Control and Cybernetics

vol. 33 (2004) No. 4

Pole assignment by feedback control of the second order coupled singular distributed parameter systems ${ }^{1}$

by
Zhaoqiang Ge
Department of Applied Mathematics
Xi'an Jiaotong University
Xi'an 710049 , P. R. China
e-mail: gezqjd@mail.xjtu.edu.cn

Abstract

Pole assignment by feedback control of the second order coupled singular distributed parameter systems is discussed via functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator. This research is theoretically important for studying the stabilization and asymptotical stability of the second order coupled singular distributed parameter systems.

Keywords: feedback control, pole assignment, coupled singular distributed parameter systems, generalized inverse one of operator.

1. Introduction

Singular distributed parameter systems are systems which are much more often encountered than the distributed parameter systems. They appear in the study of the temperature distribution in a composite heat conductor, voltage distribution in electromagnetically coupled superconductive circuits (Ge, 1993a; Joder, 1991; Trzaska, Marszałek, 1993; Yang, Liu, 2000; Yue, Liu, 1996). There is an essential distinction between them and the ordinary distributed parameter systems. When under disturbance, they not only lose stability, but also great changes take place in their structure, such as leading to impulsive behavior etc.

One of the most important research problems is the study of the pole assignment of the singular distributed parameter systems (Ge, 1999, 2000; Ge, Ma, 2000). There have been some papers discussing pole assignment of the first order coupled singular distributed parameter systems (Ge, 2000; Ge, Ma, 2000).

[^0]In mathematical and engineering control systems it is of great importance that the control object is described by the second order singular distributed parameter system while the controller is governed by the singular lumped parameter system. The physical measurement values of the second order singular distributed parameter system are fed to the controller, in which the control signal is produced and transmitted to the actuator. The latter realizes the feedback control for the system. Since the controller is usually described by the singular ordinary differential equation, we must study the pole assignment for the second order singular distributed parameter system coupled with the singular lumped parameter one. When the placement of controller for the second order singular distributed parameter system is known, we choose appropriate placement of the observation for the second order singular distributed parameter system, such that the closed loop system, which is the second order singular distributed parameter system coupled with the singular lumped parameter one, possesses assignable poles. This note deals with the pole assignment by feedback control of the second order singular distributed parameter system coupled with the singular lumped parameter system. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator.

Let H denote the complex separable Hilbert space, E_{0} and A_{0} be linear operators in H, A_{0} be an invertible and closed densely defined linear operator, E_{0} be a bounded one, and $g_{i}, b_{0}, y \in H(i=0,1,2), b_{0} \neq 0$. There exists $A_{0}^{1 / 2}$. Let R^{n} denote the n-dimensional Euclidean space, $R^{n \times n}$ denote the set of real matrices. Further, $z, g, k_{i} \in R^{n}(i=0,1,2)$ and $k_{j} \neq 0(i=0,1,2), E_{2}$, $F \in R^{n \times n}$ and $\operatorname{det} E_{2}=0$. For the systems

$$
\begin{align*}
& E_{0} \ddot{y}=A_{0} y+u b_{0} \quad y(0)=y_{0}, \quad \dot{y}=y_{1} \tag{1}\\
& E_{2} \dot{z}=F z+w, \quad z(0)=z_{0} \tag{2}
\end{align*}
$$

if $u=<z, g>$ and $w=<E_{0} \ddot{y}, g_{2}>k_{2}+<E_{0} \dot{y}, g_{1}>k_{1}+<E_{0} y, g_{0}>k_{0}$ are the feedback controls, where $<\cdot, \cdot>$ denotes the inner product, then (1) and (2) become

$$
\begin{align*}
E_{0} \ddot{y}=A_{0} y+<z, g>b_{0} \quad y(0)=y_{0}, \quad \dot{y}(0)=y_{1} \tag{3}\\
E_{2} \dot{z}=F z+<E_{0} \ddot{y}, g_{2}>k_{2}+<E_{0} \dot{y}, g_{1}>k_{1}+<E_{0} y, g_{0}>k_{0} \\
z(0)=z_{0} \tag{4}
\end{align*}
$$

Let $G_{0} z=<z, g>b_{0}, G_{0 i} y=<E_{0} y, g_{i}>k_{i}(i=0,1,2)$, then the expressions of (3) and (4) become

$$
\left\{\begin{array}{l}
E_{0} \ddot{y}=A_{0} y+G_{0} z, y(0)=y_{0}, \dot{y}(0)=y_{1} \tag{5}\\
E_{2} \dot{z}=F z+G_{02} \ddot{y}+G_{01} \dot{y}+G_{00} y, \quad z(0)=z_{0}
\end{array}\right.
$$

The problem of pole assignment for (1) and (2) is whether there exist $g_{i} \in H(i=$ $0,1,2$) for an arbitrary set $\left\{\alpha_{i}\right\}_{1}^{N}$ of N complex numbers such that the closed-
loop second order coupled singular distributed parameter system (5) possesses the poles $\left\{\alpha_{i}\right\}_{1}^{N}$.

Let $E_{1}=\left[\begin{array}{cc}I & 0 \\ 0 & E_{0}\end{array}\right], A=\left[\begin{array}{cc}0 & A^{1 / 2} \\ A_{0}^{1 / 2} & 0\end{array}\right], v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, where $v_{1}=A_{0}^{1 / 2} y$, $v_{2}=\dot{y}$. From (5) we obtain

$$
\left\{\begin{array}{l}
E_{1} \dot{v}=A v+G z \tag{6}\\
E_{2} \dot{z}=F z+G_{1} \dot{v}+G_{2} v
\end{array}\right.
$$

where $G z=<z, g>\left[\begin{array}{c}0 \\ b_{0}\end{array}\right]=<z, g>b, G_{2} v=G_{00} A_{0}^{-1 / 2} v_{1}+G_{01} v_{2}, G_{1} v=$ $G_{02} v_{2}$, and $b=\left[\begin{array}{c}0 \\ b_{0}\end{array}\right]$.

Let $B_{0}=\left[\begin{array}{cc}E_{1} & 0 \\ -G_{1} & E_{2}\end{array}\right], T_{0}=\left[\begin{array}{cc}A & G \\ G_{2} & F\end{array}\right]$, and $\omega=\left[\begin{array}{l}v \\ z\end{array}\right]$. From (6) we have

$$
\begin{equation*}
B_{0} \dot{\omega}=T_{0} \omega, \quad \omega(0)=\omega_{0} \tag{7}
\end{equation*}
$$

The generalized eigenvalue problems of (5) and (7) can be written, respectively, as follows:

$$
\left\{\begin{array}{l}
\lambda^{2} E_{0} y=A_{0} y+G_{0} z \tag{8}\\
\lambda E_{2} z=F z+\lambda^{2} G_{02} y+\lambda G_{01} y+G_{00} y
\end{array}\right.
$$

and

$$
\begin{equation*}
\lambda B_{0} \omega=T_{0} \omega \tag{9}
\end{equation*}
$$

The following result can be proved directly:
Lemma 1.1 Let A_{0} be an invertible linear operator and let E_{0} be a bounded linear operator. If (λ, y, z) is a solution of (8), $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{c}A^{1 / 2} y \\ \lambda y\end{array}\right]$, $\omega=\left[\begin{array}{l}v \\ z\end{array}\right]$, then (λ, ω) is a solution of (9). Conversely, if $\left(\lambda_{0}, \omega_{0}\right)$ is a solution of (9), where $\omega_{0}=\left[\begin{array}{l}v_{0} \\ z_{0}\end{array}\right], v_{0}=\left[\begin{array}{l}v_{01} \\ v_{02}\end{array}\right]$, then $\left(\lambda_{0}, A_{0}^{-1 / 2} v_{01}, z_{0}\right)$ is a solution of (8).

According to Lemma 1.1, the problem of pole assignment for (1) and (2) becomes whether there exist $g_{i} \in H(i=0,1,2)$ for an arbitrary set $\left\{\alpha_{i}\right\}_{1}^{N}$ of N complex numbers such that the closed-loop singular system (7) possesses the poles $\left\{\alpha_{i}\right\}_{1}^{N}$.

In this note, the constructive expressions of $g_{i}(i=1,2)$ are given via the generalized inverse one of bounded linear operator in Hilbert space.

2. Preliminaries

In the following, E_{0}^{*} denotes the adjoint operator of $E_{0}, \sigma_{p}\left(E_{0}, A_{0}\right)=\{\lambda: \lambda$ is a generalized eigenvalue of E_{0} and $\left.A_{0}\right\}$ denotes the finite generalized point spectrum of E_{0} and A_{0}, i.e. the finite poles of system $(1) ; \rho\left(E_{1}, A\right)=\{\alpha$: $\left(\alpha E_{1}-A\right)$ is a regular operator $\} ; R\left(\alpha E_{1}, A\right)=\left(\alpha E_{1}-A\right)^{-1}$ denotes the inverse operator of $\left(\alpha E_{1}-A\right)$ for $\alpha \in \rho\left(E_{1}, A\right) ; I$ denotes the identity operator.
Definition 2.1 ($G e, 1993 b$) Let $B(H)$ denote the Banach algebra of all bounded linear operators on H and $B \in B(H)$. If there exists $B^{+} \in B(H)$ such that $B B^{+} B=B, B^{+} B B^{+}=B^{+},\left(B^{+} B\right)^{*}=B^{+} B$, and $\left(B B^{+}\right)^{*}=B B^{+}$, then B^{+} is called the generalized inverse one of B.
Lemma 2.1 If there exists B^{+}, then (i) B^{+}is unique; (ii) there exists $\left(B^{*}\right)^{+}$, and $\left(B^{*}\right)^{+}=\left(B^{+}\right)^{*}$.
Proof. (i) If G_{1} and G_{2} are two operators satisfying

$$
B G_{1} B=B, G_{1} B G_{1}=G_{1},\left(G_{1} B\right)^{*}=G_{1} B,\left(B G_{1}\right)^{*}=B G_{1}
$$

and

$$
B G_{2} B=B, G_{2} B G_{2}=G_{2},\left(G_{2} B\right)^{*}=G_{2} B,\left(B G_{2}\right)^{*}=B G_{2}
$$

then

$$
\begin{aligned}
G_{1} & =G_{1} B G_{1}=G_{1}\left(B G_{1}\right)^{*}=G_{1} G_{1}^{*} B^{*}=G_{1} G_{1}^{*}\left(B G_{2} B\right)^{*} \\
& =G_{1} G_{1}^{*} B^{*} G_{2}^{*} B^{*}=G_{1}\left(B G_{1}\right)^{*}\left(B G_{2}\right)^{*}=G_{1} B G_{1} B G_{2} \\
& =G_{1} B G_{2}=\left(G_{1} B\right)^{*}\left(G_{2} B G_{2}\right)=\left(G_{1} B\right)^{*}\left(G_{2} B\right)^{*} G_{2} \\
& =\left(G_{2} B G_{1} B\right)^{*} G_{2}=\left(G_{2} B\right)^{*} G_{2}=G_{2} B G_{2}=G_{2} .
\end{aligned}
$$

Therefore $G_{1}=G_{2}=B^{+}$, i.e. (i) holds.
(ii) Since $B B^{+} B=B, B^{+} B B^{+}=B^{+},\left(B^{+} B\right)^{*}=B^{+} B$, and $\left(B B^{+}\right)^{*}=B B^{+}$, by taking the adjoint of both sides of each equation we obtain

$$
\begin{aligned}
B^{*}\left(B^{+}\right)^{*} B^{*}=B^{*} & \left(B^{+}\right)^{*} B^{*}\left(B^{+}\right)^{*}=\left(B^{+}\right)^{*},\left[\left(B^{+}\right)^{*} B^{*}\right]^{*} \\
& =\left(B^{+}\right)^{*} B^{*},\left[B^{*}\left(B^{+}\right)^{*}\right]^{*}=B^{*}\left(B^{+}\right)^{*}
\end{aligned}
$$

Using the Definition 2.1 and (i) of Lemma 2.1, we obtain that (ii) holds.
Lemma 2.2 Let A_{0} be an invertible linear operator, E_{0} be bounded, E_{0} and A_{0} only have the finite generalized point spectrum, and $E_{0} A_{0}^{1 / 2}=A_{0}^{1 / 2} E_{0}$. If $B_{F}=\left[\begin{array}{cc}A & 0 \\ 0 & F\end{array}\right], R=R\left(\lambda^{2} E_{0}, A_{0}\right)=\left(\lambda^{2} E_{0}-A_{0}\right)^{-1}$, and $T=\left[\begin{array}{cc}0 & G \\ G_{2} & 0\end{array}\right]$, then
(i) $\lambda \in \rho\left(E_{1}, A\right)$ if and only if $\lambda^{2} \in \rho\left(E_{0}, A_{0}\right)$ and

$$
R\left(\lambda E_{1}, A\right)=\left(\lambda E_{1}-A\right)^{-1}=\left[\begin{array}{cc}
\lambda E_{0} R & A_{0}^{1 / 2} R \\
A_{0}^{1 / 2} R & \lambda R
\end{array}\right]
$$

(ii) $\lambda \in \rho\left(B_{0}, B_{F}\right)$ if and only if $\lambda \in \rho\left(E_{1}, A\right) \cap \rho\left(E_{2}, F\right)$.

Lemma 2.2 can be proved directly by the reference to Halmos (1982).
For $\lambda \in \rho\left(B_{0}, B_{F}\right)$, let

$$
\begin{aligned}
\alpha= & \lambda^{2}<E_{0} R b_{0}, g_{2}>R\left(\lambda E_{2}, F\right) k_{2}+\lambda<E_{0} R b_{0}, g_{1}>R\left(\lambda E_{2}, F\right) k_{1} \\
& +<E_{0} R b_{0}, g_{0}>R\left(\lambda E_{2}, F\right) k_{0}
\end{aligned}
$$

and $\omega(\lambda)=<\alpha, g>$. Then we have the following lemma:
Lemma 2.3 Let A_{0} be an invertible and closed densely defined linear operator, E_{0} and A_{0} only have the finite generalized point spectrum, and $A_{0}^{1 / 2} E_{0}=$ $E_{0} A_{0}^{1 / 2}$. If $\lambda \in \rho\left(B_{0}, B_{F}\right)$, then $\lambda \in \sigma_{p}\left(B_{0}, B_{F}\right)$ if and only if

$$
\begin{equation*}
\omega(\lambda)=1 \tag{10}
\end{equation*}
$$

and $w_{1}=\left[\begin{array}{c}R\left(\lambda E_{1}, A\right) b \\ \alpha\end{array}\right]$ is an associated generalized eigenvector.
Proof. Let $\lambda \in \rho\left(B_{0}, B_{F}\right)$. If (10) is false, then $\lambda \in \rho\left(B_{0}, T_{0}\right)$. In fact, since

$$
\left(\lambda B_{0}-T_{0}\right)^{*}=\left[\begin{array}{cc}
\bar{\lambda} E_{1}^{*}-A^{*} & -G_{2}^{*}-\bar{\lambda} G_{1}^{*} \tag{11}\\
-G^{*} & \bar{\lambda} E_{2}^{*}-F^{*}
\end{array}\right]
$$

for any element $\psi_{1} \in H \times H, \psi_{2} \in R^{n}, \psi=\left[\begin{array}{l}\psi_{1} \\ \psi_{2}\end{array}\right]$, and $y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$, let

$$
\begin{equation*}
\left(\lambda B_{0}-T_{0}\right)^{*} y=\psi \tag{12}
\end{equation*}
$$

From (11) and (12) we obtain

$$
\left\{\begin{array}{l}
\left(\bar{\lambda} E_{1}^{*}-A^{*}\right) y_{1}-\left(\bar{\lambda} G_{0}^{*}+G_{2}^{*}\right) y_{2}=\psi_{1} \tag{13}\\
-G^{*} y_{1}+\left(\bar{\lambda} E_{2}^{*}-F^{*}\right) y_{2}=\psi_{2}
\end{array}\right.
$$

Since $\lambda \in \rho\left(B_{0}, B_{F}\right)$, from (14) we have

$$
\begin{equation*}
y_{2}=R^{*}\left(\lambda E_{2}, F\right) \psi_{2}+<y_{1}, b>R^{*}\left(\lambda E_{2}, F\right) g \tag{15}
\end{equation*}
$$

Using (13) and (15), we deduce

$$
\begin{equation*}
y_{1}=h+<y_{1}, b>h_{1} \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
& h=R^{*}\left(\lambda E_{1}, A\right) \psi_{1}+R^{*}\left(\lambda E_{1}, A\right)\left(\bar{\lambda} G_{1}^{*}+G_{2}^{*}\right) R^{*}\left(\lambda E_{2}, F\right) \psi_{2} \\
& h_{1}=R^{*}\left(\lambda E_{1}, A\right)\left(\bar{\lambda} G_{1}^{*}+G_{2}^{*}\right) R^{*}\left(\lambda E_{2}, F\right) g
\end{aligned}
$$

Thus

$$
\begin{equation*}
<y_{1}, b>=<h, b>+<y_{1}, b><h_{1}, b> \tag{17}
\end{equation*}
$$

and

$$
\begin{aligned}
<h_{1}, b>= & \bar{\lambda}<R^{*}\left(\lambda E_{1}, A\right) G_{1}^{*} R^{*}\left(\lambda E_{2}, F\right) g, b> \\
& +<R^{*}\left(\lambda E_{1}, A\right) G_{2}^{*} R^{*}\left(\lambda E_{2}, F\right) g, b> \\
= & \bar{\lambda}<R^{*}\left(\lambda E_{2}, F\right) g, G_{1} R\left(\lambda E_{1}, A\right) b> \\
& +<R^{*}\left(\lambda E_{2}, F\right) g, G_{2} R\left(\lambda E_{1}, A\right) b>
\end{aligned}
$$

From Lemma 2.2 we have

$$
\begin{aligned}
& G_{1} R\left(\lambda E_{1}, A\right) b=G_{1}\left[\begin{array}{cc}
\lambda E_{0} R & A_{0}^{1 / 2} R \\
A^{1 / 2} R & \lambda R
\end{array}\right]\left[\begin{array}{c}
0 \\
b_{0}
\end{array}\right]=\lambda<E_{0} R b_{0}, g_{2}>k_{2} \\
& G_{2} R\left(\lambda E_{1}, A\right) b=<E_{0} R b_{0}, g_{0}>k_{0}+\lambda<E_{0} R b_{0}, g_{1}>k_{1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
<h_{1}, b>= & (\bar{\lambda})^{2} \overline{<E_{0} R b_{0}, g_{0}>} \cdot \overline{<R\left(\lambda E_{2}, F\right) k_{2}, g>} \\
& +\bar{\lambda} \overline{<E_{0} R b_{0}, g_{1}><R\left(\lambda E_{2}, F\right) k_{1}, g>} \\
& +\overline{<E_{0} R b_{0}, g_{0}><R\left(\lambda E_{2}, F\right) k_{0}, g>}=\overline{\omega(\lambda)}
\end{aligned}
$$

Hence, (17) can be written as follows

$$
\begin{equation*}
<y_{1}, b>=\frac{<h, b>}{1-\overline{\omega(\lambda)}} \tag{18}
\end{equation*}
$$

Using (15), (16) and (18) we obtain

$$
\begin{align*}
& y_{1}=h+\frac{<h, b>}{1-\overline{\omega(\lambda)}} h_{1} \tag{19}\\
& y_{2}=R^{*}\left(\lambda E_{2}, F\right) \psi_{2}+\frac{<h, b>}{1-\overline{\omega(\lambda)}} R^{*}\left(\lambda E_{2}, F\right) g \tag{20}
\end{align*}
$$

From (19), (20) and the representation formulae of h and h_{1}, it is obvious that y_{1} and y_{2} are continuous at any element ψ. Therefore, the operator $\left[\left(\lambda B_{0}-T_{0}\right)^{*}\right]^{-1}$ satisfying $y=\left[\left(\lambda B_{0}-T_{0}\right)^{*}\right]^{-1} \psi$ is a bounded linear operator. Thus $\left(\lambda B_{0}-T_{0}\right)^{-1}$ is a regular operator.

If $\lambda \in \rho\left(B_{0}, B_{F}\right)$ and $\omega(\lambda)=1$, we need to prove that λ is a generalized eigenvalue of B_{0} and T_{0}, and the associated generalized eigenvector is $w_{1}=$ $\left[\begin{array}{c}R\left(\lambda E_{1}, A\right) b \\ \alpha\end{array}\right]$. In fact, let w_{0} satisfy

$$
\left(\lambda B_{0}-T_{0}\right) w_{0}=\left(\lambda B_{0}-B_{F}-T\right) w_{0}=\left(\lambda B_{0}-B_{F}\right)\left[I-R\left(\lambda B_{0}, B_{F}\right) T\right] w_{0}=0
$$

From $\lambda \in \rho\left(B_{0}, B_{F}\right)$, it is obvious that $\lambda \in \sigma_{p}\left(B_{0}, T_{0}\right)$ if and only if

$$
R\left(\lambda B_{0}, B_{F}\right) T w_{0}=w_{0}=\left[\begin{array}{c}
w_{01} \\
w_{02}
\end{array}\right]
$$

Since

$$
\begin{aligned}
& R\left(\lambda B_{0}, B_{F}\right) T w_{0}=\left[\begin{array}{c}
R\left(\lambda E_{1}, A\right) G w_{02} \\
\lambda R\left(\lambda E_{2}, F\right) G_{1} R\left(\lambda E_{1}, A\right) G w_{02}+R\left(\lambda E_{2}, F\right) G_{2} w_{01}
\end{array}\right] \\
& R\left(\lambda E_{1}, A\right) G w_{02}=<w_{02}, g>R\left(\lambda E_{1}, A\right) b=w_{01}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda R\left(\lambda E_{2}, F\right) G_{1} R\left(\lambda E_{1}, A\right) G w_{02}+R\left(\lambda E_{2}, F\right) G_{2} w_{01} \\
& =<w_{02}, g>\left[\lambda R\left(\lambda E_{2}, F\right) G_{1} R\left(\lambda E_{1}, A\right) b+R\left(\lambda E_{2}, F\right) G_{2} R\left(\lambda E_{1}, A\right) b\right] \\
& =<w_{02}, g>\left[\lambda^{2}<E_{0} R b_{0}, g_{2}>R\left(\lambda E_{2}, F\right) k_{2}\right. \\
& \left.\quad+\lambda<E_{0} R b_{0}, g_{1}>R\left(\lambda E_{2}, F\right) k_{1}+<E_{0} R b_{0}, g_{0}>R\left(\lambda E_{2}, F\right) k_{0}\right] \\
& =<w_{02}, g>\alpha=w_{02}
\end{aligned}
$$

we have $\lambda \in \sigma_{p}\left(B_{0}, T_{0}\right)$, and the associated generalized eigenvector is w_{1}.
Lemma 2.4 (Wang, 1982) Let $x_{i} \in H$ and $x_{i} \neq 0 \quad(i=1,2, \cdots, N), y_{N+k} \in$ H and $y_{N+k} \neq 0, k=1,2, \cdots$, and H_{i}^{N-1} denote the closed linear subspace generated by $\left\{x_{1}, x_{2}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{N}, y_{N+1}, y_{N+2}, \cdots\right\}$. If $x_{i} \notin H_{i}^{N-1}$, then there exists $g_{1} \in H$ such that $<x_{i}, g_{1}>=1(i=1,2, \cdots, N)$, and

$$
<y_{k}, g_{1}>=0 \quad(k=N+1, N+2, \cdots)
$$

Assumption $\left(\mathbf{G}_{\mathbf{1}}\right)$ Let A_{0} be an invertible and closed densely defined linear operator, and let E_{0} be a bounded linear operator. There exists $A_{0}^{1 / 2}$ and $E_{0} A_{0}^{1 / 2}=A_{0}^{1 / 2} E_{0} . E_{0}$ and A_{0} have only the finite generalized point spectrum. Let $\left\{\lambda_{k}\right\}_{1}^{\infty}$ be the set of all finite generalized points of the spectrum of E_{0} and A_{0}, and any λ_{k} be a single, and φ_{k} be the associated generalized eigenvector, i.e.

$$
A_{0} \varphi_{k}=\lambda_{k} E_{0} \varphi_{k} \quad(k=1,2, \cdots)
$$

Let $\left\{\psi_{k}\right\}_{1}^{\infty}$ denote the set of all generalized eigenvectors of E_{0}^{*} and A_{0}^{*} satisfying

$$
A_{0}^{*} \psi_{k}=\bar{\lambda}_{k} E_{0}^{*} \psi_{k} \quad(k=1,2, \cdots)
$$

and there exist the following relations between $\left\{E \varphi_{k}\right\}_{1}^{\infty}$ and $\left\{\psi_{k}\right\}_{1}^{\infty}$:

$$
<E_{0} \varphi_{k}, \psi_{l}>=\left\{\begin{array}{ll}
1 & k=l \\
0 & k \neq l
\end{array} \quad(k, l=1,2, \cdots)\right.
$$

Assumption $\left(\mathbf{G}_{\mathbf{2}}\right)$ Let $E_{2}, F \in R^{n \times n}, F_{2}$ and F have only the finite generalized point spectrum $\left\{r_{k}\right\}_{1}^{n_{0}}\left(n_{0}<n\right)$, every r_{k} be a single, and u_{k} be the associated generalized eigenvector, i.e. $F u_{k}=r_{k} E_{2} u_{k}\left(k=1,2, \cdots, n_{0}\right)$. For the generalized eigenvalue \bar{r}_{k} of E_{2}^{*} and F^{*}, the associated generalized eigenvector is v_{k},
i.e. $F^{*} v_{k}=\bar{r}_{k} E_{2}^{*} v_{k}\left(k=1,2, \cdots, n_{0}\right)$, and there exist the following relations between $\left\{E_{2} u_{k}\right\}_{1}^{n_{0}}$ and $\left\{v_{k}\right\}_{1}^{n_{0}}$:

$$
<E_{2} u_{k}, v_{l}>=\left\{\begin{array}{ll}
1 & k=l \\
0 & k \neq l
\end{array} \quad\left(k=1,2, \cdots, n_{0}\right)\right.
$$

3. Main result and proof

Theorem 3.1 Suppose E_{0} and A_{0} satisfy the assumption $\left(G_{1}\right), E_{2}$ and F satisfy the assumption $\left(G_{2}\right)$, and there exists E_{0}^{+}. Let $\left\{\alpha_{i}\right\}_{1}^{N}$ be an arbitrary set of N complex numbers satisfying $\alpha_{i} \neq \alpha_{j}(i \neq j ; i, j=1,2, \cdots, N)$, and $\alpha_{i} \notin \sigma_{p}\left(E_{1}, A\right) \cup \sigma_{p}\left(E_{2}, F\right)(i=1,2, \cdots, N)$. If

$$
d_{j \mu}=\alpha_{j}^{\mu}<R\left(\alpha_{j} E_{2}, F\right) k_{\mu}, g>\neq 0 \quad(j=1,2, \cdots, N ; \mu=0,1,2)
$$

then there exist $g_{\mu} \in H(\mu=0,1,2)$ such that $\left\{\alpha_{i}\right\}_{1}^{N} \cup\left\{\sqrt{\lambda_{k}}\right\}_{N+1}^{\infty} \subset \sigma_{p}\left(B_{0}, T_{0}\right)$, and

$$
g_{\mu}=\sum_{j=1}^{N} g_{j}^{(\mu)} \psi_{j}+\left[I-\left(E_{0}^{*}\right)^{+} E_{0}^{*}\right] a, \quad(\mu=0,1,2,)
$$

where

$$
\begin{array}{r}
\overline{g_{j}^{(\mu)}}=\frac{\alpha_{j}^{2}-\lambda_{j}}{3 b_{j}} \prod_{\substack{k=1 \\
k \neq j}}^{N}\left(\frac{\alpha_{k}^{2}-\lambda_{j}}{\lambda_{k}-\lambda_{j}}\right) \cdot \sum_{k=1}^{N} \frac{\alpha_{k}^{2}-\lambda_{k}}{d_{k \mu}\left(\alpha_{k}^{2}-\lambda_{j}\right)} \cdot \prod_{\substack{i=1 \\
i \neq k}}^{N}\left(\frac{\alpha_{k}^{2}-\lambda_{i}}{\alpha_{k}^{2}-\alpha_{i}^{2}}\right) \\
j=1,2, \cdots, N ; \mu=0,1,2
\end{array}
$$

and a is any element in H.
Proof. Let $x_{\mu i}=\alpha_{i}^{\mu}<R\left(\alpha_{i} E_{2}, F\right) k_{0}, g>E_{0} R\left(\alpha_{i}^{2} E_{0}, A_{0}\right) b_{0}, i=1,2, \cdots, N$; $\mu=0,1,2$;

$$
y_{k+N}=E_{0} \varphi_{k+N} \quad(k=1,2, \cdots)
$$

and $H_{i \mu}^{N-1}$ denote the closed linear subspace generated by

$$
\left\{x_{\mu 1}, x_{\mu 2}, \cdots, x_{\mu i+1}, x_{\mu i+2}, \cdots, x_{N}, y_{N+1}, y_{N+2}, \cdots\right\}
$$

Then $x_{\mu i} \notin H_{i \mu}^{N-1}(i=1,2, \cdots, N)$.
In fact, if $x_{\mu i} \in H_{i \mu}^{N-1}(i=1,2, \cdots, N)$, then there exist

$$
\beta_{\mu 1}, \beta_{\mu 2}, \cdots, \beta_{\mu i-1}, \beta_{\mu i+1}, \cdots, \beta_{\mu N}, \beta_{\mu N+1}, \beta_{\mu N+2}, \cdots
$$

such that

$$
d_{i \mu} E_{0} R\left(\alpha_{i}^{2} E_{0}, A_{0}\right) b_{0}=\sum_{\substack{j=1 \\ j \neq i}}^{N} \beta_{\mu j} d_{j \mu} E_{0} R\left(\alpha_{j}^{2} E_{0}, A_{0}\right) b_{0}+\sum_{k=1}^{\infty} \beta_{\mu k+N} E_{0} \varphi_{k+N}
$$

Thus

$$
\begin{align*}
d_{i \mu} & <E_{0} R\left(\alpha_{i}^{2} E_{0}, A_{0}\right) b_{0}, \psi_{l}>=\sum_{\substack{j=1 \\
j \neq i}}^{N} \beta_{\mu j} d_{j \mu}<E_{0} R\left(\alpha_{j}^{2} E_{0}, A_{0}\right) b_{0}, \psi_{l}> \tag{21}\\
l & =1,2, \cdots, N ; \mu=0,1,2
\end{align*}
$$

Since

$$
\begin{aligned}
& \left(\overline{\alpha_{j}^{2}}-\overline{\lambda_{l}}\right) E_{0}^{*} \psi_{l}=\overline{\alpha_{j}^{2}} E_{0}^{*} \psi_{l}-\bar{\lambda}_{l} E_{0}^{*} \psi_{l}=\left(\overline{\alpha_{j}^{2}} E_{0}^{*}-A_{0}^{*}\right) \psi_{l}(l=1,2, \cdots, N) \\
& E_{0}^{*} \psi_{l}=\overline{\overline{\alpha_{j}^{2}}-\bar{\lambda}_{l}}\left(\overline{\alpha_{j}^{2}} E_{0}^{*}-A_{0}^{*}\right) \psi_{l}(l=1,2, \cdots, N)
\end{aligned}
$$

from (21), we obtain

$$
\begin{equation*}
\frac{d_{i \mu} b_{l}}{\alpha_{i}^{2}-\lambda_{l}}=\sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{\beta_{\mu j} d_{j \mu} b_{l}}{\alpha_{i}^{2}-\lambda_{l}}(l=1,2, \cdots, N ; \mu=0,1,2) \tag{22}
\end{equation*}
$$

Let $b_{l j}=\frac{1}{\alpha_{j}^{2}-\lambda_{l}}(j, l=1,2, \cdots, N)$ and $D_{N}=\left\lfloor b_{l j}\right\rfloor_{N \times N}$. Then

$$
\operatorname{det} D_{N}=(-1)^{\frac{N(N-1)}{2}} \frac{\prod_{1 \leq i<j \leq N}\left(\alpha_{i}^{2}-\alpha_{j}^{2}\right) \prod_{1 \leq i<j \leq N}\left(\lambda_{i}-\lambda_{j}\right)}{\prod_{i=1}^{N} \prod_{j=1}^{N}\left(\alpha_{i}^{2}-\lambda_{j}\right)}
$$

Thus, $\operatorname{det} D_{N} \neq 0$ by the given assumptions. Therefore, (22) has no solution. Hence

$$
x_{\mu i} \notin H_{i \mu}^{N-1} \quad(i=1,2, \cdots, N ; \mu=0,1,2)
$$

Using Lemma 2.4, we obtain that there exist $g_{\mu} \in H(\mu=0,1,2)$ such that

$$
\begin{align*}
& d_{i \mu}<E_{0} R\left(\alpha_{i}^{2} E_{0}, A_{0}\right) b_{0}, g_{\mu}>=1 / 3 \quad(i=1,2, \cdots, N ; \mu=0,1,2) \tag{23}\\
& <y_{k}, g_{\mu}>=0 \quad(k=N+1, N+2, \cdots ; \mu=0,1,2) \tag{24}
\end{align*}
$$

From (23) and (24), it is easy to prove $\omega\left(\alpha_{i}\right)=1$ and

$$
g_{\mu}=\sum_{k=1}^{N} g_{k}^{(\mu)} \psi_{k}+\left[I-\left(E_{0}^{*}\right)^{+} E_{0}^{*}\right] a \quad(\mu=0,1,2)
$$

where a is any element in H, and

$$
\begin{array}{r}
1 / 3=d_{i \mu}<E_{0} R\left(\alpha_{i}^{2} E_{0}, A_{0}\right) b_{0}, g_{\mu}>=d_{i \mu} \sum_{j=1}^{N} \overline{g_{j}^{(\mu)}}<E_{0} R b_{0}, \psi_{j}> \\
(\mu=0,1,2)
\end{array}
$$

i.e.

$$
\begin{equation*}
\sum_{j=1}^{N} \overline{g_{j}^{(\mu)}} \frac{b_{i}}{\alpha_{i}^{2}-\lambda_{j}}=\frac{1}{3 d_{i \mu}} \quad(i=1,2, \cdots, N ; \mu=0,1,2) \tag{25}
\end{equation*}
$$

The solution of (25) is

$$
\begin{array}{r}
\overline{g_{k}^{(\mu)}}=\frac{\alpha_{k}^{2}-\lambda_{k}}{3 b_{k}} \prod_{\substack{j=1 \\
j \neq k}}^{N}\left(\frac{\alpha_{j}^{2}-\lambda_{k}}{\lambda_{j}-\lambda_{k}}\right) \sum_{j=1}^{N} \frac{\alpha_{j}^{2}-\lambda_{j}}{d_{j \mu}\left(\alpha_{j}^{2}-\lambda_{k}\right)} \cdot \prod_{\substack{i=1 \\
i \neq j}}^{N}\left(\frac{\alpha_{j}^{2}-\lambda_{i}}{\alpha_{j}^{2}-\alpha_{i}^{2}}\right), \\
(k=1,2, \cdots, N ; \mu=0,1,2) .
\end{array}
$$

From Lemma 2.3, we have $\alpha_{i} \in \sigma_{p}\left(B_{0}, T_{0}\right)(i=1,2, \cdots, N)$.
For $\lambda_{k} \in \sigma_{p}\left(E_{0}, A_{0}\right)(i=N+1, N+2, \cdots)$, let $V_{k}=\left[\begin{array}{c}A^{1 / 2} \varphi_{k} \\ \sqrt{\lambda_{k}} \varphi_{k}\end{array}\right]$. It is easy to prove that $G_{2} V_{k}=G_{1} V_{k}=0$, and

$$
\begin{aligned}
T_{0}\left[\begin{array}{c}
V_{k} \\
0
\end{array}\right] & =\left[\begin{array}{cc}
A & G \\
G_{2} & F
\end{array}\right]\left[\begin{array}{c}
V_{k} \\
0
\end{array}\right]=\left[\begin{array}{c}
A V_{k} \\
G_{2} V_{k}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{\lambda_{k}} A_{0}^{1 / 2} \varphi_{k} \\
A_{0} \varphi_{k} \\
G_{2} V_{k}
\end{array}\right] \\
& =\sqrt{\lambda_{k}}\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & E_{0} & \\
-G_{1} & E_{2}
\end{array}\right]\left[\begin{array}{c}
A_{0}^{1 / 2} \varphi_{k} \\
\sqrt{\lambda_{k}} \varphi_{k} \\
0
\end{array}\right]=\sqrt{\lambda_{k}} B_{0}\left[\begin{array}{c}
V_{k} \\
0
\end{array}\right] .
\end{aligned}
$$

Thus $\left\{\sqrt{\lambda_{k}}\right\}_{N+1}^{+\infty} \subset \sigma_{p}\left(B_{0}, T_{0}\right)$. Hence Theorem 2.1 holds.

4. An illustrative example

Consider the following systems in $H \times H$ and $R^{n} \times R^{n}$, respectively:

$$
\left\{\begin{array}{l}
{\left[\begin{array}{ll}
I & 0 \\
I & 0
\end{array}\right]\left[\begin{array}{l}
\ddot{y}_{1} \\
\ddot{y}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
0
\end{array}\right] u} \tag{26}\\
{\left[\begin{array}{cc}
I_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
F_{11} & 0 \\
F_{21} & F_{22}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
0
\end{array}\right]}
\end{array}\right.
$$

where I_{1} denotes the identity matrix in R^{n}, A_{11} is a discrete spectral operator, and there exists $A_{11}^{-1} ; A_{22}$ and F_{22} are invertible, there exists $A_{22}^{1 / 2}, A_{21}=$ $A_{11}-A_{22}$. It is easy to prove that

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]^{1 / 2}\left[\begin{array}{cc}
A_{11}^{1 / 2} & 0 \\
A_{11}^{1 / 2}-A_{22}^{1 / 2} & A_{22}^{1 / 2}
\end{array}\right],} \\
& {\left[\begin{array}{ll}
I & 0 \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]^{1 / 2}=\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]^{1 / 2}\left[\begin{array}{ll}
I & 0 \\
I & 0
\end{array}\right] .}
\end{aligned}
$$

Let the feedback controls be

$$
u=<z_{1}, g>, \quad v_{1}=<\ddot{y}, g_{2}>k_{2}+<\dot{y}_{1}, g_{1}>k_{1}+<y_{1}, g_{0}>k_{0}
$$

Then (26) becomes

$$
\left\{\begin{array}{l}
{\left[\begin{array}{ll}
I & 0 \\
I & 0
\end{array}\right]\left[\begin{array}{l}
\ddot{y}_{1} \\
\ddot{y}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]+<z_{1}, g>\left[\begin{array}{c}
b_{1} \\
0
\end{array}\right]} \\
{\left[\begin{array}{cc}
I_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
F_{11} & 0 \\
F_{21} & F_{22}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]} \tag{27}\\
\quad+\left[<\ddot{y}_{1}, g_{2}>k_{2}+<\dot{y}_{1}, g_{1}>k_{1}+<y_{1}, g_{0}>k_{0}\right. \\
0
\end{array}\right] .
$$

It is obvious that (27) is the second order coupled singular distributed parameter system. From (27) we obtain

$$
\left\{\begin{array}{l}
\ddot{y}_{1}=A_{11} y_{1}+<z_{1}, g>b_{1} \tag{28}\\
\dot{z}_{1}=F_{11} z_{1}+<\ddot{y}_{1}, g_{2}>k_{2}+<\dot{y}_{1}, g_{1}>k_{1}+<y_{1}, g_{0}>k_{0}
\end{array} .\right.
$$

Hypothesis $\left(\mathrm{H}_{1}\right)$ Let A_{11} be a discrete spectral operator, $\left\{\lambda_{k}\right\}_{1}^{\infty}$ be the set of all point spectrum of A_{11}, and any λ_{k} be single, and φ_{k} be the associated eigenvector, i. e.

$$
A_{11} \varphi_{k}=\lambda_{k} \varphi_{k} \quad(k=1,2, \cdots)
$$

There exists A_{11}^{-1}. Let $\left\{\psi_{k}\right\}_{1}^{\infty}$ denote the set of all eigenvector of A_{11}^{*} satisfying

$$
A_{11}^{*} \psi_{k}=\overline{\lambda_{k}} \psi_{k} \quad(k=1,2, \cdots)
$$

there exist the following relations between $\left\{\varphi_{k}\right\}_{1}^{\infty}$ and $\left\{\psi_{k}\right\}_{1}^{\infty}$:

$$
<\varphi_{k}, \psi_{l}>=\left\{\begin{array}{ll}
1 & k=l \\
0 & k \neq l
\end{array} \quad(k, l=1,2, \cdots)\right.
$$

Hypothesis $\left(\mathrm{H}_{2}\right)$ Let $F_{11} \in R^{n \times n},\left\{r_{k}\right\}_{1}^{n}$ be the set of all points of the spectrum of F_{11}, and every r_{k} be a single, and u_{k} be the associated eigenvector, i.e. $F_{11} u_{k}=r_{k} u_{k}(k=1,2, \cdots, n)$. For the eigenvalue $\overline{r_{k}}$ of F_{11}^{*}, the associated eigenvector is v_{k}, i. e. $F_{11}^{*} v_{k}=\overline{r_{k}} v_{k}(k=1,2, \cdots, n)$. There exist the following relations between $\left\{u_{k}\right\}_{1}^{n}$ and $\left\{v_{k}\right\}_{1}^{n}$:

$$
<u_{k}, v_{l}>=\left\{\begin{array}{ll}
1 & k=l \\
0 & k \neq l
\end{array} \quad(k, l=1,2, \cdots, n)\right.
$$

It is easy to prove that (27) satisfies the Assumptions $\left(\mathrm{G}_{1}\right)$ and $\left(\mathrm{G}_{2}\right)$ of this note if (28) satisfies the Hypotheses $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$. Therefore, there exists the second order coupled singular distributed parameter system, which satisfies the hypothesis of this note.

Conclusion

In this paper, pole assignment by feedback control of the second order singular distributed parameter system coupled with the first order singular lumped parameter system is discussed via functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator. This research is theoretically important and convenient for studying the feedback control and pole assignment of the coupled singular distributed parameter systems. If (2) is the second order singular lumped parameter system, the results which are obtained in this paper need to be modified.

References

Ge, Z. (1993a) The stabilizability for a class of generalized systems. Applied Functional Analysis 1 (1), 56-61.
Ge, Z. (1993b) Inverse Problem of Operators and its Applications. Xi'an: Shaanxi Scientific and Technological Press.
Ge, Z. (1999) Pole assignment concerning the second order generalized system. Proc. 14th World Congress of IFAC, Vol(D), Beijing, 207-212.
Ge, Z. (2000) Pole assignment for the first order coupled generalized control system. Control Theory and Applications 17 (3), 379-383.
Ge, Z. and Ma, Y. (2000) Pole assignment of the coupled generalized system. System Science 26 (3), 5-14.
Halmos, P.R. (1982) A Hilbert Space Problem Book. Springer-Verlag, New York.
Joder L. (1991) An implicit difference Method for the numerical solution of coupled systems of partial differential equations. Applied Mathematics and Computation 46 (1), 127-134.
Trzaska, Z. and Marsza€ek, W. (1993) Singular distributed parameter systems. IEE Proceedings-D 140 (5), 305-308.
Wang, K. (1982) On the pole assignment for the distributed parameter system. Science in China 12 (2), 172-184.
Yue, D. and Liu, Y. (1996) Variable structure control of singular distributed parameter system. Control and Decision 11 (2), 278-283.
Yang, J. and Liu, Y. (2000) Sliding mode control of singular distributed parameter perturbation system. Control and Decision 15 (2), 145-148.

[^0]: ${ }^{1}$ Research carried out under the National Natural Science Foundation of China grant no. 60274055.

