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1. Introduction

The complex polynomial f(x) = anxn + an−1x
n−1 + · · · + a1x + a0 is called

Hurwitz (Schur) stable if all its roots are in the open left-half plane (in the open
unit circle).

Let F̃n(S̃n) denote the set all Hurwitz (Schur) stable complex polynomials,
whose degrees are less than or equal to n.

Consider the complex polynomials

fi(x) = a(i)
n xn + a

(i)
n−1x

n−1 + · · · + a
(i)
1 x + a

(i)
0 (1)

for i = 1, 2, . . . , m, whose the degrees are equal n ≥ 1.
We will use the notations:

Vm = {(α1, α2, . . . , αm) ∈ Rm :
αi ≥ 0 (i = 1, 2, . . . , m), α1 + α2 + · · · + αm = 1},

C(f1, f2, · · · , fm) =
{α1f1(x) + α2f2(x) + · · · + αmfm(x) : (α1, α2, · · · , αm) ∈ Vm},
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Fn = {f(x) = anxn + an−1x
n−1 + · · · + a1x + a0 =

an(x − x1)(x − x2) · · · (x − xn) :
Re(xj) < 0 (j = 1, 2, . . . , n), an �= 0, aj ∈ C (j = 0, 1, . . . , n)},

Sn = {f(x) = anxn + an−1x
n−1 + · · · + a1x + a0 =

an(x − x1)(x − x2) · · · (x − xn) :
|xj | < 1 (j = 1, 2, . . . , n), an �= 0, aj ∈ C (j = 0, 1, . . . , n)}.

We will assume that

α1a
(1)
n + α2a

(2)
n + · · · + αma(m)

n �= 0

for every (α1, α2, . . . , αm) ∈ Vm.

Definition 1.1 The convex combination of the polynomials C(f1, f2, . . . , fm) is
called Hurwitz (Schur) stable if and only if C(f1, f2, . . . , fm) ⊂ Fn (C(f1, f2, . . . ,
fm) ⊂ Sn).

The literature, provides the known criteria for stability of convex combina-
tion C(f1, f2, . . . , fm) in the particular case, when the polynomials (1) are real
and the degrees of the polynomials are equal: deg(f1(x)) = deg(f2(x)) = · · · =
deg(fm(x)) = n. In 1985 a necessary and sufficient condition for C(f1, f2) ⊂ Fn

has been proved in Bia�las (1985). In Bartlett, Hotlot, Huang (1988) and Acker-
mann, Barmish (1988) a necessary and sufficient condition for C(f1, f2, . . . , fm) ⊂
Fn(C(f1, f2, . . . , fm) ⊂ Sn) has been given. The three papers cited concerned
the real polynomials.

This paper is the generalization of these three papers to the complex poly-
nomials.

At first, we will prove the lemma, which will be useful in the next part of
this paper.

Let Pi(t) :< t0,∞) → R2 (i = 1, 2, 3) be continuous functions for t ∈<
t0,∞), A ⊂ R2. Let ∂(A) denote the bound of the set A and let dist (x0, A)
denote the distance of the point x0 to the set A, where x0 ∈ R2.

We will use the notations:

A = (R2\A) ∪ ∂(A),

T (t) = {α1P1(t) + α2P2(t) + α3P3(t) : (α1, α2, α3) ∈ V3}
for t ≥ t0.

Lemma 1.1 If the functions Pi(t) (i = 1, 2, 3) are continuous for t ∈< t0,∞)
and

(0, 0) ∈ T (t0) and (0, 0) �∈ T (t) (2)

for every t > t0, then (0, 0) ∈ ∂(T (t0)).
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Proof. Consider the function φ(t) = dist((0, 0), T (t)). With the assumption
that the functions Pi(t) (i = 1, 2, 3) are continuous for t ≥ t0 and with (2) it
follows that

φ(t) = 0 for t > t0 and lim
t→t+0

φ(t) = 0.

Hence it follows that (0, 0) ∈ ∂(T (t0)).

2. The necessary and sufficient condition for Hurwitz
(Schur) stability of the convex combination of polyno-
mials

At first, we will consider the case of m = 3.
Let f1(x), f2(x), f3(x) be the polynomials (1).
Let

R(C(f1, f2, f3)) = {z ∈ C :
∨

(α1,α2,α3)∈V3

α1f1(z) + α2f2(z) + α3f3(z) = 0}.

Now, we prove

Lemma 2.1 Assume that f1(x), f2(x), f3(x) are the polynomials (1).
1) If α0 = max

z∈R(C(f1,f2,f3))
Re (z), z0 = α0 + iβ,

α′
1f1(z0) + α′

2f2(z0) + α′
3f3(z0) = 0, where (α′

1, α
′
2, α

′
3) ∈ V3, then

z0 ∈ R(C(f1, f2)) or z0 ∈ R(C(f1, f3)) or z0 ∈ R(C(f2, f3)) (3)

2) If r0 = max
z∈R(C(f1,f2,f3))

|z|, z1 = r0e
iϕ0 , β′

1f1(z1) + β′
2f2(z1) + β′

3f3(z1) = 0

where (β′
1, β

′
2, β

′
3) ∈ V3, then

z1 ∈ R(C(f1, f2)) or z1 ∈ R(C(f1, f3)) or z1 ∈ R(C(f2, f3)). (4)

Proof. We first prove relations (3). Consider the set

A(z0 + ε) = {α1f1(z0 + ε) + α2f2(z0 + ε) + α3f3(z0 + ε) :
(α1, α2, α3) ∈ V3, ε ∈ R, ε ≥ 0}.

We see, that the set A(z0+ε) is the convex combination of the points: f1(z0+
ε), f2(z0 + ε), f3(z0 + ε), and A(z0 + ε) ⊂ C, (0, 0) ∈ A(z0) and (0, 0) �∈ A(z0 + ε)
for every ε > 0. Hence, by applying Lemma 1.1, we obtain (0, 0) ∈ ∂(A(z0)).
Thus, relations (3) are true.

The proof for relations (4) is analogous.
Let

B((r0 + ε)eiϕ0) = {α1f1((r0 + ε)eiϕ0) + α2f2((r0 + ε)eiϕ0)
+α3f3((r0 + ε)eiϕ0) : (α1, α2, α3) ∈ V3, ε ∈ R, ε ≥ 0}.
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As seen, the set B((r0 + ε)eiϕ0) is the convex combination of the points:
f1((r0+ε)eiϕ0), f2((r0+ε)eiϕ0), f3((r0+ε)eiϕ0), and B((r0+ε)eiϕ0) ⊂ C, (0, 0) ∈
B(r0e

iϕ0), (0, 0) �∈ B((r0 + ε)eiϕ0) for every ε > 0. Thus, by applying Lemma
1.1, we obtain that relations (4) are true. This completes the proof of Lemma
2.1

Now, we will prove the theorem, which gives the necessary and sufficient
condition for Hurwitz (Schur) stability of the convex combination of the poly-
nomials f1(x), f2(x), f3(x).

Theorem 2.1 If f1(x), f2(x), f3(x) are the polynomials (1), then the convex
combination

C(f1, f2, f3) = {α1f1(x) + α2f2(x) + α3f3(x) : (α1, α2, α3) ∈ V3}
is Hurwitz (Schur) stable if and only if the convex combinations C(f1, f2),
C(f1, f3), C(f2, f3) are Hurwitz (Schure) stable.

Proof. The necessary condition is trivial because C(f1, f2), C(f1, f3), C(f2, f3) ⊂
C(f1, f2, f3).

Now, let us prove the sufficient condition for Hurwitz stability.
Assume that C(f1, f2), C(f1, f3), C(f2, f3) ⊂ Fn and we will prove that

C(f1, f2, f3) ⊂ Fn.
We will prove the sufficient condition by reductio ad absurdum. Assume that

there exist a complex number z0 = α0+iβ and a polynomial f(z) ∈ C(f1, f2, f3)
such that

f(z0) = 0 and Re(z0) ≥ 0.

We can assume, without loss of generality, that α0 = max
z∈R(C(f1,f2,f3))

Re(z).

Hence, taking also into account Lemma 2.1 it follows, that

z0 ∈ R(C(f1, f2)) or z0 ∈ R(C(f1, f3)) or z0 ∈ R(C(f2, f3)).

This is a contradiction to the assumption: C(f1, f2), C(f1, f3), C(f2, f3) ⊂
Fn. This finishes the proof for the sufficient condition for Hurwitz stability of
C(f1, f2, f3).

The proof for the sufficient condition for Schur stability of C(f1, f2, f3).
Assume that C(f1, f2), C(f1, f3), C(f2, f3) ⊂ Sn. We will prove that

C(f1, f2, f3) ⊂ Sn. The proof is analogous as for Hurwitz stability. For the
proof by reductio ad absurdum, we assume that there exist a complex number
z0 = r0r

iϕ0 and a polynomial f(z) ∈ C(f1, f2, f3) such that f(z0) = 0 and
r0 ≥ 1. We can assume that r0 = max

z∈R(C(f1,f2,f3))
|z|. Hence and with Lemma

2.1 we have

z0 ∈ R(C(f1, f2)) or z0 ∈ R(C(f1, f3)) or z0 ∈ R(C(f2, f3)).
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This is a contradiction to the assumption that the sets C(f1, f2), C(f1, f3) and
C(f2, f3) are Schur stable.

This completes the proof of Theorem 1.1.

Now, we will prove the necessary and sufficient condition for the Hurwitz
(Schur) stability of the convex combination of polynomials C(f1, f2, . . . , fm).

Theorem 2.2 If f1(x), f2(x), . . . , fm(x) are the polynomials (1) then the convex
combination

C(f1, f2, . . . , fm) = {α1f1(x)+α2f2(x)+· · ·+αmfm(x) : (α1, α2, . . . , αm) ∈ Vm}
is Hurwitz (Schur) stable if and only if the convex combinations C(fj , fk) are
Hurwitz (Schur) stable for j = 1, 2, . . . , m; k = 1, 2, . . . , m; j < k.

Proof. The necessary conditions follow from the assumption that C(fj , fk) ⊂
C(f1, f2, . . . , fm).

The sufficient condition for Hurwitz stability.
Assume that C(fj , fk) ⊂ Fn (j, k = 1, 2, . . . , m; j < k) and we will prove that

C(f1, f2, . . . , fm) ⊂ Fn. We will prove the sufficient condition by reductio ad ab-
surdum. Assume that there exists a polynomial f(x) ∈ C(f1, f2, . . . , fm), which
is not Hurwitz stable. Therefore, for each ρ > 0 the polynomial ρf(x) �∈ Fn and
there exists ρ0 > 0 such that ρ0f(x) is inside the bound of C(f1, f2, . . . , fm),
for example ρ0f(x) ∈ C(fi0 , fj0 , fk0) ⊂ C(f1, f2, . . . , fm).

From the assumption C(fj , fk) ⊂ Fn (j, k = 1, 2, . . . , m; j < k) and Theorem
1 it follows that the convex combination C(fi0 , fj0 , fk0) is Hurwitz stable. This
is a contradiction to ρ0f(x) ∈ C(fj0 , fj0 , fk0) and f(x) �∈ Fn. This finishes the
proof for the sufficient condition for Hurwitz stability of C(f1, f2, . . . , fm).

The proof of the sufficient condition for Schur stability is analogous.
From Theorem 2.1 and with the assumption C(fj , fk) ⊂ Fn (C(fj , fk) ⊂ Sn)

for j < k we see that C(f1, f2, . . . , fm) ⊂ Fn (C(f1, f2, . . . , fm) ⊂ Sn).
This completes the proof of Theorem 2.2.

Now, we will prove the necessary and sufficient condition for Hurwitz (Schur)
stability of the convex combination of two real polynomials, whose degrees can
be different.

It is the generalization of Bia�las (1985), where the degrees of the polynomials
were assumed to be equal.

Consider two real polynomials

f(x) = anxn+an−1x
n−1+· · ·+a1x+a0; g(x) = bkxk+bk−1x

k−1+· · ·+b1x+b0,

where an > 0, bk > 0, k ≤ n.
Let

C(f, g) = {α1f(x) + α2g(x) : α1 ≥ 0, α2 ≥ 0, α1 + α2 = 1},
g̃(x) = bnxn + bn−1x

n−1 + · · · + b1x + b0,
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where bj = 0 for k < j ≤ n.
We see that C(f, g) = C(f, g̃).
Let H(h) denote the Hurwitz matrix associated with the polynomial h(x) ∈

C(f, g̃), i.e.

H(f) =

⎡
⎢⎢⎣

an−1 an 0 0 0 . . . 0
an−3 an−2 an−1 an 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . 0 a0

⎤
⎥⎥⎦ ,

H(g̃) =

⎡
⎢⎢⎣

bn−1 bn 0 0 0 . . . 0
bn−3 bn−2 bn−1 bn 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . 0 b0

⎤
⎥⎥⎦ .

Moreover, let S(f) denote the matrix associated with the polynomial anxn +
an−1x

n−1 + · · · + a1x + a0 = f(x) ∈ C(f, g̃) where

S(f) =

⎡
⎢⎢⎢⎢⎣

an an−1 an−2 . . . a3 a2 − a0

0 an an−1 . . . a4 − a0 a3 − a1

. . . . . . . . . . . . . . . . . .
0 −a0 −a1 . . . an − an−4 an−1 − an−3

−a0 −a1 −a2 . . . −an−3 an − an−2

⎤
⎥⎥⎥⎥⎦

.

We see that H(f) ∈ Rn×n, S(f) ∈ R(n−1)×(n−1) and it is known that

det(S(f)) = an−1
n

∏
1≤i<j≤n

(1 − xixj) (5)

where xi, xj are the roots of the polynomial f(x).
Hence, given that the polynomial f(x) is Hurwitz (Schur) stable it follows

that there exists the inverse matrix H−1(f), (S−1(f)).
Consider the matrices:

W = H−1(f)H(g̃), M = S−1(f)S(g̃).

Let λi(W ) (i = 1, 2, . . . , n) denote the eigenvalues of the matrix W and let
λi(M) (i = 1, 2, . . . , n − 1) denote the eigenvalues of the matrix M .

We will prove the following theorem.

Theorem 2.3 Assume that f(x) = anxn + an−1x
n−1 + · · · + a1x + a0, g(x) =

bkxk + bk−1x
k−1 + · · ·+ b1x+ b0 are the real polynomials, where an > 0, bk > 0,

k ≤ n.
10 If the polynomials f(x), g(x) are Hurwitz stable then the convex combina-

tion C(f, g) is Hurwitz stable if and only if

λi(W ) = λi(H−1(f)H(g̃)) �∈ (−∞, 0) (i = 1, 2, . . . , n).
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20 If the polynomials f(x), g(x) are Schur stable then the convex combination
C(f, g) is Schur stable if and only if

λi(M) = λi(S−1(f)S(g̃)) �∈ (−∞, 0) (i = 1, 2, . . . , n − 1).

Proof. From the assumption f(x) ∈ Fn (f(x) ∈ Sn) it follows that there exists
H−1(f) (S−1(f)).

The necessary condition for Hurwitz stability.
Assume that C(f, g̃) ⊂ F̃n and we will prove that λi(W ) �∈ (−∞, 0) (i =

1, 2, . . . , n).
From the assumption C(f, g̃) ⊂ F̃n it follows that for every polynomial

h(x) = α1f(x) + α2g̃(x) ∈ C(f, g̃) we have

det(H(h)) = det(α1H(f) + α2H(g̃)) �= 0

for every (α1, α2) ∈ V2 and α1 �= 0. Therefore

det(α1H(f) + (1 − α1)H(g̃)) �= 0,

det(α1I + (1 − α1)H−1(f)H(g̃)) �= 0,

det
( α1

α1 − 1
I − H−1(f)H(g̃)

)
�= 0

for every α1 ∈ (0, 1). Hence it follows that

λi(H−1(f)H(g̃)) �∈ (−∞, 0) (i = 1, 2, . . . , n).

The sufficient condition for Hurwitz stability.
We will prove that if λi(W ) = λi(H−1(f)H(g̃)) �∈ (−∞, 0) (i = 1, 2, . . . , n)

then C(f, g̃) ⊂ F̃n. From the ssumption λi(W ) �∈ (−∞, 0) we have

det
( α1

α1 − 1
I − H−1(f)H(g̃)

)
�= 0,

det(α1H(f) + (1 − α1)H(g̃)) �= 0 for every α1 ∈ (0, 1),

det(H(h)) �= 0 (6)

for all h(x) = α1f(x) + (1 − α1)g̃(x), α1 ∈ (0, 1).
Denote by Di(α1) (i = 1, 2, . . . , n) the leading minors of the matrix

H(h) = H(α1f(x) + (1 − α1)g̃) = α1H(f(x)) + (1 − α1)H(g̃)

for α1 ∈ (0, 1). Hence, given that the polynomial f(x) is Hurwitz stable it
follows that Di(1) > 0 (i = 1, . . . , n).

We will prove by reductio ad absurdum that Di(α1) > 0 (i = 1, 2, . . . , n)
for every α1 ∈ (0, 1). Assume that there exist α0

1 and i0 such that α0
1 ∈ (0, 1),

1 ≤ i0 ≤ n, Di0(α0
1) = 0. Hence, with (6) and the formula of Orleando’s
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it follows that there exists α1 ∈ (α0
1, 1) such that Dn(α1) = 0. This is a

contradiction to (6). So, the sufficient condition for Hurwitz stability is true.
The proof of the necessary and sufficient condition for Schur stability is anal-

ogous as for Hurwitz stability. We will prove only the sufficient condition. We
will prove that if f(x), g(x) ∈ S̃n and λi(M) �∈ (−∞, 0) (i = 1, 2, . . . , n−1) then
C(f, g) ⊂ S̃n. From the assumption λi(M) �∈ (−∞, 0) (i = 1, 2, . . . , n − 1) we
have

det
( α1

α1 − 1
I − S−1(f)S(g̃)

)
�= 0,

det(α1S(f) + (1 − α1)S(g̃)) �= 0,

det(S(α1f + (1 − α1)g̃)) �= 0 (7)

for every α1 ∈ (0, 1). Therefore, (7) is true for α1 = 1.
For the proof by reductio ad absurdum we assume that there exists α0 ∈ (0, 1)

such that the polynomial α0f(x) + (1 − α0)g(x) is not Schur stable. Hence if
follows that there exists α1 ∈< α0, 1 > such that

α1f(1) + (1 − α1)g(1) ≤ 0 (8)

or

(−1)n[α1f(−1) + (1 − α1)g(−1)] ≤ 0 (9)

or

α1f(β) + (1 − α1)g(β) = 0 and α1f(β) + (1 − α1)g(β) = 0 (10)

where ββ = 1, Im(β) �= 0.
The inequalities (8), (9) are contradictions to the assumption f(x), g(x) ∈

S̃n. From (10) and (5) it follows that det(S(α1f + (1− α1)g)) = 0 and this is a
contradiction to (7). Thus the sufficient condition for Schur stability is true.

Example 2.1 For the polynomials

f(x) = x3 + 2x2 + 3x + 4 ; g(x) = x2 + 2x + 1

we have:

g̃(x) = 0x3 + x2 + 2x + 1,

H(f) =

⎡
⎣

2 1 0
4 3 2
0 0 4

⎤
⎦ , H(g̃) =

⎡
⎣

1 0 0
1 2 1
0 0 1

⎤
⎦ ,

W = H−1(f)H(g̃) =

⎡
⎣

1 −1 − 1
4−1 2 1
2

0 0 1
4

⎤
⎦ ,

λ1(W ) =
1
4
, λ2(W ) =

1
2

(3 −√
5), λ3(W ) =

1
2

(3 +
√

5).



Stability conditions of the convex combination of polynomials 597

Moreover, the polynomials f(x), g(x) are Hurwitz stable. Hence and with
Theorem 2.3 it follows that the polynomial αf(x)+(1−α)g(x) is Hurwitz stable
for all α ∈< 0, 1 >.

Example 2.2 For the polynomials

f(x) = x3 + 2x2 + 3x + 4 ; g(x) =
1
4
x + 1

we have:

g̃(x) = 0x3 + 0x2 +
1
4
x + 1,

H(f) =

⎡
⎣

2 1 0
4 3 2
0 0 4

⎤
⎦ , H(g̃) =

⎡
⎣

0 0 0
1 1

4 0
0 0 1

⎤
⎦ ,

W = H−1(f)H(g̃) =

⎡
⎣

− 1
2 − 1

8
1
4

1 1
4 − 1

2
0 0 1

4

⎤
⎦ ,

λ1(W ) =
1
4
, λ2(W ) = 0, λ3(W ) = −1

4
.

Because of λ3(W ) = − 1
4 and from Theorem 2.3 it follows that the convex

combination C(f, g) is not Hurwitz stable. Indeed, the polynomial αf(x)+(1−
α)g(x) for α = 0.01 has the root with positive real part.
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