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Abstract: An essential limitation in using the classical optimal
control has been its limited robustness to modeling inadequacies and
perturbations. This paper presents the concepts of two practical
control structures based on the time-optimal approach, a hard and
soft one. The hard structure is defined by the parameters selected in
accordance with the rules of the statistical decision theory; however,
the soft structure allows additionally for elimination of rapid changes
in control values. The object is a basic mechanical system, with
uncertain (also non-stationary) mass treated as a stochastic process.
The methodology proposed here is of a universal nature and may
easily be applied with respect to other elements of uncertainty of
time-optimal controlled mechanical systems.
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1. Introduction

The main constraint on the application possibilities of systems based on the
principles of the classical optimal control theory (Athans and Falb, 1966) has
been their excessive sensitivity to the modeling inaccuracy of object dynamics,
the identification of object parameters, as well as perturbations and noise nat-
urally accompanying real processes. In the extreme cases, even a small error in
parameter identification, which is unavoidable in practice, completely disquali-
fies an optimal control system. However, the very idea of optimal control often
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turns out to be a proper basis to design a suboptimal structure in which ex-
cessive sensitivity would be eliminated; for details, see Friedland (1996), Isidori
(1995), Khalil (1996), Lyshevski (2001), Weinmann (1991), Zhou et al. (1996).

The two basic types of optimal control are related with quadratic and time-
optimal (minimum-time) performance indexes. The time-optimal approach is
very significant from the viewpoint of many technological processes, because it
allows to maximally reduce considerable technological interruptions, which are
economically ineffective. On the other hand, time-optimal structures, such as
controls with extreme values, are exceptionally sensitive to the above-mentioned
identification inaccuracies and disturbances.

In this paper, the time-optimal control of an object described using the
second principle of Newton’s dynamics, i.e. from the physical point of view,
representing mass subjected to force, will be considered. Such a mechanical
system is a basic element accompanying all considerations in robotics (Sciavicco
and Siciliano, 1996). The uncertainty problem will be considered in the example
of the main parameter of such an object, i.e. the value of mass (or the moment of
inertia). In practice, that value can only be given with the precision that results
from accurate measurement. Moreover, in many applications (e.g. shifting or
transport tasks) this value is not subject to measurement at all, but rather
grossly estimated on the basis of the assumed value. Furthermore, in other
situations, a mass may be variable, along with the consumption of fuel or other
substances used in the technological process.

In this paper, the above problem has been solved by the introduction of
a random factor; namely, load will be treated as the realization of a stochas-
tic process with almost all realizations being piecewise continuous and jointly
bounded. The introduction of a random factor makes it possible to take into
account errors in the identification of mass, whereas the fluctuations of the par-
ticular realizations describe its changes, including also those of discontinuous
nature.

The paper is organized as follows. Section 2 specifies mathematical grounds
regulating strict theoretical justification for practical controlling structures pre-
sented in Section 3: a hard one, where parameters are selected in accordance
with the rules of the statistical decision theory, and a soft one, which allows
additionally for elimination of rapid changes of control values by making the
function of a feedback controller continuous. The concept presented is universal
and may be supplemented by and generalized with a number of various aspects
occurring in such tasks. These tasks, together with the results of numerical
verification, constitute the subject of the last Section 5.

The material presented provides a summary of the previous research on the
hard structure (Kulczycki, 1996a, b, 2000; Kulczycki and Wisniewski, 2002),
which forms here a basis for new investigations concerning the soft approach.
This material was presented in its preliminary version as Kulczycki et al. (2004).
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2. Theoretical results

The random approach to the control problem, worked out in this paper is based
on the concept of an almost certain time-optimal control. This is defined as
a stochastic process such that almost all of its realizations are controls which,
for proper deterministic systems obtained by fixing the random factor, bring
the state of the system to the target set in a minimal and finite time. The
almost certain time-optimal control is unique if every time-optimal control is a
process stochastically equivalent to it. This notion was introduced in Kulczycki
(1996b). Similarly, an almost certain solution of a random differential equation
means such a stochastic process that almost all its realizations are solutions of
proper deterministic equations obtained for a fixed random factor. The almost
certain solution is unique if every almost certain solution is a process stochas-
tically equivalent to it. The solution of a deterministic differential equation
will be considered below in Caratheodory sense, i.e. as a function which is ab-
solutely continuous at every compact subinterval of its time domain and fulfils
the differential equation almost everywhere; for details see Kulczycki (1996c).

Consider a mechanical system with a single degree of freedom, whose dy-
namics is described by the second law of Newtonian mechanics

ms̈(t) = u(t) , (1)

where m , s , u mean the load (mass or moment of inertia), position (linear or
angular), and control (force or moment), respectively. If the parameter m is
treated as a realization of a stochastic process M , then denoting by ω ∈ Ω
a random factor, and by X1, X2, U real stochastic processes which represent
the position, velocity and control respectively, the dynamics of the system un-
der consideration can now be described by the following random differential
equation:

Ẋ1(ω, t) = X2(ω, t) (2)

Ẋ2(ω, t) =
1

M(ω, t)
U(ω, t) , (3)

with the initial condition[
X1(ω, t0)
X2(ω, t0)

]
= x0 for almost all ω = Ω, (4)

given the following assumptions
(A1) t0 ∈ R, T = [t0,∞);
(A2) x0 = [x01, x02]T ∈ R2 and xf = [xf1, xf2]T ∈ R2 constitute the initial

and the target states, respectively;
(A3) the values of admissible controls are limited to the interval [−1, 1];
(A4) (Ω, Σ, P ) denotes a complete probability space;
(A5) M is a real stochastic process with almost all realizations being piecewise

continuous and satisfying the boundary condition M(ω, t) ∈ [m−, m+] for
t ∈ T , where 0 < m− ≤ m+.
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Let us introduce also the following subdivision of the state space R2 into
the disjoint sets R+, R−, Q+, Q−, {xf}; see Fig. 1. Specifically, let K+−, K++,
denote sets of all states which can be brought to the target by the control
U ≡ +1, if M ≡ m− or M ≡ m+, respectively; analogously K−− and K−+ for
U ≡ −1 if M ≡ m− or M ≡ m+. Moreover, let:

Q+ = {[x1, x2]T ∈ R2 such that there exist [x′
1, x2]T ∈ K+− and

[x
′′
1 , x2]T ∈ K++ with x′

1 ≤ x1 ≤ x′′
1 or x′′

1 ≤ x1 ≤ x′
1} (5)

Q− = {[x1, x2]T ∈ R2 such that there exist [x′
1, x2]T ∈ K−+ and

[x′′
1 , x2]T ∈ K−− with x′

1 ≤ x1 ≤ x′′
1 or x′′

1 ≤ x1 ≤ x′
1} (6)

R+ = {[x1, x2]T ∈ R2\Q such that there exist [x′
1, x2]T ∈ Q

with x1 < x′
1} (7)

R− = {[x1, x2]T ∈ R2\Q such that there exist [x′
1, x2]T ∈ Q

with x′
1 < x1}, (8)

where Q = Q+ ∪{xf}∪Q−. Therefore, the sets K+−, K++, represent all those
states which can be brought to the target by the control +1, at the minimum
and maximum possible values of a mass. The set Q+ contains intermediate
points. The sets K−+, K−−, and Q− may be interpreted analogously for the
control −1. Note also that K+− and K++ belong to Q+ as K−+ and K−−
belong to Q−. For illustration, see Fig. 1.
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Figure 1. Illustration of the theorem
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Theorem 2.1 For a dynamic system described by random differential equa-
tion (2)-(4), under assumptions (A1)-(A5), there exists a unique almost cer-
tain time-optimal control Uo, generating a unique almost certain solution X =
[X1, X2]T, where with probability 1:
(T1) if x0 ∈ R−, the function Uo(ω, ·) takes on the value −1 for t ∈ [t0, ts(ω))

and +1 for t ∈ [ts(ω), tf (ω)], where t0 < ts(ω) < tf (ω) < ∞ and X(ω, t) ∈
Q+ for t ∈ [ts(ω), tf (ω)); (for interpretation see Fig. 1);

(T2) if x0 ∈ R+, the function Uo(ω, ·) takes on the value +1 for t ∈ [t0, ts(ω))
and −1 for t ∈ [ts(ω), tf (ω)], where t0 < ts(ω) < tf (ω) < ∞ and X(ω, t) ∈
Q− for t ∈ [ts(ω), tf (ω));

(T3) if x0 ∈ Q−, the function Uo(ω, ·) takes on the form described above in
points (T1) or (T2) or takes on the value −1 for t ∈ [t0(ω), tf (ω)], where
t0 < tf (ω) < ∞ and X(t) ∈ Q− for t ∈ [t0(ω), tf (ω));

(T4) if x0 ∈ Q+, the function Uo(ω, ·) takes on the form described above in
points (T1) or (T2) or takes on the value +1 for t ∈ [t0(ω), tf (ω)], where
t0 < tf (ω) < ∞ and X(t) ∈ Q+ for t ∈ [t0(ω), tf (ω)).

The functions ts : Ω → R and tf : Ω → R introduced above, representing the
time of the changes in the value of the function Uo(ω, ·) and the time to reach
the target by the solution X(ω, ·), respectively, are random variables.

The proof of the above Theorem is analogous to one for the auxiliary task
of motion resistance, presented in Kulczycki (1996a, 1996b). The optimality
can be shown based on the theory of differential inequalities (Kulczycki, 1996a),
while the measurability of the functions ts and tf as well as Uo(·, t) and X(·, t)
can be shown by a superposition of the corresponding mappings (Kulczycki,
1996b).

The change of sign in the particular realizations of the control Uo (switching
of the control) can occur only when the system state belongs to the set Q. For
this reason it will be called a switching region. Finally: the switching curve γ
familiar from the classic case of the time-optimal point-to-point transfer of the
fixed mass m (Athans and Falb, 1966; Chapter 7.2), has been generalized by the
above to the switching region Q (γ = Q when m− = m+ = m).

3. Implications: suboptimal control structures

Except for specific cases, direct implementation of a system generating almost
certain time-optimal control encounters difficulties because of its dependence on
the random factor, in fact unknown a priori. However, thanks to the results of
Theorem given in Section 2, the presented material constitutes a useful basis for
creation of suboptimal control laws, from which such a dependence is removed.

3.1. The hard structure

The following concept will be based on the form of differential equation (3).
Namely, after its bilateral integration one may observe that the impact of the
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particular realizations of the stochastic process M can be estimated by using
their mean-values over any interval of time in which no special event – for
example control switching – occurs. To obtain a suboptimal controller, consider
a particular case of the probability measure P connected with the process M
(see Assumptions (A4)-(A5) ) which is concentrated on constant realizations
(interpreted as the average values). If the value of these constant realizations is
known and equal to m, then with the notation of Theorem 2.1 presented in the
previous section, m− = m+ = m, therefore, K+− = K++, and K−+ = K−−,
hence the switching region Q is confined to the switching curve whose shape
is dependent on the value of the parameter m. Denote as m̂ its estimate used
in the feedback control law; therefore, it can be interpreted as an (indefinite)
knowledge about the parameter m needed for the purpose of the synthesis of
the feedback controller equations.

The analysis of sensitivity to the error of the estimation of the parameter m
by the value m̂ will be presented below.

The case where the second coordinate of the target state is equal to zero, i.e.
with xf2 = 0, will be considered first. If m̂ = m, the control is time-optimal; the
state of the system is brought to the switching curve, and being permanently
included in this curve hereafter, it reaches the target in a minimal and finite
time. When m̂ < m, as a result of its having oscillations around the target,
over-regulations occur in the system; the target is reached in a finite time. If
m̂ > m, after the switching curve is crossed, sliding trajectories appear in the
system; here, too, the target is reached in a finite time. In both of the last two
cases, i.e. with m̂ �= m, the time to reach the target state increases from the
optimal more or less proportionally to the difference between the values m̂ and
m.

The remaining case, xf2 �= 0, will now be presented. If m̂ = m, the control
is time-optimal, and the phenomena are identical as before for xf2 = 0. When
m̂ < m, the trajectories occurring in the system generate limit cycles; the
target is not reached. Finally if m̂ > m, even though some of the trajectories
temporarily diverge from the switching curve in the part between the axis x1

and the target state, ultimately the target is reached in a finite time; sliding
trajectories exist on the switching curve; the time to reach the target increases
along with the growth in the difference m̂ − m.

Based on the sensitivity analysis presented above, some elements of statisti-
cal decision theory will be applied to obtain the optimal value of the estimator m̂
needed for the purpose of the synthesis of the feedback controller equations. The
basic task of statistical decision theory (Berger, 1980) is the optimal selection of
one element from among all possible decisions on the sole basis of probabilistic
information about the state of nature (reality), especially when its actual state
is unknown. In the problem considered here, the real value of the parameter m
is treated as an unknown state of reality, while the fixed value of the estimator
m̂ constitutes a decision. The loss function l is required, whose value l(m̂, m) is
interpreted as losses resulting from making the decision m̂ when hypothetically
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the value m occurs in reality. Two basic procedures are commonly used: the
”flexible” Bayes rule minimizes the expected value of losses, whereas the ”rad-
ical” minimax rule minimizes the greatest possible loss that may occur after a
given decision is made. For details, see Berger (1980).

Assume – according to the results of the sensitivity analysis – that the loss
function is described in the linear and nonsymmetrical form:

l(m̂, m) =

⎧⎨
⎩

−p(m̂ − m) if m̂ − m < 0
0 if m̂ − m = 0,

q(m̂ − m) if m̂ − m > 0
(9)

where p, q ∈ R+ ∪ {∞}, but only one of them can be infinite. Suppose –
in reference to Assumption (A5) – that the random variable characterizing
the distribution of the mass m has a support of the form [m−, m+] such that
[m−, m+] ⊂ (0,∞).

It is readily shown (Kulczycki and Wisniewski, 2002) that if p = ∞, i.e. with
infinite values of loss function (9) for m̂ < m, the minimax decision is realized
by

m̂ = m+ . (10)

In turn, the Bayes decision with the positive numbers p and q, is given as a
solution of the following equation with the argument m̂:

F (m̂) =
p

p + q
, (11)

where F denotes the distribution function of the random variable characterizing
the mass m. This solution is unique owing to connectivity of its support. The
practical algorithm to solve equation (11) is presented in Kulczycki (2001).
For this purpose, one can also use artificial neural networks, according to the
procedure presented in Schiøler and Kulczycki (1997).

The results given by formulas (10) and (11) will be applied below.
Once again the case xf2 = 0 is considered first.
If over-regulations can be allowed, it is worthwhile to use the flexible Bayes

rule with real values for the loss function, i.e. according to equation (11). Such
a choice is possible because the determination of the estimator m̂ value that
is either less than, equal to, or greater than m allows for the system state
to be brought to the target in a finite time. (However, this time increases
approximately proportionally to the difference between the values m̂ and m.)

If over-regulations are not allowed, this determination needs to be carried out
on the basis of the minimax rule, assuming infinite values of the loss function
for m̂ < m, i.e. using formula (11). This enables the over-regulations to be
avoided, because they occur only if m̂ < m.

Assume now xf2 �= 0.
The value of the parameter m̂ should be determined using the minimax rule

with infinite values of the loss function for m̂ < m, i.e. by dependence (10).
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Such a choice guarantees that the generation of the inadmissible limit cycles,
which appear when m̂ < m, is avoided. If, however, this value is greater than
m, the state of the system is brought to the target in a finite time. (Note
that in the case of xf2 �= 0, the over-regulations cannot be avoided at all.) A
somewhat improved structure can be obtained by dividing the switching region
(curve) Q into two parts at the point of its intersection with the axis x1. For
each of them, the values of the parameter m̂ should be determined in a different
manner. Namely, in the case of the part which lies on the same side of the axis
x1 as the target state, it should be done – as previously – by using the minimax
rule with infinite values of the loss function for m̂ < m, i.e. using formula (10);
in the case of the part located on the opposite side, however, by the Bayes rule
with real values of the loss function, i.e. according to equation (11). This change
does not pose the risk that a cycle will occur, while the use of the flexible Bayes
rule makes it possible to render more efficiently the potential sliding process
occurring along the part of the switching curve located on the side of the axis
x1 opposite to the target.

If one has the value m̂ obtained according to the above procedure, the feed-
back controller equations can be calculated. Thus, the equations of the switching
curve K take on the form

x1 = −m̂

2
(x2

2 − x2
f2) + xf1 for x2 ∈ (xf2,∞) (12)

x1 =
m̂

2
(x2

2 − x2
f2) + xf1 for x2 ∈ (−∞, xf2) . (13)

Formula (12) defines the set K−+ = K−−, while dependence (13) defines the
set K+− = K++. In the case when, for xf2 �= 0, the switching curve is divided
into two parts at the point of its intersection with the axis x1, the equation for
the part lying on the side of this axis opposite to the target should be modified
as follows:

x1 = sgn(xf2)
(

m̂b

2
x2

2 −
m̂

2
x2

f2

)
+ xf1 , (14)

where m̂b denotes the additional estimator defining that part, obtained through
Bayes rule with real values of the loss function, i.e. by equation (11). The sets
R− and R+ constitute adequate areas resulting from the division of the plane
R2 by the curve K, according to formulas (7)–(8). For the sets K−, K+, R−,
R+ obtained in this way, the value of the suboptimal control is defined by the
equation

uhard(t) =

⎧⎪⎨
⎪⎩

−1 if [x1(t), x2(t)]T ∈ (R− ∪ K−)
0 if [x1(t), x2(t)]T ∈ {xf} ,

+1 if [x1(t), x2(t)]T ∈ (R+ ∪ K+)
(15)

where [x1(t), x2(t)]T means the object state, obtained by a real-time measure-
ment process for any t ∈ T . Fig. 2 provides an illustration of the control
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structure worked out here with the representative trajectory it generates.
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Figure 2. Hard structure (15) and the trajectories it generates for the case of
xf2 = 0

3.2. The soft structure

The control designed in the previous subsection may lead to frequent switchings
between the extreme – according to the assumption (A3) – values +1 and −1
along sliding trajectories, which should be avoided in mechanical systems, since
it can have a negative impact on the endurance of a device and on user comfort.
Based on the results of Theorem presented in Section 2 and under the condition
that the control may take any value from the interval [−1, 1], this goal can
be obtained by substituting a modified control law, rendered ”soft” instead of
”hard” (15). A general concept of soft structures is described in Lyshevski
(2001).

Let the sets K−− and K+−, be defined as previously but for the value of the
parameter m̂ calculated in the previous section for the discontinuous structure.
Let also the additional positive constant ∆m̂ be given and the sets K−+ and
K++, be defined for the value m̂ + ∆m̂ .

As before, the case xf2 = 0 will be considered first. Let a feedback controller
be as follows

usoft(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1 if [x1(t), x2(t)]T ∈ R−
z(x1(t), x2(t)) if [x1(t), x2(t)]T ∈ Q−

0 if [x1(t), x2(t)]T ∈ {xf} ,

z(x1(t), x2(t)) if [x1(t), x2(t)]T ∈ Q+

+1 if [x1(t), x2(t)]T ∈ R+

(16)
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with the function z : R2 → R continuously and strictly increasing from the
value −1 on the sets K−− and K++ to the value +1 on the sets K−+ and K+−
(see also Fig. 1). If solution X(ω, ·) is ”too close” – with respect to the real value
of the mass – to the set K+−, then control (16) is ”too great” and it makes this
solution further from the set K+− to the interior of the set Q+. And inversely,
if the solution is ”too far” to the set K+−, then control (16) is ”too small” and
brings the trajectory closer to this set (see Figs. 1 and 3). The result obtained
in the above manner is similar to the effect achieved on a bob-sled track thanks
to the appropriate modeling of its shape. It is a smooth movement, therefore,
allowing such a structure to be named ”soft”. An analogous situation occurs
between the sets K−+ and K−−. The value of the parameter ∆m̂ influences the
speed of the control fluctuations in the set Q: the greater the value, the milder
the fluctuations. For initial investigations one can suggest ∆m̂ = m̂/10.

Having the value m̂ obtained according to the material presented in subsec-
tion 3.1, and assuming the constant ∆m̂, one can calculate the equation of the
set K+−

x1 =
m̂

2
x2

2 + xf1 − ε for x2 ∈ (−∞, 0) (17)

and for the set K++

x1 =
m̂ + ∆m̂

2
x2

2 + xf1 + ε for x2 ∈ (−∞, 0), (18)

where the additional parameter ε ≥ 0 is closer to (but is not greater than) precise
positioning (i.e. assumed in practice precision of reaching the target state) and
has been introduced to avoid the over-increasing of the function z near the axis
x1. The function z can be proposed in the following manner:

z(x1, x2) = a(x2)[x1 − c(x2)]d − 1 for x2 ∈ (−∞, 0) , (19)

with

a(x2) =
4

∆m̂x2
2 + 4ε

(20)

c(x2) =
m̂ + ∆m̂

2
x2

2 + xf1 + ε, (21)

while the value of the positive parameter d presents a compromise between
the speed of action of the sub-time-optimal control system and its robustness.
Namely, d = 1 can be treated as neutral; the value d < 1 result in making the
solutions nearer to the curves K−+ or K++, which slows down the process but
increases robustness; and the inverse when d > 1. For the initial experimental
research d = 0.25 is proposed.

Analogous dependencies are given for in the sets K−− and K−+, respectively

x1 = −m̂

2
x2

2 + xf1 + ε for x2 ∈ (0,∞) (22)

x1 = −m̂ + ∆m̂

2
x2

2 + xf1 − ε for x2 ∈ (0,∞) . (23)
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The function z can be proposed here as

z(x1, x2) = a(x2)[x1 − c(x2)]1/d − 1 for x2 ∈ (0,∞) , (24)

with

a(x2) =
−4

∆m̂x2
2 + 4ε

(25)

c(x2) = −m̂

2
x2

2 + xf1 + ε. (26)

Let now xf2 �= 0. The concept introduced in the preceding paragraph should
be transferred here in a natural way. For simplicity of notation, the case xf2 > 0
will be investigated below; if xf2 < 0, the respective considerations are sym-
metrical. A feedback controller is also defined here by formula (16).

The sets K+− and K++, in the part between the target and the axis x1,
should be given like for the hard structure, both defined by the equation

x1 =
m̂ + ∆m̂

2
(x2

2 − x2
f2) + xf1 for x2 ∈ [0, xf2), (27)

with

z(x1, x2) = 1 for x2 ∈ [0, xf2). (28)

For the part lying in lower half-plane, the set K++ is defined by

x1 =
m̂ + ∆m̂

2
(x2

2 − x2
f2) + xf1 for x2 ∈ (−∞, 0) (29)

and the set K+− by

x1 =
m̂

2
x2

2 −
m̂ + ∆m̂

2
x2

f2 + xf1 − ε for x2 ∈ (−∞, 0) . (30)

The function z is given as

z(x1, x2) = a(x2)[x1 − c(x2)]d − 1 for x2 ∈ (−∞, 0) , (31)

with

a(x2) =
−4

∆m̂x2
2 + 4ε

(32)

c(x2) =
m̂ + ∆m̂

2
(x2

2 − x2
f2) + xf1 + ε. (33)

Finally, the sets K−− and K−+ are defined by

x1 = −m̂

2
(x2

2 − x2
f2) + xf1 + ε for x2 ∈ (xf2,∞) (34)

x1 = −m̂ + ∆m̂

2
(x2

2 − x2
f2) + xf1 − ε for x2 ∈ (xf2,∞), (35)
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respectively, and the function z is given as

z(x1, x2) = a(x2)[x1 − c(x2)]1/d − 1 for x2 ∈ (xf2,∞), (36)

with

a(x2) =
−4

∆m̂(x2
2 − x2

f2) + 4ε
(37)

c(x2) = −m̂

2
(x2

2 − x2
f2) + xf1 + ε. (38)

An illustration of the control structure thus obtained, along with the trajec-
tories it generates, is provided in Fig. 3. Frequent switchings of the control

x0

x (t)1

x (t)2

w     w∆_

_∆w     w_

xf

−4

−3

3

1

4

−1

_

w

w

−8 −6 −4 −2  2  4  6  8

Figure 3. Soft structure (16) and the trajectories it generates for the case of
xf2 �= 0

along the sliding trajectories have been eliminated, according to the assumed
goal of the soft structure. The control changes its value smoothly in full range
of the interval [−1, 1].

4. Final suggestions and remarks

The material presented in this paper is of a universal nature, and owing to
its clear interpretation it may be easily supplemented by a number of aux-
iliary aspects frequently occurring in robust control tasks. As a representa-
tive example, the problem of velocity limitation, described by the condition
|X2(ω, t)| ≤ w for almost every ω ∈ Ω and every t ∈ [t0(ω), tf (ω)], while w > 0
and −w < xf2 < w, will be investigated. Let also the auxiliary parameter ∆w,
such that 0 < ∆w ≤ w and ∆w − w ≤ xf2 ≤ w − ∆w, be introduced. By
defining the function v : R2 → R (similar to the function z) continuously and



Hard and soft controllers for a mechanical system with uncertain mass 585

strictly increasing from the value −1 on the set R×{w} to the value +1 on the
set R × {w − ∆w}, with the formula

v(x1, x2) = 2
(

w − x2

∆w

)D

− 1 for x2 ∈ [w − ∆w, w], (39)

where the parameter D > 0 plays the same role as d introduced in depen-
dence (19), one can obtain soft structure (16) supplemented with the problem
of velocity limitation:

usoft(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if [x1(t), x2(t)]T ∈ R− ∪ {R × (w,∞)}
v(x1(t), x2(t)) if [x1(t), x2(t)]T ∈ R+ ∩ {R× [w,−∆w, w]}
min{v(x1(t), x2(t), z1(t), x2(t))}

if [x1(t), x2(t)]T ∈ Q− ∩ {R × [w,−∆w, w]}
z(x1(t), x2(t)) if [x1(t), x2(t)]T ∈ Q− ∩ {R × [∆w − w, w − ∆w]}
0 if [x1(t), x2(t)]T ∈ {xf}
z(x1(t), x2(t)) if [x1(t), x2(t)]T ∈ Q+ ∩ {R × (∆w − w, w − ∆w)}
max{−v(x1(t),−x2(t), z1(t), x2(t))}

if [x1(t), x2(t)]T ∈ Q+ ∩ {R × [−w, ∆w − w]}
−v(−x1(t),−x2(t)) if [x1(t), x2(t)]T ∈ R− ∩ {R × [−w, ∆w − w]}
+1 if [x1(t), x2(t)]T ∈ R+ ∪ {R × (−∞,−w)}.

(40)

For interpretation, see Fig. 3.
The concept presented can also be applied for many other similar, auxiliary

issues appearing in optimal control, e.g. modeling of motion resistance (Kul-
czycki, 1996a, b). As an example, consider the initial system (1) supplemented
with the discontinuous model of motion resistance b sgn(ṡ(t)), i.e.

ms̈(t) = u(t) − b sgn(ṡ(t)), (41)

where b ∈ [0, 1); then under- or overestimation of the value of the parameter b
will entail similar raising or lowering of the parameter m , and further consider-
ations are analogous to those presented above for the concepts of hard and soft
controlling structures.

The correct functioning of the suboptimal structures investigated in this
paper has been verified by numerical simulation. The object is a mechanical
system (1) with unknown (random) and/or varying load. In the case xf2 = 0 ,
if it is assumed that over-regulations are undesirable, then they did not occur
in the controlled object. For xf2 �= 0, limit cycles did not appear. If the Bayes
rule was applied for determining the hard structure parameters, the sliding
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trajectories occurring there did not have frequent switches. In the case of the
soft structure, sliding trajectories were eliminated.

Typical trajectories generated by control structures (15) and (16) are shown
in Figs. 2 and 3. Tables 1 and 2 show times to reach the target set when xf2 = 0
and xf2 �= 0, respectively. The results are shown for the optimal control (under
the practically unrealistic assumption that the true value of the mass m is known
exactly) and the suboptimal structures: hard and soft ones. It is not surprising
that the shortest times to reach the target were obtained for optimal control
(owing to the hypothetical assumption of an exactly known mass), followed by
the hard structure (although at the cost of frequent and arduous switches on
sliding trajectories), while the longest times for the soft structure are inversely
proportional to the value of the parameter d. If, however, each value of m
was supplemented by perturbation, with the value of 0.5m sin(25t) , the results
favored the soft structure at small values of the parameter d, as the most robust.
Note that in the case of the soft structure, the results were satisfying even when
temporarily m �∈ [m−, m+] .

Table 1. Times to reach the target set for x0 = [5, 0]T, xf = [0, 0]T, m̂ = 1.5,
∆m̂ = 0.3

SoftControl structures Optimal Hard
d = 0.2 d = 1 d = 5

m = 0.6 3.446 4.537 4.805 4.638 4.560
m = 1.0 4.442 4.955 5.154 5.010 4.966
m = 1.4 5.250 5.340 5.430 5.356 5.343

Table 2. Times to reach the target set for x0 = [5, 0]T, xf = [2, 2]T, m̂ = 1.5,
∆m̂ = 0.3

SoftControl structures Optimal Hard
d = 0.2 d = 1 d = 5

m = 0.6 4.3635 7.0253 7.8483 7.6609 7.5716
m = 1.0 6.4588 7.9402 8.7259 8.5706 8.5218
m = 1.4 8.4851 8.7839 9.4997 9.4164 9.4009
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