G. Fandel and T. Gal, eels., MCDM Theory and Application. 
Springer-Verlag, Berlin, 468-486. 

WrERZBlCKl, A . (1982) A mathematical basis for satisficing decision making . 
Mathematical Modelling 3, 391-405. 

ZAHAS, K. (1989) Dominances stochastiques pour deux classes de fonctions 
d'utilite: Concaves et convexes. RO/OR, Reche1·che Opemtionnelle 23, 
57-65. 

ZAI\ .\S, K. and MARTEL, J .M. (1994) Multiattribute analysis based on stochas­
tic dominance. In: B. Munier, and M.J. Machina, eels., Models and Exper­
iments in Risk and Rationality. Kluwer Academic Publishers, Dordrecht, 
225-248. 

ZIONTS, S. (1981) A multiple criteria method for choosing among discrete 
alternatives. European Journal of Operational Research 7, 143-147. 

ZIONTS, S. and WALLENIUS, J. (1976 ) An interactive programming method 
for solving the multiple criteria problem. Management Science 22, 652-
663. 


