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Abstract: In the paper a new approach to goal programming is 
presented: the robust approach , applied so far to a single-obj ective 
linear programming. lt is a "pessimistic" approach, meant to find 
a solution which will be reasonably good even in a bad case, but it 
is based on the assumption that almost never everything goes bad -
the decision maker can control and simulate the pessimistic aspect 
of the decision situation. The pessimism refers here to uncertain 
coefficients in the goal funct ions. It is assumed that in each case only 
a certain number of them can take on unfavourable values - but we 
do not know which ones. A robust solution, i. e. the one which will 
be good even in the most pessimistic case among those considered 
to be possible - is rl.etermined, using only the linear programming 
methods. 

Keywords: multiobjective programming, robust solution, in ter
val optimisation. 

1. Introduction 

Goal programming has been known in the literature and has been applied suc
cessfully in practice for many years. Dut like in case of any other modelling 
and optimisation technique, its application encounters some problems when the 
decision situation is marked by uncertainty and /or is likely to change. In snell 
a case the model has to he redefined and adop ted to a given situation, to r he 
needs of the ddinite decision maker. 

T here are several possible approaches to modelling uncertainty and change. 
The best known are the stochastic approach and the fuzzy approach. The 
author, together with the late Stefan Chanas, has dealt quite a lot with the 
fuzzy approach to goal programming. Chanas and Kuchta (2002) carried out 
an overview of the existing approaches and their systematisation and categori
sation. Chanas and Kuchta (2001, 2002) ofl"er three new fuzzy approaches to 
goal programming, which fill up several of the existing gaps. 
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The present paper is the first - to the author's knowledge - attempt to apply 
another quite promising approach, called robust approach, to goal programming 
and to multicriteria programming in general. The term "robust solution" refers 
in the literature to several different notions and here we concentrate only on 
one of them. But, generally, "robust optimal solution" means such a solution, 
which will be optimal even if there are changes in t he parameters of the decision 
situation. Of course, it has to be clarified each time what kind of changes is 
meant here. 

We start with a short review of the goal programming itself and define what 
kind of uncertainty in goal programming we will consider here. Then we present 
the robust approach known in the literature and finally we apply it to the goal 
programming in a situation of uncertainty. 

2. The goal programming problem considered 

If we were to provide a general definition of goal programming, it might be 
formulated e.g. as follows: goal programming comprises decision problems in 
which we have classical mathematical programming constraints and more than 
one objective function (more than one goal), while for each objective function 
the decision maker gives a target value (a goal) and its type (maximisation, 
minimisation, equality) . In case of maximisation objective function the decision 
maker will be totally satisfied if the objective function value is equal or greater 
than the corresponding target value, for minimisation objective functions the 
total satisfaction will be achieved for objective function values equal or less than 
the corresponding target value, for objective functions of equality type - only 
for objective function equal to the target value. However, as it is often impossi
ble to attain fully the satisfactory values simultaneously, undesirable objective 
function values (less than the target value for maximisation, greater that the 
target value for maximisation, different than the target value for equality) are 
also accepted by the decision maker, but only to a certain extent. 

In the following general goal programming formulation, (1) corresponds to 
the objective functions (of minimisation, maximisation and equality type re
spectively), and (2) to t he classical constraints. 

Ci(x) < di ( i = 1' ... 'kl) 

Gi(x) .::::: di (i = kl + 1, ... , k2) (1) 

Ci(x) > d; ( i = k2 + 1' ... ' k3) 

A(x) B (2) 

X > 0. 

In the above formulation x = (xj )f is a vector of non-negative decision vari
ables, Ci is the objective function (non necessarily linear) representing the j-th 
goal, (2) is the canonical representation of the classical mathematical program-
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ming constraints (not necessarily linear ones), and d; ( i = 1, ... , k:l) stand for 
the target values. 

The inequality and equality signs in (1) have the " ~" sigu over them, which 
means that the corresponding relation does not have to be fulfilled completely, 
that certain deviations in the undesired direction(s) are allowed. 

The deviations from the target values (all of them, for the moment we do 
not differentiate between the undesired and desired deviations) will be denoted 
in the following way: 

dt = rnax(G;(x)- d1, 0) , dj = rnax(d; - C;(x), 0) (i = 1, ... , k:;) . (3) 

In the classical approach to goal programming it is assumed that the decision 
maker wants to minimise the sum (possibly a weighted one) of all the undesired 
deviations. Thus , the following objective function is formulated: 

"'' "'2 "'" L w;dt + L (w;dt + w:di ) + L ·w;di ---+min (4) 

where w; (i = 1, ... , k3 ) and w: (i = k1 + 1, ... , k2 ) are positive weights. 
Then, the problem with the objective function ( 4) and the constraints (2) 

and (3) is solved, or rather its equivalent form with n + 2k:1 positive decision 
Wtriables : 

"'2 L (w;dt + w;di) + 
i=l 

G;(x) - dt + dj = d;, i = 1, ... , k3 

A (x) = B 

X 2: 0, cJt , d.j 2: 0 ("i = 1 , ... , k3) . 

"'3 L w;dj---+ min 

(5) 

Classical goal programming includes also problems with a hierarchy of goals. 
Dennis and Dennis (1991) discuss the.problem, we will not do it here. 

In the paper we will consider a special case of the general model ( 1) . The 
limitations introduced to this special case are as follows: 

a) we consider only goals of the minimisation type (which comprises the 
maximisation case because of the possibility of multiplication by -1) 

b) we consider only linear objective functions . 
Thus, we consider the following model: 

rt 

L C;jXj ~ di (i = 1, ... , kl) 
j=l 

A(x) = B 

X 2: 0. 

(6) 
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The corresponding one-objective formulation is: 

k 

L w;di ---1 min 
i = l 

j 

L c;y:c;-di +dj=d;, 'i=l, ... ,k1 
i = l 

A(x) = B 

X ~ 0, rJt , dj ~ 0 ( i = 1 , ... , k: 1 ) . 

D. 1\UC II'I'A 

(7) 

As lor the uncertainty, we consider that the coefficients C;.j, ·i = 1, ... , k 1 ; 

.i = 1, ... , n may vary, influencing the attainment of goals in a negative way: the 
codEcient of the j -th variable in the i-th constraint will probably take on a n 
assumed value G;j, (i = l, ... ,k 1 ; j = 1, ... ,n.), but it may also happen that it 
will take on any value from the interval lC;/:;.iJ, (i = 1, .. . , k1; j = 1, .. . ,11.). Let 
(} i.i = C:;1 , ( i = 1, ... , k1 ; j = 1, ... , n). 

Defore we pass on to the next point, kt us present an example, based iu its 
crisp version on an example presented by Dennis ami Dennis (1991), which will 
accompany us throughout the paper. 

EXAMPLE 2.1 A company manr;.faciv.r-es thr-ee divisible pmdv.cts. Let :ri, j = 
1, 2, 3 denote the a:m.ount of the respecl;ive products to be man:u,factur-erl in the 
corning period. Here is the matTi:r C:;j, i = 1, ... , 4; j = 1, ... , 3, whc·re 

o.) f\ (.j = 1, ... , 3) T'"]Jtescnl the most possible {nm·mal) o:mo·u.nt of nwter·ial 
needed to ma:nufo.ctuTe the j-th prorl'lf,cf 

b) £;2, (.j = 1, .... 3) Teprcseni the rn.ost possible {nrrrm.o.l) u.m.ov.nt of hu:m.u:n. 
woT'l;; needed to mo:n:ufo.ct'IJ:re the j-th pmduci 

,;) .c3 j (.j = 1, ... , 3) r·cpresent the ·most possible {nonrwl) a:mov.nt of rno.chin.e 
time needed to ·m.an:ufo.ctuTe the j-th pTodv.ct 

d) c1; (j = 1, ... , 3) rq rrcsent the rnost possible (nm·mal) sr:lliny vrice of ihe 
,j-th vroduct m:n/t;·ip l·ied l!u -1. 

j-J •) '3 
Table 1. 1\tlatrix [~ · . ·] =1 '.7 •; ,1 for the example 

lj 1- ,-,·> , 

.i = 1 j = 2 j = :3 
i= 1 3 7 5 
i= 2 G 5 7 
i=3 3 G 5 
i= 4 -28 -40 -32 

The right-band sides of the coustraints (7) , i. e. the goals (target values) 
for the total amount of material used, the total amount of human work used , 
t lw total a111ount of 111achine time used and the total t:umovcr multi plied by -1 
arc, respectively, as follows: 200, 200, 200, -J ;:JCJO. These V<1 lues shoulcl not he 
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exceeded, and Ums we get the following one-objective problern (we assume that 
the weights are equal to 1): 

di + eli + dt + dd ~ min 
3:ri + 7:r + 5x:l + d] - di = 200 
6:r1 + 5:1;2 + 7:r3 + cl2 - eli = 200 
3:r i + 6:r2 + 5:r3 + d3 - dt = 200 
- 28xr - 40.T2 - 32.T3 + ct:; - dd = - 1500 
.T1,.T2,:1;a 2: 0; dj,df 2:0 (i = 1,2,3,4). 

The optimal solution of this problem is as follows: :r 1 = 20.8, :c2 = 23, J::; = O, 

rZt = 23, di=39.5, dt=o, dt=o. 
Let us assume that the possible variations of the coefficients are equa.l ap

proximately to 10% of the "normal" value (sec Table 2). 

I i = 1 I i = 1 lj = 1 

CiJ ()ij c;.i ()i.i c;i e ij 

'1.= 1 3.3 0.3 7.7 0.7 5.5 0.5 
·i = 2 6.6 0.6 5.5 0.5 7.7 0.7 
i = 3 3.3 0.3 6.6 0.6 5.5 0.5 
·i = 4 -25.2 2.8 -36 4 28.8 3.2 

In case of materials' usage, the Yitriations may be due to material quality or 
the workers ' experience (inexperienced workers produce more waste). In case of 
human work the "normal" values can change because of the lack of experience 
or of motivation, and the machine hours needed to rnanufacture one product 
may be infinenced by the machine failure frequency. The unit prices may go 
down (which means an increase of the numbers multiplied by -1) because of the 
uncertain market situation. 

Now we will present the proposal for a robust optimal solution of the goal 
programming problem (6) with variations B;j (i = 1, ... , /;:1 ; j = 1, ... n) in the 
left-hand sides of the goals. These variations can bE~ called "negative" in the 
sense that they influence negatively the achievement of goals. 

3. R obust solut ion of the goal programming problem with 
possible negat ive variations in the left-hand sides of 
goals 

We adopt here the concept of robustness of an optimal solution proposed by 

Bertsirnas and Sim (2003) . They apply it to a rnixecl integer linear prugramming 
problem with possible variations in the objective flm ction coefficients and in the 



50G D. KUCHTA 

left-hand side coefficients of the constraints. Their idea can be summarized as 
follows: 

a) A robust optimal solution is such a solution which would be optimal for 
the worst possible values of the coefficients within the assumed variation 
possibilities (intervals) -where the worst means minimal for the maximi
sation of the objective function and for the "greater-or-equal" constraints 
and maximal in the other cases. 

b) By applying strictly the above definition, we would obtain a "pessimistic" 
case, which would reduce to solving the corresponding problem with coef
ficients being set at their worst possible values; such a robust solution is 
of course very easy to obtain, but its quality (the value of the objective 
function) may be not very good; in many cases such an approach may be 
too pessimistic, as it assumes that everything may go wrong, that all the 
coefficients may vary in the negative direction simultaneously. 

c) Thus, the authors propose, justifying their approach with the behaviour 
of nature, to assume that only some coefficients will indeed change (e.g. 
the price of only some products will go down, not of all of them); of 
course, we cannot know which ones and in the proposed approach it is 
not necessary to choose the coefficients which we suspect to change; the 
only thing required is to say, for the objective function and for each of 
the constraints individually, what is in our opinion the maximal number 
of coefficients that may change with respect to the "normal" value. 

By applying this approach to problem (G), with C;j E l \:ij, C;j J, ( i = 1, ... , k1; 
j = 1, ... , n), c,;ij being the "normal" value, we can introduce the notion of the 
M-robust solution, where 

M = (m;)~~ 1 and m; (i = 1, ... , kl) is an integer number not exceeding n, 

chosen by the decision maker, which expresses how many coefficients in the i-th 
constraint can change at the most. If m; = 0 (i = 1, ... , kl), we assume that 
nothing will go wrong and obtain the normal optimal solution. On the other 
hand, if mi = n (i = 1, ... , kl), we get the pessimistic, "fully robust" solution 
mentioned above . 

Now we will show how to determine theM-robust solution of (G) for a given 
vPctor M. 

4. The single-criterion linear programming problem for 
the M-robust solution of the goal programming prob
lem 

As we adopt the model from Bertsimas and Sim (2003) to our needs, we obtain 
the following model whose solution will constitute the M-robust solution of (6) 
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(lXI denotes the power of set X) 

(8) 

A(x) =B. 

By reformulating the problem (8) in the same way as in the classical goal 
programming, we can arrive at the following problem: 

kl 

L w;di -+ min 
j = l 

n 

L r;;;jXj + max L B;jXj - d{ + dj = d; (i = 1, ... , kl) (9) 
j = l S; C {1, ... n} jESi 

IS;I::; m; 

A(x) = B 

X:::: O,d{,di:::: 0 (i = 1, ... ,kl). 

The optimal value of the objective function obtained in this way will be the 
worst optimal value of the total deviation - when in each goal i (i = 1, ... kl) 
the m; coefficients are allowed to take on the least favourable (the maximal 
possible) values . By changing the values of m;, we can see how this influences 
the optimal value of the total deviation. 

Of course, the above problem is not linear. However, we will transform it 
to a linear problem by means of the following lemma proved by Bertsimas and 
Sim (2003). 

LEMMA 4.1 Let(3;(x1 ,x2 , ... ,x11 ) = max L B;jXj(i = 1, ... kl). For each 
S; C {1, ... n} jESi 

IS;I ::;m; 

vector (:c1 ,:r:2,···,:r11 ) andi = 1,2, ... ,k1, (3;(:r 1 ,x2,·· ·,:cn), is the optimal objec
tive function valv.e of the following linear· progmmming problem 

n 

"'p· + m z·-+ min L '-J '· ' 
j = l 

z; + Pij 2:: B;j.Tj (j = 1, ... , n) 

Pij 2::0 (j = 1, ... ,n), z; 2::0. 

(10) 

Let us now formulate the following linear programming problem, which, as 
we will show afterwards, will give us the M-robust solution of (6): 

kl 

L w 1 d{ -+ min 
j = l 



508 D. KUCHTA 

n n 

I: GijXj + l:Pij + rn;z;- df + di =eli ('i = 1, ... , kJ) 
j=l j=l 
z; + PiJ 2': B;jXj (.j = 1, ... , n) (i = 1, ... , ki) (11) 

]J;.j 2': 0 (j = 1, ... , n) , Z; 2': 0 ('i = 1, ... , k 1 ) 

A(x) = B 

X 2': 0, dt , di 2': 0 (i = 1, ... , kJ) . 

T HEOREl'vl 4.1 The optimal function values of (9) i {11) coincide. 

Proof. If (xj)Jt=l• (dj,d;);~ 1 is a feasible solution of (9), it is obviously also 
(together with the corresponding values of PiJ (j = 1, ... , n), zi) a. feasible so
lu tion of (11) . This shows that t he objective function value of (11) does not 
exceed the objective function value of (9) . 

On the other hand, for a fixed (:r.i )j'=1 , from the obvious relation :z:=;~ GijXJ + 
n n 

max 2:: BijXj :'::: 2:: r,;JXJ + l:PiJ +rn;z;, i = 1, ... , k1 , Pi.i > 0, Zi > 0, 
S, C {l , ... n} :ES _ 1 _ 1 IS;I ~ m; 1 ' J- J-

it follows that for each feasible solution (xj)'J=1, (dt0 ,d~0 )~'; 1 of (9) and for 

each feasible solut ion (:cj )j'=1 , (dt1 , d~1 );'; 1 , (Pij, Zj )'J=1 we have (dt0 :'::: dt 1 

(i=1, .. . , kJ). 
From this it follows that the optimal function value of (9) docs not exceed 

the optimal function value of (11), which completes the proof. • 

5. Computational example 

Now we will apply the proposed approach to Example 1. Problem (11) for the 
example becomes : 

eli + di + dt + dt --7 min 

3:cl + ?:r2 + 5x3 + Pu + ]J12 + Pl3 + rn1 z 1 + d]" - d{ = 200 

6 .T J + 5.T2 + 7x3 + P21 + P22 + P 23 + m .2z2 + d2_ - di = 200 

3:EJ + 6x2 + 5:J::l + P3l + Pn + P:J3 + m 3 z3 + d3 - d{ = 200 

-28xl - 40:E2 - 32x3 + P41 + P42 + P4:l + 1n4 z4 + d4- - dt = -1500 

Z J + Pn 2': 0. 3:cl; Z t + Pt2 2 O.?x2; ZJ + Jil 3 2': 0.5:r:5; 

·'"2 + P21 2': 0.6.T t ; z2 + ]Jn 2 0.5x2; z2 + Pn 2 O.?x3; 

Z3 + P:H 2 0.3:rl; Z3 + Pn 2 O.G:~:2; Z3 + P33 2': 0.5:r3; 

Z4 + PH 2': 2.8:c1; Z4 + JJ·u 2 4:r2; Z4 + P•t:l 2': 3.2:1:3; 
:z:i,z;, ,rt;, piJ 2 0 ('i = 1,2,3,4; j = 1, 2,3) 

where '111. 1, 1n.2 , m.3 , m .1 arc parameters - illteger numbers less thm1 or equal 3, 
sdcctcd by the decision maker to fix his degreP of pessimism with respect t.o 
each goa l. For the i-th goal, rni expresses how Jllauy of the left band sidP 
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coefficients of this goal can reach their least favourable value. Here are the 
results - the worst optimal value of the total deviation for various values of 
m1, 1n2, m3, rn.~, see Table 3. 

Table 3. Computational results for the example 

rn1, rn2, rn3, rn4 0,0,0,0 0,0,0,3 1,1 ,1,1 1,1 ,1,3 2,2,2,2 3,3,.3,3 
the worst optimal 

62.5 125 136.18 172.15 187.33 187.5 
total deviation 

This approach allows us to evaluate what is the worst possible optimal value 
of the total deviation from the goals according to the given sitnation, i.e. ac
cording to how "malicious" the market (the 4th goal) or the machines (the 3rcl 
goal) may happen to be or bow uncertain the material (the 1st goal) or the 
human being (the 2nd) goal may turn out. In our example we can see c•.g. that 
if the market is very uncertain, this influences the worst opt imal total deviation 
very strongly (compare the first two column~ of Table 3). 

6. Conclusions 

To the author's knowledge, the paper preseuts the first approach t(J rnultiob
jective programming making u:::ie of one of the robust models proposed in the 
li terature. T he approach proposed here might a lso be called a pessimistic ap
proach , as it searches for the worst possible optimal value of the total deviation 
from the goa.! - the worst in the assumed (by the decision maker) framework of 
possible variations. In other words, the decision maker can fiud solu tions for 
va.rious degrees of pessimism or 1l!Jcertaincy, simply by changiug one parame
ter per goa l. The solution can be obtained by means of a linear programming 
problem, if t he goal fuuctions aml the other constraints of the original ;nodel 
arc linear. 

The research wi ll contiuue to examine~ other models of goal programming, 
not considered in this paper, but it would be very interesting to see 1vltat other 
robust approaches (e .g. the one proposed by Ben-Tal and Nemirovsky, 1999 
n1ight contribu te to multiple objective optim isation. 
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