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Abstract: Pole assignment by feedback control of the second
order coupled singular distributed parameter systems is discussed
via functional analysis and operator theory in Hilbert space. The
solutions of the problem and the constructive expression of the so-
lutions are given by the generalized inverse one of bounded linear
operator. This research is theoretically important for studying the
stabilization and asymptotical stability of the second order coupled
singular distributed parameter systems.
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1. Introduction

Singular distributed parameter systems are systems which are much more of-
ten encountered than the distributed parameter systems. They appear in the
study of the temperature distribution in a composite heat conductor, voltage
distribution in electromagnetically coupled superconductive circuits (Ge, 1993a;
Joder, 1991; Trzaska, Marsza�lek, 1993; Yang, Liu, 2000; Yue, Liu, 1996). There
is an essential distinction between them and the ordinary distributed parameter
systems. When under disturbance, they not only lose stability, but also great
changes take place in their structure, such as leading to impulsive behavior etc.

One of the most important research problems is the study of the pole as-
signment of the singular distributed parameter systems (Ge, 1999, 2000; Ge,
Ma, 2000). There have been some papers discussing pole assignment of the first
order coupled singular distributed parameter systems (Ge, 2000; Ge, Ma, 2000).

1Research carried out under the National Natural Science Foundation of China grant no.
60274055.
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In mathematical and engineering control systems it is of great importance
that the control object is described by the second order singular distributed
parameter system while the controller is governed by the singular lumped pa-
rameter system. The physical measurement values of the second order singular
distributed parameter system are fed to the controller, in which the control
signal is produced and transmitted to the actuator. The latter realizes the feed-
back control for the system. Since the controller is usually described by the
singular ordinary differential equation, we must study the pole assignment for
the second order singular distributed parameter system coupled with the sin-
gular lumped parameter one. When the placement of controller for the second
order singular distributed parameter system is known, we choose appropriate
placement of the observation for the second order singular distributed parame-
ter system, such that the closed loop system, which is the second order singular
distributed parameter system coupled with the singular lumped parameter one,
possesses assignable poles. This note deals with the pole assignment by feed-
back control of the second order singular distributed parameter system coupled
with the singular lumped parameter system. The solutions of the problem and
the constructive expression of the solutions are given by the generalized inverse
one of bounded linear operator.

Let H denote the complex separable Hilbert space, E0 and A0 be linear
operators in H , A0 be an invertible and closed densely defined linear operator,
E0 be a bounded one, and gi, b0, y ∈ H(i = 0, 1, 2), b0 �= 0. There exists
A

1/2
0 . Let Rn denote the n-dimensional Euclidean space, Rn×n denote the set

of real matrices. Further, z, g, ki ∈ Rn(i = 0, 1, 2) and kj �= 0(i = 0, 1, 2), E2,
F ∈ Rn×n and detE2 = 0. For the systems

E0ÿ = A0y + ub0 y(0) = y0, ẏ = y1 (1)
E2ż = Fz + w, z(0) = z0 (2)

if u =< z, g > and w =< E0ÿ, g2 > k2+ < E0ẏ, g1 > k1+ < E0y, g0 > k0 are
the feedback controls, where < ·, · > denotes the inner product, then (1) and
(2) become

E0ÿ = A0y+ < z, g > b0 y(0) = y0, ẏ(0) = y1 (3)
E2ż = Fz+ < E0ÿ, g2 > k2+ < E0ẏ, g1 > k1+ < E0y, g0 > k0,

z(0) = z0 (4)

Let G0z =< z, g > b0, G0iy =< E0y, gi > ki(i = 0, 1, 2), then the expressions
of (3) and (4) become{

E0ÿ = A0y +G0z, y(0) = y0, ẏ(0) = y1
E2ż = Fz + G02ÿ +G01ẏ +G00y, z(0) = z0

(5)

The problem of pole assignment for (1) and (2) is whether there exist gi ∈ H(i =
0, 1, 2) for an arbitrary set {αi}N

1 of N complex numbers such that the closed-
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loop second order coupled singular distributed parameter system (5) possesses
the poles {αi}N

1 .

Let E1 =
[
I 0
0 E0

]
, A =

[
0 A1/2

A
1/2
0 0

]
, v =

[
v1
v2

]
, where v1 = A

1/2
0 y,

v2 = ẏ. From (5) we obtain{
E1v̇ = Av +Gz,
E2ż = Fz + G1v̇ +G2v

(6)

where Gz =< z, g >

[
0
b0

]
=< z, g > b, G2v = G00A

−1/2
0 v1 + G01v2, G1v =

G02v2, and b =
[

0
b0

]
.

Let B0 =
[

E1 0
−G1 E2

]
, T0 =

[
A G
G2 F

]
, and ω =

[
v
z

]
. From (6) we

have

B0ω̇ = T0ω, ω(0) = ω0 (7)

The generalized eigenvalue problems of (5) and (7) can be written, respec-
tively, as follows:{

λ2E0y = A0y +G0z
λE2z = Fz + λ2G02y + λG01y +G00y

(8)

and
λB0ω = T0ω (9)

The following result can be proved directly:

Lemma 1.1 Let A0 be an invertible linear operator and let E0 be a bounded

linear operator. If (λ, y, z) is a solution of (8), v =
[
v1
v2

]
=

[
A1/2y
λy

]
,

ω =
[
v
z

]
, then (λ, ω) is a solution of (9). Conversely, if (λ0, ω0) is a solution

of (9), where ω0 =
[
v0
z0

]
, v0 =

[
v01
v02

]
, then (λ0, A

−1/2
0 v01, z0) is a solution

of (8).

According to Lemma 1.1, the problem of pole assignment for (1) and (2) becomes
whether there exist gi ∈ H(i = 0, 1, 2) for an arbitrary set {αi}N

1 of N complex
numbers such that the closed-loop singular system (7) possesses the poles {αi}N

1 .
In this note, the constructive expressions of gi(i = 1, 2) are given via the

generalized inverse one of bounded linear operator in Hilbert space.
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2. Preliminaries

In the following, E∗
0 denotes the adjoint operator of E0, σp(E0, A0) = {λ : λ

is a generalized eigenvalue of E0 and A0} denotes the finite generalized point
spectrum of E0 and A0, i.e. the finite poles of system (1); ρ(E1, A) = {α :
(αE1 −A) is a regular operator}; R(αE1, A) = (αE1 −A)−1 denotes the inverse
operator of (αE1 −A) for α ∈ ρ(E1, A); I denotes the identity operator.

Definition 2.1 (Ge, 1993b) Let B(H) denote the Banach algebra of all bounded
linear operators on H and B ∈ B(H). If there exists B+ ∈ B(H) such that
BB+B = B, B+BB+ = B+, (B+B)∗ = B+B, and (BB+)∗ = BB+, then B+

is called the generalized inverse one of B.

Lemma 2.1 If there exists B+, then (i) B+ is unique; (ii) there exists (B∗)+,
and (B∗)+ = (B+)∗.

Proof. (i) If G1 and G2 are two operators satisfying

BG1B = B, G1BG1 = G1, (G1B)∗ = G1B, (BG1)∗ = BG1

and

BG2B = B, G2BG2 = G2, (G2B)∗ = G2B, (BG2)∗ = BG2,

then

G1 = G1BG1 = G1(BG1)∗ = G1G
∗
1B

∗ = G1G
∗
1(BG2B)∗

= G1G
∗
1B

∗G∗
2B

∗ = G1(BG1)∗(BG2)∗ = G1BG1BG2

= G1BG2 = (G1B)∗(G2BG2) = (G1B)∗(G2B)∗G2

= (G2BG1B)∗G2 = (G2B)∗G2 = G2BG2 = G2.

Therefore G1 = G2 = B+, i.e. (i) holds.

(ii) Since BB+B = B, B+BB+ = B+, (B+B)∗ = B+B, and (BB+)∗ = BB+,
by taking the adjoint of both sides of each equation we obtain

B∗(B+)∗B∗ = B∗, (B+)∗B∗(B+)∗ = (B+)∗, [(B+)∗B∗]∗

= (B+)∗B∗, [B∗(B+)∗]∗ = B∗(B+)∗.

Using the Definition 2.1 and (i) of Lemma 2.1, we obtain that (ii) holds.

Lemma 2.2 Let A0 be an invertible linear operator, E0 be bounded, E0 and
A0 only have the finite generalized point spectrum, and E0A

1/2
0 = A

1/2
0 E0. If

BF =
[
A 0
0 F

]
, R = R(λ2E0, A0) = (λ2E0 − A0)−1, and T =

[
0 G
G2 0

]
,

then
(i) λ ∈ ρ(E1, A) if and only if λ2 ∈ ρ(E0, A0) and

R(λE1, A) = (λE1 −A)−1 =

[
λE0R A

1/2
0 R

A
1/2
0 R λR

]
;

(ii) λ ∈ ρ(B0, BF ) if and only if λ ∈ ρ(E1, A) ∩ ρ(E2, F ).
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Lemma 2.2 can be proved directly by the reference to Halmos (1982).

For λ ∈ ρ(B0, BF ), let

α = λ2 < E0Rb0, g2 > R(λE2, F )k2 + λ < E0Rb0, g1 > R(λE2, F )k1

+ < E0Rb0, g0 > R(λE2, F )k0

and ω(λ) =< α, g >. Then we have the following lemma:

Lemma 2.3 Let A0 be an invertible and closed densely defined linear opera-
tor, E0 and A0 only have the finite generalized point spectrum, and A

1/2
0 E0 =

E0A
1/2
0 . If λ ∈ ρ(B0, BF ), then λ ∈ σp(B0, BF ) if and only if

ω(λ) = 1 (10)

and w1 =
[
R(λE1, A)b

α

]
is an associated generalized eigenvector.

Proof. Let λ ∈ ρ(B0, BF ). If (10) is false, then λ ∈ ρ(B0, T0). In fact, since

(λB0 − T0)∗ =
[
λ̄E∗

1 −A∗ −G∗
2 − λ̄G∗

1

−G∗ λ̄E∗
2 − F ∗

]
(11)

for any element ψ1 ∈ H ×H , ψ2 ∈ Rn, ψ =
[
ψ1

ψ2

]
, and y =

[
y1
y2

]
, let

(λB0 − T0)∗y = ψ. (12)

From (11) and (12) we obtain{
(λ̄E∗

1 −A∗)y1 − (λ̄G∗
0 +G∗

2)y2 = ψ1, (13)

−G∗y1 + (λ̄E∗
2 − F ∗)y2 = ψ2. (14)

Since λ ∈ ρ(B0, BF ), from (14) we have

y2 = R∗(λE2, F )ψ2+ < y1, b > R∗(λE2, F )g. (15)

Using (13) and (15), we deduce

y1 = h+ < y1, b > h1 (16)

where

h = R∗(λE1, A)ψ1 +R∗(λE1, A)(λ̄G∗
1 +G∗

2)R∗(λE2, F )ψ2,

h1 = R∗(λE1, A)(λ̄G∗
1 +G∗

2)R∗(λE2, F )g.

Thus

< y1, b >=< h, b > + < y1, b >< h1, b > (17)
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and

< h1, b > = λ̄ < R∗(λE1, A)G∗
1R

∗(λE2, F )g, b >
+ < R∗(λE1, A)G∗

2R
∗(λE2, F )g, b >

= λ̄ < R∗(λE2, F )g,G1R(λE1, A)b >
+ < R∗(λE2, F )g,G2R(λE1, A)b > .

From Lemma 2.2 we have

G1R(λE1, A)b = G1

[
λE0R A

1/2
0 R

A1/2R λR

] [
0
b0

]
= λ < E0Rb0, g2 > k2,

G2R(λE1, A)b =< E0Rb0, g0 > k0 + λ < E0Rb0, g1 > k1.

Therefore

< h1, b > = (λ̄)2< E0Rb0, g0 > ·< R(λE2, F )k2, g >

+λ̄< E0Rb0, g1 >< R(λE2, F )k1, g >

+< E0Rb0, g0 >< R(λE2, F )k0, g > = ω(λ).

Hence, (17) can be written as follows

< y1, b >=
< h, b >

1 − ω(λ)
. (18)

Using (15), (16) and (18) we obtain

y1 = h+
< h, b >

1 − ω(λ)
h1 (19)

y2 = R∗(λE2, F )ψ2 +
< h, b >

1 − ω(λ)
R∗(λE2, F )g (20)

From (19), (20) and the representation formulae of h and h1, it is obvious that y1
and y2 are continuous at any element ψ. Therefore, the operator [(λB0−T0)∗]−1

satisfying y = [(λB0−T0)∗]−1ψ is a bounded linear operator. Thus (λB0−T0)−1

is a regular operator.
If λ ∈ ρ(B0, BF ) and ω(λ) = 1, we need to prove that λ is a generalized

eigenvalue of B0 and T0, and the associated generalized eigenvector is w1 =[
R(λE1, A)b

α

]
. In fact, let w0 satisfy

(λB0 −T0)w0 = (λB0 −BF −T )w0 = (λB0 −BF )[I−R(λB0, BF )T ]w0 = 0.

From λ ∈ ρ(B0, BF ), it is obvious that λ ∈ σp(B0, T0) if and only if

R(λB0, BF )Tw0 = w0 =
[
w01

w02

]
.
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Since

R(λB0, BF )Tw0 =
[

R(λE1, A)Gw02

λR(λE2, F )G1R(λE1, A)Gw02 +R(λE2, F )G2w01

]
,

R(λE1, A)Gw02 =< w02, g > R(λE1, A)b = w01,

and

λR(λE2, F )G1R(λE1, A)Gw02 +R(λE2, F )G2w01

=< w02, g > [λR(λE2, F )G1R(λE1, A)b +R(λE2, F )G2R(λE1, A)b]
=< w02, g > [λ2 < E0Rb0, g2 > R(λE2, F )k2

+λ < E0Rb0, g1 > R(λE2, F )k1+ < E0Rb0, g0 > R(λE2, F )k0]
=< w02, g > α = w02,

we have λ ∈ σp(B0, T0), and the associated generalized eigenvector is w1.

Lemma 2.4 (Wang, 1982) Let xi ∈ H and xi �= 0 (i = 1, 2, · · · , N), yN+k ∈
H and yN+k �= 0, k = 1, 2, · · · , and HN−1

i denote the closed linear subspace
generated by {x1, x2, · · · , xi−1, xi+1, · · · , xN , yN+1, yN+2, · · · }. If xi �∈ HN−1

i ,
then there exists g1 ∈ H such that < xi, g1 >= 1(i = 1, 2, · · · , N), and

< yk, g1 >= 0 (k = N + 1, N + 2, · · · ).
Assumption (G1) Let A0 be an invertible and closed densely defined linear
operator, and let E0 be a bounded linear operator. There exists A1/2

0 and
E0A

1/2
0 = A

1/2
0 E0. E0 and A0 have only the finite generalized point spectrum.

Let {λk}∞1 be the set of all finite generalized points of the spectrum of E0 and
A0, and any λk be a single, and ϕk be the associated generalized eigenvector,
i.e.

A0ϕk = λkE0ϕk (k = 1, 2, · · · ).
Let {ψk}∞1 denote the set of all generalized eigenvectors of E∗

0 and A∗
0 sat-

isfying

A∗
0ψk = λ̄kE

∗
0ψk (k = 1, 2, · · · ),

and there exist the following relations between {Eϕk}∞1 and {ψk}∞1 :

< E0ϕk, ψl >=
{

1 k = l
0 k �= l

(k, l = 1, 2, · · · ).

Assumption (G2) Let E2, F ∈ Rn×n, F2 and F have only the finite generalized
point spectrum {rk}n0

1 (n0 < n), every rk be a single, and uk be the associated
generalized eigenvector, i.e. Fuk = rkE2uk(k = 1, 2, · · · , n0). For the general-
ized eigenvalue r̄k of E∗

2 and F ∗, the associated generalized eigenvector is vk,
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i.e. F ∗vk = r̄kE
∗
2vk(k = 1, 2, · · · , n0), and there exist the following relations

between {E2uk}n0
1 and {vk}n0

1 :

< E2uk, vl >=
{

1 k = l
0 k �= l

(k = 1, 2, · · · , n0).

3. Main result and proof

Theorem 3.1 Suppose E0 and A0 satisfy the assumption (G1), E2 and F sat-
isfy the assumption (G2), and there exists E+

0 . Let {αi}N
1 be an arbitrary

set of N complex numbers satisfying αi �= αj(i �= j; i, j = 1, 2, · · · , N), and
αi �∈ σp(E1, A) ∪ σp(E2, F )(i = 1, 2, · · · , N). If

djµ = αµ
j < R(αjE2, F )kµ, g > �= 0 (j = 1, 2, · · · , N ;µ = 0, 1, 2),

then there exist gµ ∈ H(µ = 0, 1, 2) such that {αi}N
1 ∪ {√λk}∞N+1 ⊂ σp(B0, T0),

and

gµ =
N∑

j=1

g
(µ)
j ψj + [I − (E∗

0 )+E∗
0 ]a, (µ = 0, 1, 2, ),

where

g
(µ)
j =

α2
j − λj

3bj

N∏
k=1
k �=j

(α2
k − λj

λk − λj

)
·

N∑
k=1

α2
k − λk

dkµ(α2
k − λj)

·
N∏

i=1
i�=k

( α2
k − λi

α2
k − α2

i

)
,

j = 1, 2, · · · , N ;µ = 0, 1, 2,

and a is any element in H.

Proof. Let xµi = αµ
i < R(αiE2, F )k0, g > E0R(α2

iE0, A0)b0, i = 1, 2, · · · , N ;
µ = 0, 1, 2;

yk+N = E0ϕk+N (k = 1, 2, · · · )
and HN−1

iµ denote the closed linear subspace generated by

{xµ1, xµ2, · · · , xµi+1, xµi+2, · · · , xN , yN+1, yN+2, · · · }.
Then xµi �∈ HN−1

iµ (i = 1, 2, · · · , N).
In fact, if xµi ∈ HN−1

iµ (i = 1, 2, · · · , N), then there exist

βµ1, βµ2, · · · , βµi−1, βµi+1, · · · , βµN , βµN+1, βµN+2, · · ·
such that

diµE0R(α2
iE0, A0)b0 =

N∑
j=1
j �=i

βµjdjµE0R(α2
jE0, A0)b0 +

∞∑
k=1

βµk+NE0ϕk+N .
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Thus

diµ < E0R(α2
iE0, A0)b0, ψl >=

N∑
j=1
j �=i

βµjdjµ < E0R(α2
jE0, A0)b0, ψl >,

l = 1, 2, · · · , N ;µ = 0, 1, 2.

(21)

Since

(α2
j − λl)E∗

0ψl = α2
jE

∗
0ψl − λ̄lE

∗
0ψl = (α2

jE
∗
0 −A∗

0)ψl(l = 1, 2, · · · , N),

E∗
0ψl =

1

α2
j − λl

(α2
jE

∗
0 −A∗

0)ψl(l = 1, 2, · · · , N),

from (21), we obtain

diµbl
α2

i − λl
=

N∑
j=1
j �=i

βµjdjµbl
α2

i − λl
(l = 1, 2, · · · , N ;µ = 0, 1, 2). (22)

Let blj =
1

α2
j − λl

(j, l = 1, 2, · · · , N) and DN = �blj�N×N . Then

detDN = (−1)
N(N−1)

2

∏
1≤i<j≤N

(α2
i − α2

j )
∏

1≤i<j≤N

(λi − λj)

N∏
i=1

N∏
j=1

(α2
i − λj)

.

Thus, detDN �= 0 by the given assumptions. Therefore, (22) has no solution.
Hence

xµi �∈ HN−1
iµ (i = 1, 2, · · · , N ;µ = 0, 1, 2).

Using Lemma 2.4, we obtain that there exist gµ ∈ H(µ = 0, 1, 2) such that

diµ < E0R(α2
iE0, A0)b0, gµ >= 1/3 (i = 1, 2, · · · , N ;µ = 0, 1, 2) (23)

< yk, gµ >= 0 (k = N + 1, N + 2, · · · ;µ = 0, 1, 2). (24)

From (23) and (24), it is easy to prove ω(αi) = 1 and

gµ =
N∑

k=1

g
(µ)
k ψk + [I − (E∗

0 )+E∗
0 ]a (µ = 0, 1, 2)

where a is any element in H , and

1/3 = diµ < E0R(α2
iE0, A0)b0, gµ >= diµ

N∑
j=1

g
(µ)
j < E0Rb0, ψj >

(µ = 0, 1, 2)
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i.e.
N∑

j=1

g
(µ)
j

bi
α2

i − λj
=

1
3diµ

(i = 1, 2, · · · , N ;µ = 0, 1, 2) (25)

The solution of (25) is

g
(µ)
k =

α2
k − λk

3bk

N∏
j=1
j �=k

(α2
j − λk

λj − λk

) N∑
j=1

α2
j − λj

djµ(α2
j − λk)

·
N∏

i=1
i�=j

( α2
j − λi

α2
j − α2

i

)
,

(k = 1, 2, · · · , N ;µ = 0, 1, 2).

From Lemma 2.3, we have αi ∈ σp(B0, T0)(i = 1, 2, · · · , N).

For λk ∈ σp(E0, A0)(i = N + 1, N + 2, · · · ), let Vk =
[
A1/2ϕk√
λkϕk

]
. It is easy

to prove that G2Vk = G1Vk = 0, and

T0

[
Vk

0

]
=

[
A G
G2 F

] [
Vk

0

]
=

[
AVk

G2Vk

]
=

⎡
⎣

√
λkA

1/2
0 ϕk

A0ϕk

G2Vk

⎤
⎦

=
√
λk

⎡
⎣ I 0

0 E0
0

−G1 E2

⎤
⎦

⎡
⎣ A

1/2
0 ϕk√
λkϕk

0

⎤
⎦ =

√
λkB0

[
Vk

0

]
.

Thus {√λk}+∞
N+1 ⊂ σp(B0, T0). Hence Theorem 2.1 holds.

4. An illustrative example

Consider the following systems in H ×H and Rn ×Rn, respectively:⎧⎪⎪⎨
⎪⎪⎩

[
I 0
I 0

] [
ÿ1
ÿ2

]
=

[
A11 0
A21 A22

] [
y1
y2

]
+

[
b1
0

]
u[

I1 0
0 0

] [
ż1
ż2

]
=

[
F11 0
F21 F22

] [
z1
z2

]
+

[
v1
0

] (26)

where I1 denotes the identity matrix in Rn, A11 is a discrete spectral operator,
and there exists A−1

11 ; A22 and F22 are invertible, there exists A1/2
22 , A21 =

A11 −A22. It is easy to prove that[
A11 0
A21 A22

]1/2
[

A
1/2
11 0

A
1/2
11 −A

1/2
22 A

1/2
22

]
,

[
I 0
I 0

] [
A11 0
A21 A22

]1/2

=
[
A11 0
A21 A22

]1/2 [
I 0
I 0

]
.

Let the feedback controls be

u =< z1, g >, v1 =< ÿ, g2 > k2+ < ẏ1, g1 > k1+ < y1, g0 > k0.
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Then (26) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
I 0
I 0

] [
ÿ1
ÿ2

]
=

[
A11 0
A21 A22

] [
y1
y2

]
+ < z1, g >

[
b1
0

]
[
I1 0
0 0

] [
ż1
ż2

]
=

[
F11 0
F21 F22

] [
z1
z2

]

+
[
< ÿ1, g2 > k2+ < ẏ1, g1 > k1+ < y1, g0 > k0

0

]
.

(27)

It is obvious that (27) is the second order coupled singular distributed parameter
system. From (27) we obtain

{
ÿ1 = A11y1+ < z1, g > b1
ż1 = F11z1+ < ÿ1, g2 > k2+ < ẏ1, g1 > k1+ < y1, g0 > k0

. (28)

Hypothesis (H1) Let A11 be a discrete spectral operator, {λk}∞1 be the set
of all point spectrum of A11, and any λk be single, and ϕk be the associated
eigenvector, i. e.

A11ϕk = λkϕk (k = 1, 2, · · · ).

There exists A−1
11 . Let {ψk}∞1 denote the set of all eigenvector of A∗

11 satisfying

A∗
11ψk = λkψk (k = 1, 2, · · · ),

there exist the following relations between {ϕk}∞1 and {ψk}∞1 :

< ϕk, ψl >=
{

1 k = l
0 k �= l

(k, l = 1, 2, · · · ).

Hypothesis (H2) Let F11 ∈ Rn×n, {rk}n
1 be the set of all points of the spec-

trum of F11, and every rk be a single, and uk be the associated eigenvector,
i.e. F11uk = rkuk(k = 1, 2, · · · , n). For the eigenvalue rk of F ∗

11, the associated
eigenvector is vk, i. e. F ∗

11vk = rkvk(k = 1, 2, · · · , n). There exist the following
relations between {uk}n

1 and {vk}n
1 :

< uk, vl >=
{

1 k = l
0 k �= l

(k, l = 1, 2, · · · , n).

It is easy to prove that (27) satisfies the Assumptions (G1) and (G2) of this
note if (28) satisfies the Hypotheses (H1) and (H2). Therefore, there exists the
second order coupled singular distributed parameter system, which satisfies the
hypothesis of this note.
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Conclusion

In this paper, pole assignment by feedback control of the second order singu-
lar distributed parameter system coupled with the first order singular lumped
parameter system is discussed via functional analysis and operator theory in
Hilbert space. The solutions of the problem and the constructive expression of
the solutions are given by the generalized inverse one of bounded linear oper-
ator. This research is theoretically important and convenient for studying the
feedback control and pole assignment of the coupled singular distributed para-
meter systems. If (2) is the second order singular lumped parameter system,
the results which are obtained in this paper need to be modified.
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