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Abstract: In this paper the stabilization problem of undamped
second order system is considered. The stabilization by first order
dynamic feedback is studied. The global asymptotic stability of the
respectively closed-loop system is proved by LaSalle’s theorem. As
an example of application of the proposed method an electric ladder
network L and lc type is presented. Numerical calculations were
made using the Matlab/Simulink program.
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1. Introduction

The problem of feedback stabilization of second order systems has been con-
sidered recently by Kobayashi (2001) and Kobayashi & Oya (2004). Kobayashi
studied stabilization by adaptive nonlinear feedback for finite dimensional sys-
tems (Kobayashi, 2001) and for infinite dimensional systems (Kobayashi & Oya,
2004). The state matrix of the second order system has eigenvalues only on the
imaginary axis. Is evident that a second order system with static feedback is not
asymptotically stable. If a system is controllable and observable, then it can be
stabilized by a dynamic feedback (Luenberger observer with linear regulator).
The order of the dynamic feedback is equal to the order of the system. In this
paper we will consider stabilization by first order linear dynamic feedback. Our
dynamic feedback is optimal from the point of view of its order.

2. Undamped second order system

Let AT = A = [aij ] ∈ Rn×n be a real symmetric matrix and let A be a positive
definite matrix (A > 0). Now we consider the following system

ẍ(t) + Ax(t) = Bu(t), y(t) = Cx(t), (1)
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where x(t) ∈ Rn, u(t) ∈ R is the control input, y(t) ∈ R is the output, B ∈ Rn×1

and C ∈ R1×n.
Let x̃(t) = [x(t)T ẋ(t)T ]T and let

Ã =
[

0 I
−A 0

]
, B̃ =

[
0
B

]
, C̃ =

[
C 0

]
. (2)

Then from (1) we have

˙̃x(t) = Ãx̃(t) + B̃u(t), y(t) = C̃x̃(t). (3)

Remark 2.1 The real symmetric matrix AT = A has only real eigenvalues λi

and λi > 0, because A > 0. The eigenvalues of the state matrix Ã of the system
(3) are given by following formulas: s̃i = ±j

√
λi, j2 = −1, i = 1, 2, . . . , n. The

state matrix Ã has eigenvalues on the imaginary axis. In this case the system
(3) is called undamped second order system.

Remark 2.2 The pair (Ã; B̃) is controllable if and only if the pair (A; B) is

controllable. The pair (A; B) is controllable if and only if rank[siI − A
...B] = n

for si ∈ λ(A), i = 1, 2, . . . , n, where λ(A) is the spectrum of A ∈ Rn×n (see
for example Klamka, 1990, p. 21, 149, and Klamka, 1991). Similarly, the pair

(A; B) is controllable if and only if rank[B
...AB

...A2B
... . . .

...An−1B] = n.

Remark 2.3 It is obvious that the pair (C; A) is observable if and only if
the pair (AT ; CT ) is controllable (see, for example, Klamka, 1990, p. 63, and
Klamka, 1991), i.e.

rank

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAn−1

⎤
⎥⎥⎥⎥⎥⎦ = n, (4)

where A ∈ Rn×n. Similarly (criterion of Hautus 1969) the pair (C; A) is ob-
servable if and only if the rankM(s; C, A) = n for any complex number s (in
particular, for any s = si ∈ λ(A)), where

M(s; C, A) =
[

sI − A
C

]
. (5)

Let ẋ(t) = Ax(t), y(t) = Cx(t). The following relation holds:

{(C; A) is observable} ⇔ {y(t) = 0, t ≥ 0 ⇒ x(t) = 0, t ≥ 0}. (6)
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Remark 2.4 We notice that (see (2))

rank

⎡
⎢⎢⎢⎢⎢⎢⎣

C̃

C̃Ã

C̃Ã2

...
C̃Ãn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

= rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C 0
0 C

CA 0
0 CA

CA2 0
0 CA2

...
...

0 CAn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2n (7)

if and only if the condition (4) is satisfied. Thus, if and only if the pair (C; A)
is observable, then the pair (C̃; Ã) is observable.

3. Feedback stabilization

The system (3) is stable, but not asymptotically stable. It is evident that the
system (3) with static feedback u(t) = −Ky(t) is not asymptotically stable.
If (Ã; B̃) is controllable and (C̃; Ã) observable, then from the classical result
it can be shown that the dynamic feedback (Luenberger observer with linear
regulator) asymptotically stabilizes the system (3). The order of the dynamic
feedback is 2n or 2n − 1 (reduced order Luenberger observer). Now we will
consider stabilization by first order linear dynamic feedback.

We consider the linear dynamic feedback given in the following form:

u(t) = −K(y(t) + w(t)), K > 0,
ẇ(t) = −aw(t) + bu(t), a > 0, b > 0,

(8)

where dim w(t) = 1. The closed-loop system (3), (8) is described by the follow-
ing equation in the state space X = Rn × Rn × R:

ż(t) = Fz(t), F ∈ R(2n+1)×(2n+1), z(t) ∈ X = R2n+1, (9)

F =

⎡
⎣ 0 I 0

−[A + BKC] 0 −BK
−bKC 0 −[a + bK]

⎤
⎦ , z(t) =

⎡
⎣ x(t)

ẋ(t)
w(t)

⎤
⎦ (10)

or differently as the block-diagonal system (in this case with α = 1 and β = 1
in output s(t))[ ˙̃x(t)

ẇ(t)

]
=

[
Ã 0
0 −a

] [
x̃(t)
w(t)

]
+

[
B̃
b

]
u(t),

s(t) =
[

αC̃ β
] [

x̃(t)
w(t)

] (11)

with static feedback

u(t) = −Ks(t), K > 0. (12)
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Remark 3.1 From Remark 2.1 for a > 0 (see (8)) λ(Ã) ∩ λ(−a) = ∅. Let the
pair (C̃; Ã) be observable (see Remark 2.3 and 2.4). Then for α �= 0 and β �= 0

rank

⎡
⎣ sI − Ã 0

0 s + a

αC̃ β

⎤
⎦ = 2n + 1, ∀s (13)

and consequently the block-diagonal system (11) with output s(t) is observable.

Now we consider the following functional

V (x(t), ẋ(t), w(t)) = 1
2x(t)T Ax(t) + 1

2 ẋ(t)T ẋ(t)

+ 1
2

a
b w(t)2 + 1

2K[Cx(t) + w(t)]2.
(14)

We notice that if AT = A > 0, a > 0 and b > 0, then

V (x, ẋ, w) ≥ 1
2
xT Ax +

1
2
ẋT ẋ +

1
2

a

b
w2 > 0 (15)

for x �= 0, ẋ �= 0, w �= 0 and

V (x, ẋ, w) → ∞, if x, ẋ, w → ∞. (16)

From (14), (11) with α = 1 and β = 1, (12) and from elementary calculations
we obtain

V̇ (x(t), ẋ(t), w(t)) = u(t)[BT − C]ẋ(t) − b[
a

b
w(t) − u(t)]2, (17)

where u(t) is given by (12).

Remark 3.2 If output matrix C = BT , then

V̇ (x(t), ẋ(t), w(t)) = −b[
a

b
w(t) − u(t)]2 ≤ 0. (18)

In this case V given by (14) is the Lyapunov functional for system (9).

Substituting u(t) from (12) into (18) we finally obtain

V̇ (x(t), ẋ(t), w(t)) = −b[KBT x(t) + (
a

b
+ K)w(t)]2 = −bs(t)2 ≤ 0, (19)

where s(t) = αBT x(t) + βw(t) is the output of the system (11) with C = BT

(see (2)), α = K and β = a
b + K.

By LaSalle’s theorem (LaSalle & Lefschetz, 1966, p. 196) the solution of (9)
asymptotically tends to the maximal invariant subset of E, where

E = {(x, ẋ, w) : V̇ (x, ẋ, w) = 0}. (20)
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From V̇ (x, ẋ, w) = 0 (see (19)) we have s = 0 and u = 0 (see (12)). The
system (11) is observable (see Remark 3.1) and thus from s = 0 (see Remark
2.3, relation (6)) we obtain x = 0, ẋ = 0 and w = 0. Consequently, it is easy to
see that the largest invariant subset contained in E = {0} is the set S = {0}.
Thus, the following theorem has been proved:

Theorem 3.1 Let AT = A ∈ Rn×n, A > 0 (positive definite matrix). Let
the pair (A; B) be controllable. If matrix C = BT and K > 0, a > 0 and
b > 0, then the closed-loop system (3), (8) described by equation (9) is globally
asymptotically stable, i.e. Re λ(F ) < 0, where F is the state matrix of system
(9).

4. Properties of the matrix eFt

The matrices F and eFt are respectively the state matrix and the fundamental
matrix of the closed-loop system (9). The norm of fundamental matrix depends
on the inner product in Hilbert space X .

Consider the Hilbert space X = Rn × Rn × R with the following inner
product:

(d|e) = dT e, d ∈ X, e ∈ X. (21)

Every inner product on Hilbert space X induces the norm on X :

‖d‖ =
√

(d|d). (22)

Let S : X → X be a linear operator. The natural norm of S is given by

‖S‖ = sup{‖Sd‖ : ‖d‖ ≤ 1}. (23)

If inner product (21) induces the norm (22), then

‖S‖ = max
k

√
λk(ST S), (24)

where λk(ST S) is eigenvalue of matrix ST S, k = 1, 2, 3, . . . , dimX .
Let F be the matrix (10). The family of matrices eFt, 0 ≤ t ≤ ∞, is

a strongly continuous semigroup (C0 semigroup) of bounded linear operators
on X (Pazy, 1983, p. 4). The matrix F is the infinitesimal generator of the
semigroup eFt. If Re λ(F ) < 0, then there exist constants γ < 0 and M ≥ 1
such that

‖eFt‖ ≤ Meγt for 0 ≤ t ≤ ∞, (25)

where ‖.‖ is given by (24). In this case the semigroup eFt is exponentially stable
with the growth constant γ and consequently the generator F is exponentially
stable.
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Now we consider the space X = Rn × Rn × R with the inner product given
in the following form (see, for example, Kobayashi & Oya, 2004, p. 76):

(d|e)c = (Ad1|e1) + (d2|e2) +
a

b
(d3|e3) + K(Cd1 + d3|Ce1 + e3), (26)

where a > 0, b > 0, K > 0. We notice that for d ∈ X and F given by (10) with
C = BT

(Fd|d)c + (d|Fd)c = −2b‖KBTd1 + [
a

b
+ K]d3‖2

c ≤ 0. (27)

Thus, the linear operator F (in this case matrix F ) with C = BT is dissipative.
From the Lumer Phillips theorem (Pazy, 1983, p. 14, Beckenbach, 1968, p. 150)
matrix F is the infinitesimal generator of C0 semigroup of contractions on X , i.
e.

‖eFt‖c ≤ 1 for t ≥ 0. (28)

From Theorem 3.1, Re λ(F ) < 0, where F is the state matrix of the sys-
tem (9). Thus, it is evident that ‖eFt‖c → 0 if t → ∞.

These results will be illustrated in the following example.

5. Electric ladder network

Consider an electric ladder network of the L and lc-type shown in Fig. 1. The
parameters of the network L > 0, l > 0 and c > 0 are known. Let y(t) =
x1(t)/Lc.

L L L

l
c c

u(t) x (t)1 x (t)nx (t)2

ll
c

Figure 1. Electric ladder network of the L and lc-type

The electric system shown in Fig. 1 is described by following equations:

Lc ẍi(t) − xi−1(t) + (2 + L
l )xi(t) − xi+1(t) = 0, i = 1, 2, . . . , n

x0(t) = u(t), xn+1(t) = 0, y(t) = x1(t)/Lc,
(29)
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or by equation (1) with C = BT and

A =
1
Lc

⎡
⎢⎢⎢⎢⎣

2 + L
l −1 0 · · · 0

−1 2 + L
l −1 · · · 0

0 −1 2 + L
l · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 2 + L

l

⎤
⎥⎥⎥⎥⎦ , B =

1
Lc

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ . (30)

The eigenvalues of symmetric Jacobi matrix A given in (30) are represented
by the following equations (see, for example, Bellman, 1960, p. 215 or Lancaster,
1969, p. 104):

λi(A) =
1
Lc

[4 sin2(
ϕi

2
) +

L

l
], ϕi =

i π

n + 1
, i = 1, 2, . . . , n. (31)

We notice (see (31)), that λi(A) > 0. Thus the matrix A is a positive definite
matrix. Similarly to Mitkowski (2004), we can prove that the pair (A; B) is
controllable. From Theorem 3.1 it is obvious that the closed-loop system (29),
(8)) is globally asymptotically stable.

6. Simulation results

Let us consider the undamped electric system (29) with feedback (8), where
n = 5, Lc = 1, L/l = 1 and a = 1, b = 1. Let x1(0) = 0.2, xi(0) = 0,
i = 2, 3, . . . , n, ẋi(0) = 0, i = 1, 2, 3, . . . , n and w(0) = 1.

In Fig. 2 output trajectory y(t) = x1(t)/Lc for K = 0 is shown (see feedback
(8)).

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 2. Trajectory y(t) of undamped system (29)
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Now we consider the closed-loop system (29), (8) with the cost functional

J(K) =
∫ 100

0

[y(t)2 + 0.01u(t)2]dt. (32)

In Fig. 3 the cost functional J(K) of closed-loop system (29), (8) is shown. In
Fig. 4 the output trajectory y(t) = x1(t)/Lc for K = 5 is shown (see feedback
(8)).

0 2 4 6 8 10 12
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5

5.5

Figure 3. Cost functional J(K)
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Figure 4. Trajectory y(t) with feedback (8) for K = 5
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7. Conclusion

In this paper, we considered the stabilization problem of undamped second
order system (1). If the output matrix C = BT , then the system (1) can be
stabilized by the first order dynamic feedback (8). To prove that the closed-
loop system (1), (8) is globally asymptotically stable (see Theorem 3.1), we
have used LaSalle’s invarince principle (LaSalle & Lefschetz, 1966, p. 196). The
observability of the system (1) plays an essential role in the proof. Example
(the electric ladder network of L and lc -type, see (29)) shows the quality of
stabilization depends on K (see Figs. 2, 3 and 4).

Results can be generalized. The approximately observable (similarly to
Klamka, 1990, p. 135, 148) system (1) in appropriate Hilbert space with bounded
operator C = B∗ and with self-adjoint operator A with compact resolvent can
be stabilized by one dimensional dynamic feedback (8). In this case we have
to use a generalized version of LaSalle’s invariance principle (see for example
Slemrod, 1976, p. 406, and Kobayashi & Oya, 2004, p. 77) for C0 semigroup of
contractions on X (see (28)).
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