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Abstract: In multicri teria problem solving, much can be learned 
by observing the decision-making process. Some, if not many, of the 
theoretical constructs used in some academically-generated models 
are simply not necessary. Taking this into account , we generalize the 
Zionts- Wallenius Multiple Criteria Decision Making Algorithm. We 
genera.li:6e the approach so that it can solve general convex problems. 
We do this by drawing from other methods , and by incorporating 
what we have learned in our work. To deal with the class of convex 
problems we face, we broaden the concept of tradeoff, and use global 
tradeoffs. Theory is developed, and then a method incorporating the 
theory is presented. A small example is included. We discuss how 
our development enriches decision-making tools currently available. 
We discuss applications in fin ance and technology. 

Keywords: mult iple criteria decisiou making, convex problems, 
tradeoff, portfolio selection. 

1. Introduction 

Consider a problem for which the solu t iou process is assisted by a facilitator or 
analyst. An important question among researchers who study decision making 
is how much input can reasonably be demanded from a problem's decision maker 
(DM) to help her 1 identify her most preferr·ed decision . 

At one extreme, "purists" argue that the only methoJologically-justified ap
proach is to elicit from the DM her complete preference structure a pr·iori. We 
identify her criteria in the process. Then , a valu.e (we limit ourselves to deter
ministic problems) function consistent with the Dl'vi 's preferences is constructed. 

1 We use feminine pronouns t hroughout t.h e pape r for t.li" r,,,.:"': -
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Assuming that there are no errors in the process, all that is needed is to de
termine the most desirable feasible decision . Formally elegant, this approach 
is impractical. Many real DMs (in contrast to DMs in simulated experiments) 
cannot or may not want to reveal their value funct ions. Such a procedure leaves 
no role for the DM to play during the selection process; it makes decision making 
a black-box procedure. Also, the above approach is dernaucling with respect to 
the extent of informat ion required of a Dl'vi. The existence of a function, which 
represents D:tvi 's preferences, is itself a strong assurnp tion; verification of the 
func tion would add considerable extra effort . This approach remains an area of 
theoretical interest with limited practical appeal. 

An alternative to constructing a general value function is to construct a 
proxy value fun ction. One proxy value function is linear, a weighted sum of 
the multiple criteria. Though the responsibility to come up with weights re
mains with the Dl\11, that process is simpler than it may sound. It docs require 
si!jnificant input of the DM. 

To further relieve the DM of the burden of providing complex information 
about her preferences, pair-wise comparisons of alternate decisions may be used. 
In its simplest form pair- wise comparisons consist of sequentially comparing de
cisions, each time discarding t he less preferred, until all decisions have beeu 
considered. The last remaining decision is the most preferred . A more sophis
t icated variation is to use results of pair-wise comparisons to dis<:ard subsets 
of non-explicitly considered decisions. Pair-wise comparisons fit the interactive 
scheme (admit learning loop), in contract to the first two approaches, which 
operate in "batch" mode. This approach is less demanding on the DM - at 
successive iterations she is supposed only to choose the more preferred de<:ision 
of two. 

Our general observation is that complex decision-makillg models and com
plex decision-making support algorithms are less frequently used in solving prac
tical decision problems than simple ones. Th is is cer tainly true in Multiple 
Cri teria Decision lVIaking (MCD!Vl) . If the complexity of such models and/or 
algorithms were weighted by the frequency of applications, then simple decision 
tools would be given highest scores. 

One motivation for this work is to provide a wntribu tion to MCD!V! of a 
potentially high score on the complexity - frequency of applications scale. To 
achieve this aim we base our work on the viability of intera<:tive MCDM methods 
documented in the popular press. For example, the approach of T. Saaty in 
his Analytic Hierarchy Process implemented in his Expert Choice software has 
achieved great results . See, for example, his write-up in Fortune Magazine 
(1999). 

Our approach is to use the Zionts-Wallenius algori thm (1976, 1983) that im
plements pair-wise comparison of decisions and uses a linear proxy value func
t ion for implicit discarding subsets of non-specifically considered decisions. The 
Zionts-Wallenius algorithm distinguishes itself from other interactive methods 
by explicitly specifying two ways of comparing decisions: "1. values of criteria 
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of alternate decisions are compared", and "2 . tradeofls of cri teria of alternate 
decisions are compared". 

The Zionts-Wallenius algorithm is designed to solve problems whose un
derlying formal models consist. of linear constraints, linear objective fun ctions , 
and pseudo-concave value functions. Our purpose is to generalize the Zionts
Wallenius algorithm to a broader class of problems, namely to convex (as op
posed to linear) problems. We claim that the two ways of comparing decisions 
used by the Zionts-Wallenius algorithm is a significant improvement compared 
with methods that only compare values of criteria. Tradeoff' relations arc com
plementary to relations of values of criteria . The explicit use of tradeoffs in 
decision making provides a new dimension to help differentiate between deci
sions whenever criteria values are not useful. 

In applications of the Zionts-Wallcnius algori thm, tradeoff's have turned out 
to be of marginal practical importance. This can be cxpla.ined by the fact that 
the algorithm searches only those feasib le decisions represented by vertices of 
a polyhedral set. In that case there is not much difference between the two 
ways of comparing decisions, except for the form in which related information is 
presented (tradeoff's are usually presented in the form of ratios). T he situation 
changes when decisions are no longer restricted to vertices; a different definition 
of tradeoff and tools to calculate them are required. Appropriate extensions and 
res ults are presented in this paper. 

The need for trade-off informat ion being exploited in MCDM has been im
plicit in rnany papers. A good example of this is the paper by Makowski et 
a!. (1996). In solving a water management multiple criteria model, the au
thors cliscoverecl that by slightly relaxing a constraint on water quality and 
then searching the efficient frontier for alternative solutions, they were able to 
find acceptable solutions with significan tly reduced costs. (This may argue for 
usiug soft constraints, rather than hard constraints .) Similar results can be 
obtained using the approach we present. 

Our cont ribution extends the well-known and widely applied Zionts-Wallenius 
algorithm in two significant ways: 

- nllowing for more complex underlying models, 
- providing for multiple ways of expressing preferences among decisions . 

Our approach is an extension of a classical algorithm, which has been applied 
successfully to a wide range of decision problems reported in publications. With 
the notion of tra.cleoff we simply activate a dimension, inherently preseut in 
multiple criteria decision making but until now restricted by the lack of simple 
tools to handle it. T he tool we provide is simple and imposes vir tually no 
additional computational burden . 

An overview of the paper follows. In the next section we formulate the 
problem and introduce basic concepts. In Section 3 we recall how the Zionts
Wallenius algorithm generates improved successive trial solu tions and usPs a 
DM's partial preferences revealed in the course of an interact ive decision pro-
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cess . In Section 4 we recall two definitions of t radeoffs and discuss their role 
in interactive MCDM. In Section 5 we show how to derive tradeoff information 
when generating successive trial solutions . In Section 6 we describe the pro
posed algorithm and in Section 7 we apply the algorithm to the classic portfolio 
selection problem. Section 8 is devoted to a discussion of the applicability of 
our development. Some concluding remarks are presented in Section 9. 

2. Problem definition and basic concept s 

A formulation of the multicriteria decision problem is as follows: 

max .f(x) 

subject to x E Xo ~ X, (1) 

where .f : X ---+ Rk, k ~ 2, .f = (h, h, . .. , !J.:) is a vector of objective functions, 
.f; : X ---+ R, i = 1, . . . , k, X 0 is the set of feasible decisions (solutions), and 
"max" stands for the operator of determining all efficient decisions of Xo . 

In what follows we shall be interested in the properties of elements f (x) of 
the set f (Xo). Using the notation f(x) = y and f (X0 ) = Z, elements y are 
called outcomes and Z is called the outcome set. 

Let :ij E Z . The following are commonly accepted definitions of various types 
of efficiency. The outcome y E Z is: 

weakly efficient if there is no y, y E Z, such that y; > fj;, i = 1, . .. , k , 

efficient if Yi > j],, i = 1, . .. , k, y E Z, implies y = 'f), 

properly efficient if it is efficient and there exists a finite number M > 0 such 
that for each i we have 

Yi- '!J; < M 
Yj - Y.i -

for some j such that Yj < Yj whenever y E Z and y; > '[);. 

3. Handling DM preferences in the Zionts-Wallenius 
a lgor ithm 

As mentioned before, the Zionts-Wallenius algorithm is applicable to MCDM 
problems in which objective functions as well as constraints arc linear and the 
DM has an implicit pseudo-concave value functi on. 

The algorithm directs the DM interactively towards decisions maximizing 
that implicit function. The Ziont.s-Wallenius algorithm asks the DM to compare 
adjacent efficient extreme outcomes to a t rial efficient outcome, so long as an 
adjacent efficient extreme outcome is sufficiently distinct from a current trial 
outcome to make a comparison. The DJ\!I makes the comparison by comparing 
values of criteria. If an adi acent effic ient extreme outcome is not sufficiently 
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distinct, the Dl:VI is asked to assess tradeoff information relevant to t.he current 
trial outcome. 

To convert a DT\1 preference into a mechanism for generating improving 
outcomes, the method generates constraints on weights in a proxy linear value 
function. Let the proxy linear value function be 

(2) 

If the DM prefers the current trial outcome ytr· to an adjacent outcome yn (one 
that is adjacent to the trial outcome, efficient, and extreme) then the coefficients 
>.., should be such that 

LAtYt > LAtYf. (3) 
l l 

If ya is preferred to ytr the coefficients >.. 1 should be such that 

I:>..,yt < LAtYt· (4) 
l l 

If ya and ytr are not distinct enough to permit a comparison, the DM evaluates 
the vector ya - y 1r . If the DM likes changing the criteria in the proportion 
indicated by this vector, then ya - ytr should satisfy 

(5) 

If she does not , then ya - ytr should satisfy 

LA{ (yl - Yt) < 0. (6) 
l 

Because (5) and (6) reduce to (3) and (4), respectively, relations (3) , (4) 
constitute a representation of DM assessments of two different types of infor
mation. 

Vector ya - y1r is efficient (i.e. all elements of a(ya - y 1r) , 0 :::; a :::; 1 are 
efficient) and it defines point-to-point tradeoffs (see Section 4). 

Constraints of the form (3) and (4) are successively added for each pair of 
considered outcomes ytr, ya to constrain the set of vectors >.. and to narrow the 
search in the space of weights . Successive trial outcomes ytr are generated using 
vectors >..from the constrained set and the linear function (2). 

4 . Tradeoffs 

A (desirable) tradeoff is defined in the following manner by Webster's New 
Wor-ld Dictionar·y of the English Language (Simon and Schuster, New York, 
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1980): "It is an exchange, especially a giving up of one benefit or advantage in 
order to gain another regarded as more desirable" . It is defined technically as 
some specific (usually local) property of the explicit or implicit value function 
(Kuhn and Tucker, 1951 ; Chankong and Haimes, 1979; Sakawa and Yano, 1990). 
It is also a measure of the benefits and costs of moving from one scenario to 
any other scenario measured by values of relative changes in objective functions 
(Zionts and Wallenius, 1976, 1983; Wierzbicki, 1990; Halme, 1992; Henig and 
Buchanan, 1997; Kaliszewski , 1993, 1994; Kaliszewski and Michalowski , 1994, 
1995, 1997) . We use the latter meaning of tradeoff. 

We consider two types of tradeoffs: a point-to-point t radeoff is defined for a 
selected pair of scenarios; a global tradeoff is defi ned for a particular outcome 
y of Z. A tradeoff specifies an amount by which one (or more) criterion value 
increases (a gain) while another (one or more) decreases (a loss) when moving 
from one outcome to another. 

A point-to-point tradeofF is a tradeofF between two scenarios; it is effectively 
a direction or gradient. It gives the relative change of each objective. It may 
be useful to choose one of the obj ectives as a numeraire (or reference) and use 
it as a denominator for all the others. 

A global tradeoff for a given y is defined as a limi t of tradeoffs. It may not be 
and usually is not achievable. Ma thematically, it is calculated as a supremum 
of all point-to-point t radeoffs defined for such pairs of outcomes y, y, y E Z , 
that for y all components except component j have values greater or equal to 
components of y and for y the component j has a value less than that of y. In 
other words, a global tradeoff specifics the least upper bound on an increase 
in one criterion relative to a unit decrease in another criterion occurring while 
moving from a particular outcome in a direction where all the remaining criteria 
do not decrease (see the defi nition of sets Z ;< (Y) , ·i = 1, . .. , k , below). In what 
follows we refer to a global tradeoff simply as a t radeoff. A fo rmal definition of 
t radeoff is given later in this section . 

Simply calculating the supremum over all point-to-point tradeoffs (which is 
the definition of a gain-to-loss ratio, Kaliszewski , 1994) is obviously not equiva
lent to determining a tradeoff. In many instances a finite gain- to-loss ratio does 
not exist whereas a tradeoff does (Kaliszewski , 1994) . Therefore, a t radeoff may 
be used as a universal construct to convey relative information. 

In contrast to point-to-point tradeoffs which are defined by the components 
of two given outcomes, deterrnining a global tradeoff for an outcome y requires 
calculations that relate to outcome set Z. So far , most of the research on trade
offs is focused on deriving or assessing t radeoffs for a given effi cient outcome. 
Wierzbicki (1990) , Halrne (1992), Henig and Buchanan (1997) , and Kaliszewski 
(1993, 1994) addressed this problem. The problem of generating efficient out
comes with a prio·ri set bounds on tradeoffs was investigated by Kaliszewski 
(2000), and Kaliszewski and Michalowski (1995 , 1997). In the proposed al
gorithm we make use of a relation between weighting coeffi cients in a linear 
scalarization (2) and bounds imposed on tradeoffs (Theorem 5.2 , Section 5). 
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Let '[} E Z, Z ~ Rl.:. For i = 1, ... , k we denote: 

zi<(Y) = {y E Zl Yi < ffi, Yr ~ Yt, l = 1, ... , k, l-:/:- i }. 

DEFINITION 4.1 Let f) E Z. Tradeoff Tr](Y) (the s·uperscr-·ipt G stands fo r
global) involving the objective functions i and j, i, .i = 1, . . . , k , i -:/:- .i is defined 
as 

!h - f} ; 
sup _ 

y EZ f UJ ) Yi- Yi 

In other words , the tradeoff is the smallest number which bounds from above all 
point-to-point tradeoffs involving a given outcome y, an outcome y , y E zj<(y), 
and a pair of indices . 

We adopt the convention that if zi< ('[}) = 0 then TFJ (fJ) = - oo, i = 1, ... , k, 
i -:/:- .i. A method of calculating tradeoff's, that avoids finding the supremum of 
a hyperbolic function, was given in Kaliszewski (1993, 1994). 

In contrast to other definitions of tradeoffs, we do not require in Definition 
4.1 that an outcome 'f) for which a tradeoff is defined , be efficient.. It is easy to 
show that , if Z is convex and f) is not weakly efficient, then finite tradeoff's do 
not exist. For non-convex outcome sets , tradeoffs can exist for outcomes which 
arc not weakly efficient , as demonstrated by the case of finite sets. 

As we see from the above definition , a global tradeoff generally difl:'ers from 
a point-to-point tradeoff'. However , it is a limi t, as was indicated earlier. Fig. 1 
expl ains the role of sets z:: (fJ) in Definition 4.1. Observe that the same con
struction is valid for a set which is not polyhedral. 

5. Deriving tradeoff information 

If an outcome set is convex, then as shown by the following three results , we 
can use a linear function to generate effi cient outcomes and simultaneously elicit 
relative tradeoff information. 

THEOREM 5 .1 {Geoffrion, 1968). Assume Z is convex. An outcome 'f) E Z is 
pr-oper-ly efficient if and only if ther-e exists a vector- A such that f) solves the 
pr-oblem 

max LAtYt 
yEZ 

l 

for some A > 0. 

(7) 

The above theorem is also applicable to a more general case, in which Z is not 
convex but is R~ -convex, i.e. Z - R~ is convex, where R~ is the non-negative 
orthant of Rk. 

As follows from the next two theorems, assessments of tradeoffs for outcomes 
generated by problem (7) are available at no cost . 
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a) Y3 

' ' 

Y3 

b) Y3 

. I 

.1 (17 t , !J3) 

Y1 

Figure 1. The role of the set z;: (Y) in Definition 4.1. For Z given as above: 
a) calculation of TR (y) is equivalent in this case to calculation of the supremum 
of ~:J - ijo over the set {y E Z I y2 - fh = 0}, the supremum exists; y, - y, 

b) calculation of the supremum of~~=~~, where Y3 - th 2 0, 'fh - y1 > 0, over 

Z is equivalent in this case to calculat ion of the supremum of ~3 -'73 over the set 
Yl-Yl 

{y E Z I Y2 = 0, Y1 :S: ih, Y3 2 f/3 }, the supremum does not exist . 

THEOREM 5.2 (Kalis zewski, 2000). Assume Z - Ri is convex. Let fj solve 
p1'0blem (7) for some A > 0. Then 

Ai y c; (fl) < _J_ 
'J - Ai 

(8) 

few alh , j = l , ... ,k, i :j: j. 

Pmof. If fj solves (7) for some A > 0 then L At Yl < L At Yt for all y E Z. 
l l 

Suppose y E zi< (fl) for some j = 1, . .. , k. We have 

L AL(YL- fJL) ::; Aj(fjj- YJ) , 
l=f.j 

A.;(Y·i -fl.i) 2 0 for all i = l, ... ,k, i :j: j , 

AJ(fjJ - YJ) > 0. 



C:cncrali zat ion of U1c Z i o n t~- \Val Ieni us algori t I 1m 485 

Hence, >.. i (?J i - '[j ;) :S >.. j WJ - yj) for all i = 1, . .. , k, i ::/- j , and (Yi - fj;) f ([iJ -yj) :S 
>.. if >.. i for a ll y E zi<(fj) and ·i = 1, ... , k, i ::/- j. Consequently, T8 (1] ) :S ~; for 
all ·i = 1, ... , k: , i ::J .f. The same argument holds for any j = 1, .. . , k . • 

T I-! 80 1U~iVI 5.3 Assv.m.e z - nt is conve:t:. If, fm· smne /\ > 0, L >..,y, is 

o. v:n:iq'Ue ('Up to a scalm· multiplieT) hyperplane sv.ch tho.t 

for som e '[j E Z, then 

for all i, .i = 1, .. . 1 k 1 i ::/- j. 

Pmof. Since L >..1y1 is a uui4ue (up to a scalar mul tiplier) hyperplane such 
I 

t hat 

for any >.. ' > 0 such th at >..' = (3 /\ fo r no scalar multiplier ;3, we have 

2:::: /\;vi > 2:::: >..; rh 
I I 

for some y E Z 1 y ::/- y. If y E zj< (f}) t hen 

/\ ;, (yi - f}i ) > /\ j('f} j - YJ) + L >..; (Iii- Yl ), 
l f.·i .j 

(:l) i- fj; )/WJ- YJ ) > /\'d /\ :. + (L (>..;; >.. ;)(Yl - Yt) )/(fjj - YJ) 
l f.i, j 

and , by Theorem 5.2, 

/\ j f /\ j 2: TS' W) 2: (yi - fh)/WJ- Yj ) > >..j; >..;+(L( >..; ; >.. ;,)(y~ - vt) ) /( :9J-Yi) . 
l f. i.,j 

T he supremum of the rightmost term over y E zJ< (y) and all >..' > 0, >..' ::/- >.., 
equals >...Ji ~ i , t herefore 
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Dl\II preferences with respect to criteria (encapsulated by the relations (3) 
and (4)) define preferred outcomes as solutions of problem (7) . 

Similarly, DM preferences with respect to maximal admissible tradeoffs , 
(captured by relations (8)) define preferred outcomes as solutions of problem 
(7) 0 

Assuming R~ -convexity of Z, we distinguish three classes of problem ( 1) : 
1. Z is polyhedral; this is the case addressed by the Zionts-Wallenius algo

rithm, 
2. is "Pareto-smooth" , i.e . at each efficient outcome y there is exactly oue 

tangent hyperplane of the form 

2:= AtYt = 2:= At fit (9) 
l 

which defines (by Theorem 5.3) all the tradeoffs 
c Ai T;j (y) = A·;, 'i,j = 1, ... ,k, i f-j , (10) 

3. the general case in which tangent hyperplanes (9) provide bounds on trade-
offs rather than their exact values, as stated by Theorem 5.2. 

It is noteworthy that formally the function (2) is in general not a special case of 
the proxy function exploited in Kaliszewski (2000). This implies that formula 
(8) of Theorem 5.2 is in general not a special case of the tradeoff bounding 
formula derived in Kaliszewski (2000). 

6. The generalized algorithm 

With Theorem 5.2 we are in a position to propose a generalization of the Zionts
Wallenius algorithm. The generali zed algorithm applies to cases in which the 
outcome set is Rt -convex and the concept of "adjacent verti ces" does not ap
ply. It is composed of Lwo basic elements, namely a rnethod for elicitation and 
har.dling DM preferences with respect to absolu te iuformation , based on The
orem 5.1, and a method for handliug D l\11 preferences with respect to relative 
information, based on Theorem 5.2 . 

Any relation (3) or (4) set by the DM to express her preferences relating to 
criteria indirectly establishes, in the light of Theorem 5.2, bounds on tradeofi's 
of preferred outcomes. Vi ce-versa , any bound set by the DM on tradcoffs in the 
form 

As 
-:\ ::; b81 for some s, t = 1, ... , k , s f- t , 

f. 

(11) 

and a resulting selection of values A;, 't = 1, ... , k, satisfying that bound , indi
rectly form a preference st ructure with respect t.o criteria. In this way the two 
decision-making paradigms (i.e. absolute informat ion paradigm versus rel ative 
information paradignt) interrelate. 
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It is up to the DM to follow these paradigms. She can even stick to both 
paradigms. If she treats them independently, there is the possibility of incon
sistency. It is obvious that the DIVI has to make one of the paradigms a. leading 
paradigm; otherwise she must compromise. At least, a.t each step of a decision 
making process, the DJVI can be informed as to how her priority paradigm relates 
to its complement. 

In our generalized approach, for each outcome, tradeoffs can be calculated 
(Henig, Buchanan, 1997; Kaliszewski, 1994) or, if calculations turn out to be 
too expensive, approximated. In the algorithm the decision maker responds 
to questions regarding whether she likes or dislikes tradeoffs. By doing so, 
by virtue of Theorem 5.2, she provides bounds on the weights in the proxy 
value function . The rationale for doing so is as follows. Large tradeoffs for 
an outcome (similar to large values of point-to-point tradeoffs in the Zionts
vVallenius algorithm) mean that. some other outcome can be more attractive 
than the given outcome. (A "large" gain in one criterion can be achieved by a 
"small" loss in another at no loss in the remaining criteria). Hence, outcomes 
with limited tradeoffs (and consequently, with limited point-to-point tradeoffs) 
are potential candidates for "the most preferred" outcome. The argument given 
h:.:re is purely qualitative. The above argument. in a broader decision making 
context was originally presented in Kaliszewski and Michalowski (1999). 

The proposed algorithm GIDMA-Conve.r (Generalized Interactive Decision 
Making Algorithm-Convex) is as follows. 

GIDMA-Convex 

1. Find a.n efficient trial outcome y 1
' .• 

2. Derive a. set of reference outcomes {yref}. 
3. Ask the DlVI to evaluate each pair yref, y 1

'" in terms of Yi , i = 1, ... , k, 
and to express her preferences; ask the DM to evaluate y 1r in terms of 
(maximal) tradeoffs and to express her preferences. 

4. Derive an outcome y satisfying preferences defined in Step 3. Define it. as 
y 1

'". Go to Step 2. 

Now we shall discuss the steps of GIDMA-Convex algorithm in more detail. 
1. The algorithm makes use of (7) to generate efficient outcomes. The vector 

A should be specified to provide a good starting outcome. If we do not 
have a suitable starting set of weights, a vector with all components equal 
(provided that objectives have first been scaled) may be used. 

2. We derive reference outcomes using vectors A from the preference set 
(which is built by successive constraints of the type (3), (4), or (11); at 
the beginning this set is composed of all vectors A > 0), and problem (7). 
These can be generated using a. well-dispersed set of weights according to 
the approach of Steuer (1986). 

3. In this step the DM is free to express her preferences with respect to values 
of the components of y, tradeoffs, or both. In the first and third case she is 
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supplied with a small number of reference outcomes to compare with the 
current ytr. As an alternative, outcomes y 1'. and y ref from the previous 
iterations which satisfy the current preferences with respect to values of 
components and tradeoff's can be also used as reference outcomes (we do 
not exploit this alternative in the numerical example of Section 7). 

DM preferences with respect to values of the components of y are ex
pressed by constraints of type (3), or (4), one for each trial outcome. 

If the DM chooses to refer to tradeoffs, she can evaluate exact tracleoffs 
for yLr (which have to be calculated) or evaluate bounds on t radeoffs 
resulting from vectors A used to derive ytr. On the basis of the analysis, 
she sets bounds on tradeoff's that tr ial solu tions should satisfy at the next 
step. 

DM preferences with respect to tradeoffs arc expressed in the form of 
condition (11) which constrain the selection of vectors A from the prefer
ence set. 

The DM can be supplied with additional information on what is the 
least bound on tradeoff's for outcomes generated with vectors A from the 
current preference set. If this bound is too large, the preference set can 
be fur ther constrained . 

The DM can also be supplied with such information as the maximal 
values of selected criteria for outcomes generated with vectors A from 
the current preference set. If the DM is not satisfied with the maximal 
values, then she may relax some constraints of the pref€rence set to get a 
larger maximum. As a result , DM preferences previously revealed may be 
modified. 

4. To derive trial outcomes, vectors A are selected from the preference set. 
Though we do not propose a method, we might use a middlemost set 
according to a scheme of Koksalan et al. (1984), by finding the set of 
weights farthest from the nearest constraint . Given a set of A's, we then 
generate an outcome by solving problem (7). 

The DM is therefore able to express her preferences following two distinct 
decision making parad igms. She is absolutely free to structure a hierarchy of 
the paradigms , with the option of changing her hierarchy in the course of a 
decision process. She may also decide to put more or less relative stress on one 
paradigm, and even to ignore (possibly temporarily) one of the paradigms at 
any stage of the process. 

The algorithm proposed by Roy and Wallenius (Roy, Wallenius, 1991 , 1992) 
is also an extension of the Zionts-Wallenius algorithm . Elaborating on the con
cept of basic and nonbasic variables, Roy and Wallenius were able to expand 
the simplex method framework to nonlinear (mainly convex) mult iple cri teria 
programming. Consequently, the number of tradeoffs to be considered in their 
approach is a t most n- m (only efficient tradcoffs are to be considered), where 
n is the number of variables and m the number of equality constraints. To make 
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the approach operational, in addi tion to convexity /concavity requirements, com
plex difFerentiability assumpt ions must apply. 

In contrast, in the present paper we operate only in the criteria space. Ac
cordingly, the concepts of basic and non-basic variables are not appropriate. 
The methodology we propose relies only on a relationship between criteria over 
the outcome set . As a consequence, the number of tradeoffs to be considered is 
at most k x (k -1), where k is the number of criteria. Moreover, since we do not 
exploit variable-criteria relations, and no assumption except R~ -convexity of the 
outcome set is made, our approach is conceptually, technically, and practically 
less complex than that proposed by Roy and \Vallenius. 

Let us now consider the question of convergence. T he convergence of the 
Zionts-Wallenius method relies on successively adding constraints (3) or ( 4) 
which shrink the set of weights (the preference set). The same principle applies 
to the Roy and Wallenius algorithm, as well as to the algorithm of Dell and 
Karwan (Dell , Karwan, 1990), another major extension of the Zionts-Wallen ius 
algorithm. T he practical stopping ru le is DM's inability to distinguish between 
two successive outcomes . 

Since the Zionts-Wallenius algorithm and Roy-Wallen ius algori thm exploited 
the polyhedral structure of the set of feasible solutions and restri cted themselves 
to vertex solu tions only, for bounded feasible solu tion sets they both converge in 
a finite number of steps. In both algori thms the polyhedrali ty of feasible solution 
sets, under the condition of pseudo-concavity on DM's implicit value fun ction 
enabled for an optimality condition . In contrast, the Dell-Kan van algorithm 
produces, in principle, an infinite sequence of solutions and offers no optimality 
conditions . 

As in all the algorithms mentioned above, convergence of our algorithm is 
ensured by shrinking the set of weights (the preference set) with constraints (3) 
and ( 4) . Constraints on weights coming from DM 's preferences with respect to 
tradeofl's, provided they do 1:ot lead to inconsistency (i .e. they do not cause 
the constraints on the set of weights to be inconsistent ) can on ly st rengthen 
convergence of the algori thm. As with the Dell-Karwan algori thm , we provide 
no optimali ty conditions. 

No formal results on convergence ratio for interactive JVICDM algorithms 
can be derived in general, because the DM and her preferences const itute an 
unpredictable factor . In numerical experiments reported in Zionts and Wallenius 
(HJ83), and Dell and Karwan (1991), observed convergence was high (see also 
Section 7 for a numerical example solved) . 

7. A numerical example 

To illustrate the operation of the GIDMA-Conve:c algorithm, we solve a. small 
numerical example . Before doing this we feel it is necessary to comment on the 
merits of our example. 
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The mechanics of the algorithm need not be revealed to the Dl\ti. An analogy 
is that of driving a car ; the driver need not know the theory of internal combus
tion engines. The DM wants a. solut ion. She evaluates outcomes and eventually 
stops the decision process; the rest is the responsibility of a facilitator. In other 
words, the DM "part" of GDIM- Convex follows the generic interactive MCDM 
approach, which relics on evaluating a sequence of successive feasible decisions. 
An "informed" DM may wish to take some or all responsibilities of the facilita
tor. Communication between the DM and the facilitator should be made in a. 
customary problem-oriented manner. The form of communication used in the 
example seems to be acceptable in its specific economic context but it is by no 
means indicative for a. range of other possible applications . 

\Ve now illustrate the GIDMA-Convex algori thm using a simple example of 
an important finance problem: the Markowitz mean-variance portfolio model. 
In the model a. portfolio is selected from a group of stocks to maximize a. lin
ear function of expected portfolio return and minimize portfolio variance. The 
Markowitz model assumes that all capital is fully invested . By normalizing the 
amount of capital to be unity, the individual stock investment is represented 
as the fraction of the portfolio invested in each stock. Short sales of stock are 
permitted, and are indicated as negat ive investments. 

It is interesting to observe that t he outcome set of (12) is not convex but 
Ri -convex (see e.g. Elton , Gruber, 1995). 

The model is as follows. 
n 

(maximize portfolio expected return) max L e ;.'r; 

i=l 

(minimize portfolio variance) 

(the "fully-invested" constraint) 

n n 

min L L p;,jXiXj 

i = l j=l 

n 

(12) 

where Pij denotes the covariance matrix coefficient for the stock i and the stock 
j , and ei denotes the expected return for the stock i. 

In the finance literature this model is often solved using a single objective 
function that minimizes variance, subject to a constraint specifying a minimal 
acceptable expected return, namely: 

n n 

min L L P ijXiXj 

i=l j= l 

n 

L eiXi ·~ Ye, 
i= l 

n 
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where fi e is the minimum acceptable level of expected return of the portfolio. 
Observe that if in the first constraint the inequality sign is changed to an 

equality sign the problem can be solved analytically (see, e.g. Dahl et al. , 1993) 
but any constraint .T; 2': 0 prohibiting short sale of a particular stock makes this 
approach invalid. 

It is certainly more appropriate to solv:e the portfolio selection problem (12) 
using two criteria. We accordingly seek a satisfactory coinpromise on t he levels 
of expected return and variance. We repeat here the argument about the ratio
nale for using tradcoffs as preference indicators, presented in Section (6) , this 
time in the portfolio selection context. 

If, at a given ou.tcome, some point-to-po·int tro.deoffs ar-e attro.ct·ive, then the 
corTesponding sol·u.t·ion may not be 'the most pr-eferTed'. Solutions for· which 
no point-to-point tradeoff is attmctive can be 'most pr-eferTed '. Consequently, 
outcomes with unattmctive (limited) tmdeoffs aTe also potential candidates for· 
'the most pr"efer-r-erl ' outcome. 

To illustrate, we shall solve a numerical example with data taken from the 
well-known "three-stock" Markowitz example (see Markowitz, 1959). However, 
in contrast to the finance li terature, rather than solving the problem by min
imizing risk subject to minimal acceptable return levels, we shall solve it in 
interactive manner. 

We add a third objective to maximize the earnings-to-price (minimize the 
price-to-earnings) ratio of the portfolio. We do this to depart from the simplicity 
of two-objective problems in which sets zr (Y) reduce to zi< (y) = {y E z I Yl < 
'[h) Y2 2': :i/2 }} and z;: (fj) = {y E z I Y2 < Y2 ' Yl 2': fid. Our third objec tive is 
therefore to maximize: 

n 

LPiXi, 
i= l 

where Pi is the reciprocal of the price-to-earnings ratio P /E of a stock , a 
commonly-used finance measure of stock value. This measure enables what 
is commonly called "portfolio tilting" (for an extensive survey of publicat ions 
on that topic see Ziemba, 1994). 

The problem we solve below for n = 3 is small but illustrative. The algorithm 
works the same for any n. The data for the example arc shown below (all data, 
e:::ccpt those for P /E, which we randomly generated , are the original Markowitz 
data). There are three stocks: ATT, GM, USX, characterized by a covariance 
matrix and expected returns over the investment period: 

ATT GM usx 
ATT .01080754 .01240721 .01307513 
GM .01240721 .05839170 .05542639 Covariance matrix 
usx .01307513 .05542639 .09422681 

.0890833 .213667 .234583 Expected returns 
0. 24 0.12 0.06 E/P 
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Since all objectives are to be maximized, we use the negative of variance as 
an objective. 

To simulate the DM's behavior in terms of Yi, i = 1, . .. , k , we assume that 
her (unknown) value function is 2 

- 2 2 , 2 _ 2 2 , 2 J(ye, YCJ) - -30yv + Ye +yp- - 30y_v +Ye +yp, 

h '\'n '\' n '\' n d '\' n w ere Yv = ~i= l ~j= l PijXiX j , Yv = - Y- v, Ye = ~i= l eiXi an Yp = ~i= l P ·i ·'E·i · 

Given the constraint that all capital must be invested, L:'=1 :ci = 1, this 
function attains its maximum f' nax = 1.392 at y"'"x = (y~'-~x, y~'' "X, fj~1 ax) 

( -0.054, 1.240, 0.115) (xmax = (0 .060, 0.737, 0.0203) , where x1 corresponds to 
ATT, x2 corresponds to GM , x 3 corresponds to USX). 

\Ve now use the GIDMA-Convex algorithm to assist the DM in finding a 
portfolio that has a satisfactory compromise on expected return , variance, and 
E/P. We assume that the DM is consistent with her value function . 

The steps of the algorithm with the simulated behavior of DM are as follows. 
Without loss of generality we assume that >-e + >- - v + Ap = 1. The ini t ial 
preference set is 

Additional information that may be made available to the DIVI at the beginning 
of the process includes the following: 

• the maximal Y- v over efficient outcomes of Z : y~~x = - 0.011 ; 

• (Y~-~X, Ye (Y~~x), Yp(y~~x )) = ( -0.011 , 1.084, 0.246); 

" the maximal Ye over efficient outcomes of Z : y~' ax - unbounded; 

e the maximal Yp over efficient outcomes of Z : y~'ax - unbounded; 

(The value of the DM value function at (y~~·x, Ye (Y~-~x) , yp(y~.:~x)) 

J (y~.~x, Ye ( Y~-~x), yp(Y~-~x)) = -0.00:1. 

GIDMA -Conve:r 

l. For ,>. t,·(J) = (>- -v, Ae, Ap) = (0.500, 0.400, 0.100) E i\ 1 we get a trial outcome 
ytr(l) = (-0.044, 1.194, 0.134) ( :c tr ( l ) = (0.174, 0.713, 0.112)). In the example 
the choices from Ai are arbi trarily chosen - we have not normalized the objectives 
but they are roughly of the same magnitude. (The value of the DM value 
function at ytr( l ) : f( y t,,·( l)) = 1.387 ) . 

Iteration 1 

2. T he following vectors are selected from the set A 1 

xref(J, J ) = (0.700, 0.200, 0.100), ).1 C{ ( J ,2 ) = (0. 600, 0.300, 0.100), ).''ef (/, 3 ) = 

2 0bserve t hat th e a lgorithm follows t lH! man-machine in teract ive scheme. T he scheme, 
one of t he cornerstones of cylierne tics, was proposed to accoun t for unpred ictabili ty of man 
(t he DM). Consequently, no assum ption on DM 's be hav ior is made here, and t he only way to 
get quant itat ive resul ts is simulat ion. 
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(0.400, 0.500, 0.100) (the first superscript index denotes the iteration number). 
Solving (7) with these vectors yields 

y re"j( 1 ,1) = ( -0.013, 1.109, 0.222) (xref(1, 1 ) = (0.831,0.202, -0.032)) , 

(xref(l ·2 ) = (0.557, 0.415, 0.028)) , 

(xref(l,3) = (-0.400, 1.161,0.239)). 

yref( 1 •2 ) = ( -0.021, 1.145, 0.185) 

yref(J •3 ) = ( -0.103, 1.268, 0.058) 

(The value of the DM value function at yref( 1 ,1), y ref( 1 •2 ), yref( 1 ,3) : f (yref( 1 · 1 )) = 
1.275, J(y r·ef( 1 •2 ) ) = 1.332, j(yref (J •3 ) ) = 1.297). 

3. Evaluation ofytr(1) and yref(J ,l) , yref ( l ,2 ), yref( l ,3 ) in terms ofY-v, Ye and 

Yp· 

The DM prefers ytr(J ) to yref(J ,1) as well as to yref(J ·3 ) because she is not 
willing to accept such a low return as represented by yref (J ·1 ) and such a high 
risk as represented by yref( 1 •3). By this we have 

>..yref(l ,1) < >..ytr(J) and >..yref(l ,3) < >..ytr(1). 

The DM is uncertain about her preference between ytr(l) and yref(J ·2 ) because 
they are so close in value. 

Evaluation of ytr(l) in terms of tradeoffs 

The DM states that she will not accept any outcome y as the final choice as 
long as it shows Tf:- v (y) > 2 (for such a y there is a potential to improve at 
least by two units of expected return at the expense of one unit of variance at no 
loss in P /E ratio) or T<}v e (y) > 2 (for such a y there is a potential to improve 
at least by two units on ~ariance at the expense of one unit of expected return 

at no loss in P /E ratio). To comply with this requirement we set A~v ::; 2 and 

.\e 
A- v ::; 2. The preference set is now 

or 

>.. _v + >- e + Ap = 1, 

0.0312A-v - 0.085Ae + 0.088Ap < 0, 

-0.0588>.. -v + 0.074>..e - 0.076>..P < 0, 

A-v < 2 
Ae - ' 

~ < 2 
A_v - ' 

>.. _v > 0, >- e > 0, >..P > 0, 
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4. For Atr(2) = (A-v, Ae , Ap) = (0.450,0.377, 0.173) E A2 we get a trial outcome 
ylr( 2) = ( -0.030, 1.166, 0.167) (xtr( 2) = (0.382, 0. 646 , - 0.029)) (The value of 
t he DM value function at y 1' ( 2) : f(ytr (2)) = 1.360 ). 

Iteration 2 

2. The following vectors are selected from the set A 2 : 

Ar ej (2 ,l) = (0.440,0.377,0.183), Aref( 2 ,2l = (0.550,0.333,0.117), AnJ( 2 ,3 ) 

(0.600, 0.333, 0.067) . Solving (7) with these vectors gives 

yref( 2 , l) = ( -0.029, 1.163, 0.170) (xref( 2 , l) = (0.400, 0.648, - 0.048)) , 

yrej (2 ,2 ) = ( -0.025 , 1.156, 0.175) (xref (2,2 ) = (0.472, 0.500, 0.029)) , 

yref (2 ,3) = ( - 0.029, 1.166, 0.162) (xref( 2,3) = (0.400, 0.505, 0.095)). 

(The value of the DM value function at yref (2,1J, y '·ef( 2,2), yref( 2,3 ) : f(yref(2, 1)) = 
1.3.)7, J(yref(2,2) ) = 1.348, J(yref (2,3) ) = 1.361). 

Observe that we could use ytr (l l as a reference outcome for it satisfies the 
current preferences with respect to values of the components and tradeoff's. 
Arbitrarily, we avoid doing this . 

3. Evalv.ation ofytr(2) and yref( 2 ,J),yr4( 2,2), yref( 2,3) in terms ofY-v , Ye and 

Yv 

The DM prefers ytr( 2) to yref (2 ,2 l because she is not willing to accept t he 
low expected return represented by yref( 2,2l. By this we have 

A Yre f (2,2) < A Ytr·(2) 

The DM is uncertain about her preference among ytr( 2l, yref( 2 ,l) and yref (2,3) 

in terms of values of criteria. 

Evaluation of ytr (2) in terms of tradeoffs 

For ytr( 2) we have 

0.173 = 0.38 
0.450 
0.173 
0.377 = 0.46 . 

The DM decides that these numbers show a significant potential to improve 
variance and expected return at the expense of P /E ratio. She also decides that 
for any outcome to be considered for the final choice, it should show a lower 
potential and sets T9v,p(Ytr( 2 l) :S 0.2 and T~p(Ytr(2 )) :S 0.2 which amounts to 

Ap Ap 
constraints ~ :S 0.2 and - :S 0 .2. The preference set is now 

"' - v Ae 

i\.3 = A 2 U {AIAYr ef(2,2) < AYtr(2) ~ < 0.2 Ap < 0.2} 
' A- v - ' Ae -or 
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0.0312.Lv - 0.085Ae + 0.088Ap < 0, 

-0.0588>-- v + 0.074Ae - 0.076Ap < 0, 

0.005A-v + 0.012Ae - 0.008Ap < 0, 

.Ar> 
-<0.2, 
A_v -

Ap < 0.2 
Ae - ' 
>--v > 0, >-e > 0, Ap > 0. 
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4. For ,Al r(S) = (>- - v,Ae,Ap) = (0.480,0.453,0.067) we get a trial outcome 
y 1r( 3 ) = ( -0.070, 1.233, 0.093) (xtr( 3 ) = ( -0.118, 0.900, 0.217)). (The value of 
the DM value function at ytr( 3 ) : f(ytr( S )) = 1.380 ). 

Iteration 3 

2. The following vectors arc selected from the set A 3 : 

A ref( 3 ' 1 J = (0.420, 0.540 , 0.040) , A ref( 3 •2 ) = (0.440, 0.480, 0.080), A ref( 3 •3 ) 

(0.460, 0.460, 0.080). Solving (7) with these vectors gives 

1Jref( 3 ,1) = ( -0.142, 1.305, 0.016) 

yref(3, 2 ) = ( -0.087, 1.252, 0.074) 

yr·ef( 3 •3 ) = ( -0.073, 1.237, 0.090) 

(xref(3,l) = ( -0.671, 1.228, 0.383)), 

(xref(3, 2 ) = ( -0.269, 1.032, 0.237)) , 

(xre/( 3 ,3 ) = ( -0.149, 0.940 , 0.209)). 

(The value of the DM value function at 
yr·ef( 3, 1), 11 ref( 3 ,2) , 11 r ef( 3 ,3) : f(yr ·ef(S,l)) = 1.099, f(yr-e/( 3,2) ) = 1.347, 
f(yr e/(3,3)) = 1.375). 

3. Evaluation of y 1''( 3 ) ·in terms of Y-v, Ye and )Jp 

The DM prefers y 1d 3 ) to yr·ef( 3 ,1), yref( 3 ·2 ) and yref( 3 ·3 ) because she is not 
willing to accept the high variance. We then have 

\t/ef(3, 1) < A1Jtr( 3), 

A? 1ref(3,2) < A< l.r( 3) 
.J y ' 

.Ayref (3,3) < .Aytr( 3 ). 

Evaluation of ytr (3 ) in tenns of tradeoffs 

The full tradeoff matrix for ylr (3) is as follows: 

-v e p 

-v * T~v,e (ylr( 3)) = 0.944 TC?v ,p (Yir( 3 )) = 0.140 

e TeG-v (Ytr(:l)) = 1.060 * Te~p(Ytr(3)) = 0.148 

p y G (ylr(3)) = 7 164 Tf:e(Yi r(3) ) = 6.761 * p ,-'V . 
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DM decides that these numbers show no significant potential to improve on any 
criterion relative to other criteria. 

The algorithm terminates {by any stopping rule sv.ch as: DM satisfa ction 

with y tr(i), time limit, iteration limit, or "volume" of Ai related constraint). 

This example is peculiar in that our st art ing outcome ytr( 1 l is extremely close 
to the underlying optimal ymax (it is not true, however, for the starting solution 
xtr( l l and the underlying optimal xmax). We had thought of changing it in such 
a way that the starting solut ion be not so close, but decided to keep it the way 
we had done it. Obviously, we were lucky. Further, the most preferred solution 
xtr(s) may look strange, because the amounts invested in different stocks are 
of markedly different magnitudes . Our solut ion prescribes a negative amount 
of (short sells) stock number 1. Given the data, the solution gives the optimal 
amounts to invest; that is all we can say. Minimum or maximum amounts for 
each stock can be enforced by using additional constraints. 

8. Discussion 

The novelty and potential of the proposed algorithm lies in the ability to sup
port two distinct decision paradigms in the course of an interactive decision 
making process in case of Rt -convex outcome sets . This gives the algorithm a 
new dimension absent in other classes of decision-making algorithms exploiting 
principles different from the proto typing Zionts-Wallenius approach. Those two 
paradigms are interrelated and we have shown how to t race their relationship 
and exploit it in a decision process . Besides the prototypical Zionts-Wallenius 
algorithm the same two-paradigm approach was proposed in Kaliszewski et al. 
(1997), Kaliszewski , Michalowski (1999), and Kaliszewski (2000), whereas only 
the last paper (Kaliszewski, 2000) , can be considered as a generalization of the 
Zionts-Wallenius algorithm. 

In Kaliszewski (2000) an algorithm (GIDMA) was proposed in which tradeoff 
information is derived from a Tchebycheff proxy value function . Similar to 
formula (8) of Section 5 of this paper , t he tradeoff information in Kaliszewski 
(2000) is in the form of upper bounds on tradeoff's. Because there is no a priori 
indicator of bound t ightness (bound tightening requires additional computing 
(Kaliszewski, 1994), one can consider the approach justified only if some special 
case considerations do not apply. 

In contrast to Kaliszewski (2000), the focal point of this paper is on the 
result of Theorem 5.3 (but of course instances where tradeoff information in the 
form of t he inequality (8) can be provided are also covered by virtue of Theorem 
5.2) which applies when the set Z - Rtis "smooth" (i.e. roughly speaking: it 
admits no vertices). The information is exact, i.e. the bounds on tradeoff's are 
t ight . 

A popular belief among MCDM researchers is that the vast majority of 
practical applications of MCDM methodologies involve linear models (linear 
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constraints, linear objective functions). It is probably time to modify this belief 
and adjust it to reality. Currently more and more importance is attributed to so
called quad ratic programming models (linear constra ints, quadratic and linear 
objective functions) for such models can encompass risk (see classical work of 
:lviarkmvitz, 1959; also Zenios, 1993; Dahl et al., 1993; Elton, Gruber, 1995) . 
Models involving risk have become the standard for financial industry world
wide (Basel Capital Accord, 1988, and New Basel Capital Accord, 2004) form a 
part of regulatory framework for fin ancial institutions. As thr~ basic principle of 
investing is to maximize profit, risk is similarly to be miuimized. As a result, 
we have multiple criteria. Risk is captured via the notious of random variables, 
variance and correlations of investments. 

Financial models arc rout inely soh·ed in leading ba11king and investment 
institutions but as a rule by one-step optimization. Recently, they have be
come accessible to individual inves tors via intemet access to specialized service 
providers. An interested reader can consult e.g. the website www.riskgrades.com, 
it is noteworthy that optimization options available there a.re either maximiza
tion of ret urn under constrained risk or rniuirnization of risk under constrained 
return but nothing "in between", not to mention interactive solving option. 
These models generally have some form of mean-variance portfolio selection 
model as outlined in Section 7. What we !Jave proposed is an enrichment. of 
the model capabili ties and model solving options. Accordingly, we need not 
validate the resulting algorithm numericall y. Our proposed a lgorithm offers a 
way of enriching existing models, even for realistic-sized prolJlerns . 

As with any preference capturing technique, the algorithm we propose is 
particularly useful for incremental optimization problems. For example , in the 
world of finance the problem of portfolio dynamic adjustment is crucia l. I3 eca.use 
of the transaction costs, adjustments of portfolio are limited to a. small subset of 
total assets held in a portfolio. Limited changes to the compositiou of portfolio 
cause limited changes in the shape of the Pareto set (this is common wisdom 
based on practical observations; in t heory degeuerate counterexamples can be 
constructed). Thus , D?\.f's preferences captured in the course of an interactive 
decision rnaking process can be applied in one-step incremental optimization for 
a certain period of portfolio adjustments . (See Chen et al. , 1971, for additional 
information on portfolio revision) . 

Recently Flicgc and Hcselcr (Fliege, Heseler, 2002) reported on solving lJi
criteri a. quadratic programming problPms in connection wit !J power generation . 
A sequenn~ of slightly modified prolJlcms is to be solved every fift een minutes. 
Each feasible solu tion represents a. possilJle variant of power pla11t dispatch; 
efficient solut ions represent economically effective variants. Since prolJlerns are 
to be solved so often and sets Z -Rt are "smooth", preference capLme technique 
offered by our algorithm call be especially attractive in t his application. 
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9. Concluding remarks 

The rela tion between bounds on tradeoffs and w·cight ing (scalarizing) parame
ters are more general t han t hose exploited in this paper. To generat e outcomes 
in problems where outcome sets are not convex, instead of linear scalariza
tion one has to apply a T chebycheff scalarization , sec Dell , Karwan (1990), 
Kaliszewski (1987, 1994, 1995), Steuer (1986) , W ierzbicki (1986, 1990) . Also 
for Tchebycheff scalariza.tions relations exist between tradeoffs and scalariza
tion parameters . Those relations can form the basis for further research on 
more general algorithms for in teractive decision making taking into account 
more than one decision paradigm. Some results in this fie ld were described in 
papers by Kaliszewski (2000), Kaliszewski, Michalowski (1995, 1997, 1999), and 
Kaliszewski et al. ( 1997). 
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