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Abstract: The formalism of the calculus of variations is applied
to determine an optimal control of a class of Hybrid Dynamical
Systems. This class consists of autonomous switching systems where
jumps of the state are taken into account. It is shown that model
switching involves discontinuities in the adjoint state of the system.
The expression of the gradient of the cost function, with respect
to the control, allows for the calculation of an optimal control by
implementing a descent method. An illustrative linear quadratic
example is given, which allows to conclude that the method can be
easily implemented.

Keywords: control theory, switching systems, variational cal-
culation.

1. Introduction

Hybrid Dynamical Systems (HDS) can be roughly defined as continuous sys-
tems with several modes of operation in which an event causes the mode to
change. The way the events occur is described by means of a more or less com-
plex Discrete Event System (DES) (Antsaklis and Nerode, 1998). The events
that cause switching can be of two types (Branicky, 1998): first, events that
are triggered by the continuous part of the system, thus inducing autonomous
switching (Cébron et al., 1999a); second, those which are triggered by the dis-
crete part of the system and thus induce controlled switching (Cébron et al.,
1999b). Therefore, HDS can be considered as continuous systems interacting
with a DES (Van Der Schaft and Schumacher, 2000). The latter can be mod-
elled by means of either an automaton (Nerode, 1993; Brockett, 1993) or a Petri
network (Andreu et al., 1996; Daubas et al., 1994).
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In this article, we study the optimal control of a specific class of HDS called
autonomous switching systems. One of the main problems raised by the calcu-
lation of an optimal control of an autonomous switching system is to know how
discontinuities occurring in the continuous system should be taken into account.
Generally, these discontinuities come in the form of model changes associated
with jumps of the state vector (Branicky, 1995). The calculus of the optimal
control of switching systems has already been studied, by Bryson and Ho (1975),
for instance, who used variational formalism, and more recently, within a more
general theoretical framework, by Vinter (1993), by Sussmann (1999), and by
Riedinger et al. (1999), who state the conditions of application of the Maximum
Principle (MP) to wide classes of systems. Application of MP to optimal control
calculations can be performed by means of Hamilton-Jacobi-Bellman equations
and linear programming techniques (see, e.g., Hedlund and Rantzer, 2002).

Our purpose in this article is to calculate the optimal control of an au-
tonomous switching system using the classical tools of the calculus of variations,
and to show how it is practically possible to compute this control by means of
descent methods which involve the expression of the gradient of the cost func-
tion. It is to be noted that although the calculation can be considered as a
classical one, Bryson and Ho (1975) explained (p. 101) that ”Finding solutions
to such problems is, in general, quite involved. The method of steepest descent
may be used to solve such problem numerically”, (see, e.g., Xu and Antsaklis,
2003 and 2004). Since derivability is needed, we present the calculation with
the machinery of the variational formalism.

The article is organised as follows: in the section entitled Background Prelim-
inaries, we refer to notations and definitions; then we study the minimisation of
a cost function in which both model switching and jumps of the state are taken
into account. The calculations are first performed in the general case where
the form of the state equation is not particularised. They lead to the expres-
sion of both the adjoint system and the gradient of the cost function, which is
to be minimised. The characteristic of HDS is noticeable in the expression of
the adjoint state that displays jumps when switching occurs. The results are
an extension of Bryson and Ho’s (1975) which are applied to HDS. Next, we
consider an application to a linear quadratic control where the cost function
corresponding to a pursuit problem and the expression of its gradient allow a
descent method to be implemented. The algorithm of the optimal control calcu-
lation is described in detail, which leads, at each step of the descent algorithm,
to the resolution of a linear system. In the last section, a numerical example is
given, which allows to conclude that the method can be easily implemented.

2. Background preliminaries

In this section, we refer to variational formalism (Ciarlet, 1990) and express the
general variation of a function which will be used later to calculate an optimal
control of HDS. At the initial instant t0 and final instant tf , we consider the set
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of functions E defined by:

E =
{
q : [t0, tf ] → R

n of class C1 | q(t0) = q0 and q(tf) = qf

}
.

Let L(q(t), q̇(t), t) and K(q0,qf , t0, tf) be two functions of class C1 defined
into R, and J the functional defined from E into R by:

J(q) =
∫ tf

t0

L
(
q(t), q̇(t), t

)
dt+K (q0,qf , t0, tf) . (1)

The principle of the calculus of variations consists in writing the variations of
functional J with respect to the perturbations of a nominal trajectory and in
characterising the optimal trajectory as being that whose perturbations induce
no variation of J . We denote L(t) = L

(
q(t), q̇(t), t

)
and K = K(q0,qf , t0, tf)

and consider the variation of the functional J in the general case where the
boundaries t0, tf ,q0 and qf are free.

It can be shown (see, e.g., Bérest, 1997) that the variation of the functional
defined by (1), in any direction h of class C1, can be written as follows:

δJ =

∫ tf

t0

(
∂L

∂q
(t) − d

dt

(
∂L

∂q̇
(t)
))�

· h(t) dt

+
(
−L(t0) + q̇�(t0)

∂L

∂q̇
(t0) +

∂K

∂t0

)
δt0 +

(
−∂L
∂q̇

(t0) +
∂K

∂q0

)�
· δq0

+
(
L(tf) − q̇�(tf)

∂L

∂q̇
(tf) +

∂K

∂tf

)
δtf +

(
∂L

∂q̇
(tf) +

∂K

∂qf

)�
· δqf . (2)

When performing the calculus of δJ , expressed by equation (2), we are led to
carry out an integration by parts where L is required to be of class C2. We can
remove this assumption with the aid of the Du Bois-Raymond Lemma (Bérest,
1997).

If we set:

H(t) = −L(t) + q̇�(t) · ∂L
∂q̇

(t)

p(t) =
∂L

∂q̇
(t),

which are called Hamilton’s function (or Hamiltonian) and conjugate moment
respectively, the variation of J can be written as follows:

δJ =

∫ tf

t0

(
∂L

∂q
(t) − ṗ(t)

)�
· h(t) dt+

(
H(t0) +

∂K

∂t0

)
δt0 (3)

+
(
−p(t0) +

∂K

∂q0

)�
· δq0 +

(
−H(tf) +

∂K

∂tf

)
δtf +

(
p(tf) +

∂K

∂qf

)�
· δqf .
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3. Optimal control of autonomous switching systems

We study a class of HDS which can be considered as continuous processes occur-
ring within a time interval [t0, tf ], in which discrete events induce some changes
in the state and structure of the model. We begin with the formulation of the
control problem in the general case of an autonomous switching system, and
then study the case of a system with a single switching of a model on a curve
with a jump of the state.

3.1. Formulation of the control problem

Let the state x(t) belong to R
n. We assume that the state and structure of

HDS change within the time interval [t0, tf ], at switching instants τ1, τ2, . . . , τm,
which are supposed to be in finite numbers and verify:

τ0 < τ1 < τ2 < · · · < τm < τm+1,

where we set τ0 = t0 and τm+1 = tf .
We write ξ−i = x(τ−i ), ξ+i = x(τ+

i ), i ∈ {1, . . . ,m} and assume that this
system is governed, within each time interval (τi−1, τi), by a state equation of
the form:

ẋ(t) = fi
(
x(t),u(t), t

)
for t ∈ (τi−1, τi), i ∈ {1, . . . ,m+ 1} (4)

x(t0) = x0,

where fi is a function of class C1, defined into R
n, over the interval (τi−1, τi].

The optimal control problem consists in finding a continuous control function
u�, defined over the whole time interval [t0, tf ], which minimises the following
cost function:

J(u) =
m+1∑
i=1

∫ τi

τi−1

Fi

(
x(t),u(t), t

)
dt+

m∑
i=1

Gi

(
ξ−i , ξ

+
i , τi

)
+K(xf , tf) , (5)

where Fi is a function of class C1, defined over the interval (τi−1, τi). Each
function Gi, of class C1, is called the switching cost; the function K, of class C1,
is called the final cost.

3.2. Autonomous switching with a jump of the state

We consider the case where there is only one switching instant τ , and suppose
that the state x of the system jumps from ξ− = x(τ−) to ξ+ = x(τ+) and that
the derivative ẋ is discontinuous over the time interval [t0, tf ], at the instant τ .
State equations (4) come down to:

ẋ(t) = f1
(
x(t),u(t), t

)
for t ∈ [t0, τ)

ẋ(t) = f2
(
x(t),u(t), t

)
for t ∈ (τ, tf ] (6)

x(t0) = x0.
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Hence, the cost function (5) is written in the form:

J(u) =
∫ τ

t0

F1

(
x(t),u(t), t

)
dt+G(ξ−, ξ+, τ)

+
∫ tf

τ

F2

(
x(t),u(t), t

)
dt+K

(
xf , tf

)
. (7)

We make the following assumptions about the boundaries of the problem:
i) t0, tf and x0 are fixed;
ii) xf is free.
We suppose that the model switching points ξ− and ξ+ of the system are

located on curves whose equations are:

φ(ξ−, τ) = 0 (8)
ψ(ξ+, τ) = 0. (9)

We apply the results of the calculus of variations to determine the control
u� that minimises the cost function (7) with constraints (6), (8) and (9). To do
so, we set q = [x , u]� and notice that the functions F1 and F2 do not depend
on q̇. We then transform the problem by introducing multipliers which consist
of an adjoint state λ, associated with the state equation (6), and multipliers µ
and η, associated with the switching curves (8) and (9), respectively. We then
define a functional J̃ by:

J̃(u) =

∫ τ

t0

[
F1

(
x(t),u(t), t

)
+ λ�(t) ·

(
ẋ(t) − f1(x(t),u(t), t)

)]
dt

+G(ξ−, ξ+, τ) + µ� · φ(ξ−, τ) + η� · ψ(ξ+, τ)

+

∫ tf

τ

[
F2

(
x(t),u(t), t

)
+ λ�(t) ·

(
ẋ(t) − f2(x(t),u(t), t)

)]
dt+K(xf , tf).

If we set:

Li

(
x(t),u(t), ẋ(t), t

)
= Fi

(
x(t),u(t), t

)
+ λ�(t) · (ẋ(t) − fi(x(t),u(t), t)

)
i ∈ {1 , 2},

we get:

J̃(u) =

∫ τ

t0

L1

(
x(t),u(t), ẋ(t), t

)
dt + G(ξ−, ξ+, τ)

+ µ� · φ(ξ−, τ) + η� ·ψ(ξ+, τ)

+

∫ tf

τ

L2

(
x(t),u(t), ẋ(t), t

)
dt + K(xf , tf).
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It is to be pointed out that J̃(u) is written as a sum of two functionals, the
first one being associated with a final cost and the second one with both an
initial cost and a final cost. Therefore, we can calculate the general variation of
each of these functionals by using expression (3). In this case, the Hamiltonian
and the conjugate moment are as follows:

Hi = −Li + ẋ� · ∂Li

∂ẋ
+ u̇� · ∂Li

∂u̇
= −Fi + λ� · fi i ∈ {1 , 2}

p(t) =
(
∂Li

∂ẋ
,
∂Li

∂u̇

)�
=
(
λ(t) , 0

)�
.

By taking a direction of variation h(t) =
(
ϕ(t) , ν(t)

)� where ϕ belongs to
the space of states and ν to the space of controls, and by applying equation (3),
we get the expression of the general variation of J̃(u) which is given by:

δJ̃ =

∫ τ

t0

[(
∂L1

∂x
(t) − λ̇(t)

)�
· ϕ(t) +

(
∂L1

∂u
(t)
)�

· ν(t)

]
dt

+
(
−H1(τ

−) +
∂G

∂τ
+ µ� · ∂φ

∂τ
(ξ−, τ) + η� · ∂ψ

∂τ
(ξ+, τ)

)
δτ

+

(
λ(τ−) +

∂G

∂ξ−
+
[
∂φ

∂ξ−
(ξ−, τ)

]�
· µ
)�

· δξ−

+

∫ tf

τ

[(
∂L2

∂x
(t) − λ̇(t)

)�
· ϕ(t) +

(
∂L2

∂u
(t)
)�

· ν(t)

]
dt

+ H2(τ+) δτ +

(
−λ(τ+) +

∂G

∂ξ+ +
[
∂ψ

∂ξ+ (ξ+, τ)
]�

· η
)�

· δξ+

+
(
λ(tf) +

∂K

∂xf

(xf , tf)
)�

· δxf .

Since we have

∂Li

∂x
=

∂Fi

∂x
−
[
∂fi
∂x

]�
· λ = −∂Hi

∂x
i ∈ {1, 2}

∂Li

∂u
=

∂Fi

∂u
−
[
∂fi
∂u

]�
· λ = −∂Hi

∂u
i ∈ {1, 2},

the general variation δJ̃ is written in the form:
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δJ̃ =

∫ τ

t0

[(
−∂H1

∂x
(t) − λ̇(t)

)�
· ϕ(t) +

(
−∂H1

∂u
(t)
)�

· ν(t)

]
dt

+

∫ tf

τ

[(
−∂H2

∂x
(t) − λ̇(t)

)�
· ϕ(t) +

(
−∂H2

∂u
(t)
)�

· ν(t)

]
dt

+
(
−H1(τ

−) +H2(τ
+) +

∂G

∂τ
+ µ� · ∂φ

∂τ
(ξ−, τ) + η� · ∂ψ

∂τ
(ξ+, τ)

)
δτ

+

(
λ(τ−) +

∂G

∂ξ−
+
[
∂φ

∂ξ−
(ξ−, τ)

]�
· µ
)�

· δξ−

+

(
−λ(τ+) +

∂G

∂ξ+ +
[
∂ψ

∂ξ+ (ξ+, τ)
]�

· η
)�

· δξ+

+
(
λ(tf) +

∂K

∂xf

)�
· δxf .

By writing the stationarity of J̃ with respect to the state x, and by taking
into account the conditions of transversality given by the integrated part of δJ̃ ,
we get the necessary conditions for optimality:

i) Equations which allow to calculate the adjoint state λ and the multipliers µ
and η:

−∂H1

∂x
(t) − λ̇(t) = 0 for t ∈ [t0, τ)

−∂H2

∂x
(t) − λ̇(t) = 0 for t ∈ (τ, tf ]

λ(τ−) +
∂G

∂ξ−
+
[
∂φ

∂ξ−
(ξ−, τ)

]�
· µ = 0

−λ(τ+) +
∂G

∂ξ+ +
[
∂ψ

∂ξ+ (ξ+, τ)
]�

· η = 0

−H1(τ
−) +H2(τ

+) +
∂G

∂τ
+ µ� · ∂φ

∂τ
(ξ−, τ) + η� · ∂ψ

∂τ
(ξ+, τ) = 0

λ(tf) +
∂K

∂xf

= 0

ii) Gradient of the cost function with respect to the control u:

∇Ju(t) = −∂H1

∂u
(t) for t ∈ [t0, τ)

∇Ju(t) = −∂H2

∂u
(t) for t ∈ (τ, tf ].
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Comments: For convenience, we considered only one switching instant in this
section. The extension to several switching instants does not raise any new
theoretical problem. Since the switching instants over the time interval [t0, tf ]
are finite in number, the cost function (7) would involve terms which could be
written as

m∑
i=0

∫ τi+1

τi

. . .

and, writing the stationarity of J̃ would give the differential equations of the
adjoint state on each time interval as well as the jumps of the adjoint state at
each switching instant τi. As can be seen, the problem is only a technical one.

4. The trajectory pursuit problem

We apply the general results presented above to a trajectory pursuit problem
with autonomous switching of the model and discontinuities in the state when
switching occurs. We consider the following piecewise linear system in which
the state x(t) belongs to R

n, and the control input u(t) belongs to R
m:

ẋ(t) = A1 x(t) +B u(t) for t ∈ [t0, τ)
ẋ(t) = A2 x(t) +B u(t) for t ∈ (τ, tf ] (10)
x(t0) = x0.

Matrices A1, A2, and B have adequate dimensions and τ is the model switch-
ing instant. We suppose that switching points ξ− and ξ+ are located on straight
lines whose equations are:

φ(ξ−, τ) =
n∏

j=1

(
ξ−j − (aj τ + bj)

)
= 0, ψ(ξ+, τ) =

n∏
j=1

(
ξ+j − (cj τ + dj)

)
= 0.

Also, a control u� must be found which enables the state of the system to deviate
the least from a desired trajectory xd. To do so, the following cost function is
introduced:

J(u) =
1
2

∫ tf

t0

[(
x(t) − xd(t)

)�
Q
(
x(t) − xd(t)

)
+ u�(t)Ru(t)

]
dt

+
1
2
ξ−

�
S1 ξ

− +
1
2
ξ+�

S2 ξ
+ + µφ(ξ−, τ) + η ψ(ξ+, τ) +

1
2

x�
f T xf ,

where Q, S1, S2 and T are positive semidefinite symmetric matrices, and R
a positive definite symmetric matrix.
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By using the notations of the preceding section, we get:

F1(t) = F2(t) =
1
2
(
x(t) − xd(t)

)�
Q
(
x(t) − xd(t)

)
+

1
2

u�(t)R u(t)

H1(t) = −F1(t) + λ�(t) · (A1 x(t) +B u(t)
)

(11)

H2(t) = −F2(t) + λ�(t) · (A2 x(t) +B u(t)
)
.

The equations which allow to calculate both the adjoint state λ and the multi-
pliers µ and η are then:

λ̇(t) = −∂H1

∂x
(t) = −A�

1 λ(t) +Q
(
x(t) − xd(t)

)
for t ∈ [t0, τ) (12)

λ̇(t) = −∂H2

∂x
(t) = −A�

2 λ(t) +Q
(
x(t) − xd(t)

)
for t ∈ (τ, tf ] (13)

0 = λi(τ
−) + µ

n∏
j = 1
j �= i

( ξ−j − ajτ − bj) + ζ−i i ∈ {1, . . . , n}
with ζ− = S1 ξ

− (14)

0 = − λi(τ
+) + η

n∏
j = 1
j �= i

( ξ+j − cjτ − dj) + ζ+
i i ∈ {1, . . . , n}
with ζ+ = S2 ξ

+ (15)

0 = H2(τ
+) −H1(τ

−) −
n∑

i=1

(
ai µ

n∏
j = 1
j �= i

(
ξ−j − aj τ − bj

))

−
n∑

i=1

(
ci η

n∏
j = 1
j �= i

(
ξ+j − cj τ − dj

))
(16)

λ(tf) = −T x(tf). (17)

The gradient of the cost function, with respect to u, becomes:

∇Ju(t) = −∂H1

∂u
(t) = R u(t) −B� λ(t) for t ∈ [t0, τ) (18)

∇Ju(t) = −∂H2

∂u
(t) = R u(t) −B� λ(t) for t ∈ (τ, tf ]. (19)

A descent method which uses the expression of the gradient can now be
implemented. To this end we need to calculate λ(τ−).

Calculation of λ(τ−)

From equations (14) and (15) we get the following terms:

µ
n∏

j = 1
j �= i

( ξ−j − ajτ − bj) = −ζ−i − λi(τ
−) i ∈ {1, . . . , n} (20)

η

n∏
j = 1
j �= i

( ξ+j − cjτ − dj) = λi(τ
+) − ζ+

i i ∈ {1, . . . , n}. (21)
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We take these terms into account in equation (16) and we replace H1(τ
−) and

H2(τ
+) by their proper expressions (see equation (11)). We then get:

λ�(τ−) · (A1 ξ
− +B u(τ) − a

)
= λ�(τ+) · (A2 ξ

+ +B u(τ) − c
)

+a� · ζ− + c� · ζ+ + F1(τ−) − F2(τ+). (22)

Model switching with jump in the state only occurs when a single component
of the state vector reaches the corresponding curve of jump. Thus, from equation
(21) we can have directly the multiplier η; and we have a linear system, issued
from equations (20) and (22), to be solved with n+ 1 unknown variables which
are the n components of λ(τ−) and the multiplier µ.

4.1. General algorithm

A general algorithm that solves the trajectory pursuit problem can be described
as follows:

1. Define ε > 0;
2. Initialise uk for k = 0;
3. Solve system (10) and obtain τ , ξ−, ξ+;
4. Solve (13),(17) between tf and τ , and calculate λ(τ+);
5. Calculate λ(τ−);
6. Solve (12) between τ and t0;
7. Calculate ∇Juk according to (18) and (19);
8. Calculate uk+1 from uk by means of a descent method;
9. If |J(uk+1)| ≤ ε then stop; otherwise go to 2.

Since the cost function J is not convex in the general case, the convergence
of the algorithm cannot be proved. However, in all cases we considered, no
difficulties due to local minima occurred. If such is the case, methods avoiding
convergence to local minima could be implemented, such as random perturba-
tion of the gradient, as studied e.g. in Pogu and Souza (1994), which yield
almost sure convergence to a global minimum.

5. Numerical example

We consider system (10) with n = 2 andm = 1 and a trajectory pursuit problem
with autonomous model switching and jump of the state. Matrices A1, A2 and
B are:

A1 =
( −2 −1.5

1 0

)
, A2 =

( −0.7 −0.5
1 0

)
, B =

(
0
1

)
.

We take t0 = 0 and tf = 10, and the initial condition is chosen such that:

x0 =
(

0 0
)�

.
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The numerical function which triggers the model switching is written as:

φ(ξ−, τ) =
(
ξ−1 − (−0.3 τ + 2.3)

) (
ξ−2 − (−0.3 τ + 2.3)

)
.

The model switching occurs when φ(ξ, τ) = 0, i.e. when one component of the
state reaches, at the instant τ , the straight line of equation x(t) = −0.3 t+ 2.3.

The numerical function which gives the value of the state after the jump is
the following:

ψ(ξ+, τ) =
(
ξ+1 − (−0.5 τ + 3.8)

) (
ξ+2 − (−0.5 τ + 3.8)

)
.

The component of the state, which triggers the model switching, must be just
after the jump on the straight line of equation x(t) = −0.5 t+ 3.8.

Matrices Q, R, S and T are the following:

Q =
(

1 0
0 1

)
, R = 10−5, S = T = 0.

In order to test the method, we consider a control ũ and apply it to system
(10) whose output is considered to be the desired state xd. After algorithm has
converged on u�, we must have u� � ũ. We choose the control ũ as follows:

ũ(t) = (0.25 × t)1/2.

The algorithm is initialised by taking u0(t) = 0 for t ∈ [t0 , tf ] and the stop
test of iterations is performed with ε = 10−4. The descent method involved is
the BFGS method. Fig. 1 shows the values of the cost function with respect to
the count of iterations.
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Figure 1. Values of the cost function with respect to iteration number

Fig. 2 shows the control ũ as well as the optimal control u� obtained after
33 iterations. We notice that these two curves are merely identical. The main
discrepancies come about for t = tf , which is due to the fact that the adjoint
state is initialised with λ(tf) = T x(tf) = 0. Another discrepancy also takes place
when switching occurs, since for t = τ = 3.83, the adjoint state is discontinuous
(see Fig. 5).
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Figure 2. Control ũ (dashed line) and optimal control u� (solid line)

We can see in Figs. 3 and 4 that it is the second component of the state that
reaches the straight line x(t) = −0.3 t + 2.3 and causes model switching and
jump of the state.
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Figure 3. Desired trajectory
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Figure 4. Output of the system
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Fig. 5 shows the changes of the adjoint state. Actually, as switching takes
place on the second component, according to equation (14), and since S1 = 0,
we have λ1(τ−) = 0; also, according to equation (15) and since S2 = 0, we
must have λ1(τ+) = 0. This result, as well as the discontinuity of the second
component of the adjoint state, can be observed in Fig. 5.

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

λ
1
(t) 

λ
2
(t) 

Figure 5. Adjoint state

Similar results, that are not presented here, have been obtained with a sys-
tem of order n = 10 and m = 5.

6. Conclusion

We applied the formalism of the calculus of variations to determine an optimal
control of a class of HDS. This class consists of autonomous switching systems
that switch when the state of the system reaches a given curve.

We demonstrated and calculated the discontinuity of the adjoint state that
takes place when model switching occurs. These discontinuities are due either
to the switching cost, denoted by the matrix S in the calculations, or by the
jump of the state when it occurs. These calculations were applied to a numerical
example that validated both the theoretical results and the applicability of the
method.
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Cébron, B., Sechilariu, M. and Burger J. (1999b) Comparison of two
calculation methods of the optimal switching instants of a hybrid dynam-
ical system, SMC’99. Proc. of IEEE-SMC, 165-170.

Ciarlet, P.G. (1990) Introduction à l’analyse numérique matricielle et
à l’optimisation. Masson, Paris.

Daubas, B., Pagès, A. and Pingaud, H. (1994) Combined simulation of hy-
brid processes. Proc. of IEEE-SMC, 320.

Hedlund, S. and Rantzer, A. (2002) Convex Dynamic Programming for
Hybrid Systems, IEEE Trans. on Autom. Contr. 47 (9), 1536-1540.

Nerode, A. and Kohn, W. (1993) Models for hybrid systems: Automata,
topologies, controllability, observability. Lecture Notes in Computer Sci-
ence, Hybrid System, Springer-Verlag.

Pogu, M. and Souza de cursi, J.E. (1994) Global Optimization by Ran-
dom Perturbation of the Gradient Method with a Fixed Parameter. J. of
Global Optimization 5, 159-180.

Riedinger, P., Kratz, F., Iung, C. and Zanne, C. (1999) Linear quadratic
optimization for hybrid systems. Proc. of the 38th IEEE Conference on
Decision and Control, Phoenix, Arizona.

Sussmann, H.J. (1999) A maximum principle for hybrid optimal control prob-
lems. Proc. of the 38th IEEE Conference on Decision and Control, Phoenix,
Arizona.

Van Der Schaft, A. and Schumacher, H. (2000) An introduction to Hy-
brid Dynamical Systems. Lecture Notes in Control and Information Sci-
ences 251, Springer-Verlag.



Variational formalism for control of autonomous switching systems 549

Vinter, R. (1993) Convex duality and nonlinear optimal control. SIAM J.
Control and Optimization 31 (2), 518-538.

Xu, X. and Antsaklis, P.J. (2003) Optimal Control of Hybrid Autonomous
Systems with State Jumps. Proc. of the American Control Conference,
Denver, Colorado,
USA, 5191-5196.

Xu, X. and Antsaklis, P.J. (2004) Optimal Control of Switched Systems
Based on Parametrization of the Switching Instants. IEEE Trans. on
Autom. Contr. 49 (1).


