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Abstract: This paper proposes a generalized domain optimiza-
tion method for fuzzy goal programming with different priorities.
According to the three possible styles of the objective function, the
domain optimization method and its generalization are correspond-
ingly proposed. This method can generate the results consistent
with the decision-maker’s priority expectations, according to which
the goal with higher priority may have higher level of satisfaction.
However, the reformulated optimization problem may be nonconvex
for the reason of the nature of the original problem and the intro-
duction of the varying-domain optimization method. It is possible
to obtain a local optimal solution for nonconvex programming by
the SQP algorithm. In order to get the global solution of the new
programming problem, the co-evolutionary genetic algorithm, called
GENOCOP III, is used instead of the SQP method. In this way the
decision-maker can get the optimum of the optimization problem.
We demonstrate the power of this proposed method based on ge-
netic algorithm by illustrative examples.

Keywords: fuzzy goal programming, priorities, SQP, genetic
algorithm, GENOCOP III.

1. Introduction

Goal programming (GP) is a useful method for decision-makers to consider
simultaneously many goals in order to find a satisfactory solution. This method
was introduced by Charnes and Cooper (1961). The first application quickly
demonstrated its interest in a number of areas, and later numerous variants
and a number of impressive applications followed. As a robust tool for multi-
objective decision-making (MODM) problem, GP has been studied extensively
for the past 35 years.
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In the multi-criterion setting the special characteristic of GP models is the
way the decision criteria is dealt with. Instead of the direct evaluation of the
criteria outcomes, GP models explicitly introduce the desired target value and
goal for each criterion, and optimize the deviations of the criteria outcomes
from these goals. The solution depends on the metrics used for the deviations
and as well as the method of weighting of the different goals. There are two
common weighting methods. The first one is the fixed order of goals. In prac-
tice, this is implemented by searching a lexicographic minimum of the ordered
deviation vector (Ijiri, 1965). The second one is the use of weights on goals
and the minimization of the weighted sum of goal deviations (Charnes, Cooper,
1977). Sometimes, also the minimization of the maximum deviation is used as
suggested by Flavell (1976). The GP approach to the multi-criterion problems
has received increasing interest due to its modeling flexibility and conceptual
simplicity (Hämäläinem, Mantysaari, 2002).

However, it is difficult for the decision-maker to determine precisely the
goal value of each objective, since possibly only some partial information is
known. To incorporate uncertainty and imprecision in the model formulation,
the fuzzy set theory, initially proposed by Zadeh (1965) was introduced in the
field of conventional decision-making (DM) problems, where aspiration levels
of objectives are assigned in an imprecise manner. According to the fuzzy-
set-based theory, the inaccurate objectives and constraints are represented by
the associated membership functions (Bellman, Zadeh, 1970), for instance, the
triangle-like or trapezoid-like membership functions. We call the inaccurate
objectives and constraints fuzzy objectives and constraints. The concept of fuzzy
programming (FP) on a general level was first proposed by Tanaka et al. (1974)
in the framework of fuzzy decision of Bellman and Zadeh (1970). After that, the
FP approach was applied to linear programming (LP) with several objectives
(Zimmermann, 1978). Introducing fuzzy uncertainty and imprecision into the
GP problems, Narasimhan (1980) initially proposed fuzzy goal programming
(FGP), which gave rise to some related research (Rao, Tiwari, Mohanty, 1988;
Rao, Sundararaju, Prakash 1992; Rubin, Narasimhan, 1984).

GP and FP are two approaches to solving the vector optimization problem
by reducing it to a single (or sequential) one. Both of them need an aspiration
level for each goal. These aspiration levels are determined either by the decision-
maker or the decision analyst. In addition to the aspiration levels of the goals,
FP needs admissible violation constant (or tolerance) for each goal. A larger
violation of a goal indicates lower importance of this goal. It can be proved that
every fuzzy linear programming problem has an equivalent weighted linear goal
programming problem where the weights are the reciprocals of the admissible
violation constants (Mohamed, 1997). In general, every FP is a GP with some
weights assigned to the deviational variables in the objective function, where the
FP has fuzziness in the aspiration levels, i.e. the problem is to get a solution that
makes the objectives as close as possible to a specific goal within a certain limit.
In this paper, we use the FP method to solve the GP problem with different
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priorities, and the results of the examples show the capacity of this method.
Applying fuzzy set theory to GP has advantages of allowing for vague aspirations
of the decision-makers, which can be qualified by some natural language terms.
This approach has a more flexible framework, which allows the decision-makers
to represent the information in a more direct way when they are unable to
express it precisely. Thus, the burden of quantifying a qualitative concept is
largely eliminated.

In a GP problem, it is practical to consider that there are different priorities
of the goals, and a lot of research has been done on this problem. The priority
structure is assigned by using different methods, such as fuzzy analytical hier-
archy process (Saaty, 1978). Conventional delaminating FGP method (Chen,
1994; Tiwari, Mohanty, Rao, 1987; Tiwari, Dharmar, Rao, 1986) is used when
the decision-makers has a priority order toward different goals. This approach
categorizes fuzzy goals into k priority levels according to the decision-maker,
where k is less than the number of the fuzzy goals. The k subproblems are solved
in sequence, and the desirable membership values of the fuzzy goals belonging
to the first priority levels are achieved foremost. Then these membership values
are regarded as additional constraints of the inferior levels. But this method
has low computation efficiency. Liang-Husan Chen and Feng-Chou Tsai (2001)
proposed an approach using an additive model to solve this problem, and when
the goals are assigned to different levels, the interrelations between the differ-
ent memberships of the goals are added as crisp constraints. The reason that
we do not apply this method is that: (1) the added constraints are too strict
for solving the optimization problem and there may be no feasible solutions
when the decision-maker requires a highly desirable value for a fuzzy goal, while
considering the priority order; (2) in reality, the decision-maker has a limited
ability to determine priorities and aspiration levels for goals or only a vague or
imprecise knowledge about trade-off relationship among goals (Rasmy, 2002).
Thus, priorities and goals are often fixed arbitrarily. Consequently, this model
solution may be wrong. The interactive method has been introduced into this
problem and studied by many scholars (Kato, Sakawa, 1998; Sakawa, Yauchi,
2001; Sakawa, Yano, 1989; Sakawa, Kato, Nishizaki, 2003). But it is not a
practical way since the decision-maker must stand by and introduce important
information on preferences at each step of the optimization process. The genetic
algorithms (GAs) have also been also introduced into this problem area (Kato,
Sakawa, 1998; Sakawa, Yauchi, 2001), though they are associated with a heavy
burden of computations.

In this paper, the domain optimization method is also generalized. Accord-
ing to the other two possible styles of the objective functions, two other domain
optimization methods are correspondingly proposed. However, the reformu-
lated optimization problem may be nonconvex for the reason of the nature of
the original problem and the introduction of the varying-domain optimization
method. It is possible to obtain a local optimal solution for nonconvex pro-
gramming by the SQP algorithm. In order to get the global solution of the new
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programming problem, the co-evolutionary genetic algorithm for numerical op-
timization of constrained problems, called GENOCOP III (Michalewicz, 1996;
Michalewicz, Nazhiyath, 1995; Michalewicz, Schoenauer, 1996), is used instead
of the SQP method. Section 2 describes the formulation of FGP with different
priorities, Section 3 gives the generalized domain optimization method, GENO-
COP III is introduced in Section 4, and the optimization algorithm is proposed
in Section 5. Section 6 verifies the efficiency of the varying-domain optimiza-
tion method through illustrative examples, a comparison of optimal solutions
between GENOCOP III and SQP is provided there, and the conclusion is made
in the last section.

2. The FGP with different priorities

2.1. The formulation of FGP

Denote by x = (x1, x2, ..., xn)T ∈ Rn the decision vector and by f(x ) =
(f1(x ), f2(x )..., fm(x )) the objective functions, while G(x ) is the system con-
straint. A goal value f∗

i , (i = 1, 2, ..., m) is given for each objective and the GP
model is formulated as follows:

fi(x ) → f∗
i , (i = 1, 2, ..., m)

x ∈ G(x ) ∈ Rn.
(1)

Using the concept of fuzzy sets, the membership function of the objective
functions can be defined based on the following steps given by Zimmermann
(1978):

Step 1 : For the following optimization model,

max fi(x), i = 1, 2, ..., m

s.t. x ∈ G(x ) ∈ Rn (2)

let x ∗ be the optimal solution of the objective function fi(x), i.e. fi(x ∗) = fmax
i .

Step 2 : Find fi(x ∗) = fmin
i , ∀i with the same procedure as in Step 1.

Step 3 : The definition of the membership functions µfi(x ), (i = 1, 2, ..., m) is
now as follows:

µfi(x ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fmax
i − fi(x )
fmax

i − f∗
i

, f∗
i < fi(x ) ≤ fmax

i

1, fi(x ) = f∗
i

fi(x ) − fmin
i

f∗
i − fmin

i

, fmin
i ≤ fi(x ) < f∗

i .

(3)

The corresponding graph of µfi(x ) is showen as Fig. 1.
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Figure 1. The membership function of µfi(x )

Denote by Fi(x ), (i = 1, 2, ..., m) the corresponding set that has the following
form:

Fi(x ) = {x |fmin
i ≤ fi(x ) ≤ fmax

i , x ∈ Rn}, (i = 1, 2, ..., m).

Then the α-level sets of Fα
i (x ), (i = 1, 2, ..., m), are defined as:

Fα
i (x ) = {x |α ≤ µfi(x ), 0 < α ≤ 1, x ∈ Fi(x )}, (i = 1, 2, ..., m) (4)

and from them we can get the α-level set of Fα
i (x ):

F (α,x ) = Fα(x ) = Fα
1 ∩ Fα

2 ∩ ... ∩ Fα
m . (5)

The FGP model proposed by Yang et al. (1991) is expressed as:

Find x∗ such that
maxα
subject to x ∗ ∈ F (α,x ) ∩ G(x )

}
(6)

where G(x ) is system constraint from the original programming problem.

2.2. The formulation of FGP with different priorities

In the GP problems, the decision-maker usually has a preemptive priority for
achieving goals. That is, some goals have a higher priority for their achievement
than the other under system constraints. Suppose that the priority of objective
fi(x ) is higher than that of objective fi−1(x ) for all x , which is denoted as

fi−1(x ) ≺ fi(x ) . (7)
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If these two or more objectives have the same priority, we denote this as

fi−1(x ) ∼ fi(x ). (8)

For the convenience of expression, we assume that for the objectives, we have

fi−1(x ) ≺ fi(x ), i = 2, 3, ..., m . (9)

It is reasonable for us to hope that objectives with higher priorities will also
have higher degree of satisfaction. If x ∗ is a solution to the fuzzy goal pro-
gramming problem with multiple priority, then by using the concept of α-level
membership functions, the additional conditions of priority can be described as
follows (Chen, Tsai, 2001):

µf1(x
∗) ≤ µf2(x

∗) ≤ ... ≤ µfm(x ∗) . (10)

In Chen and Tsai (2001), the FGP with different priorities is formulated as
follows:

Find x∗ such that

max
m∑

i=1

µfi(x )

s.t.

⎧⎨
⎩

x ∈ Fα(x )
the system constraints
µf1(x ) ≤ µf2(x ) ≤ ... ≤ µfm(x )

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.
(11)

In the expression (11), the added constraints expressed as (10) maybe too
strict for solving the optimization problem and there may be no feasible solutions
when the decision-maker requires a high desirable achievement degree for a fuzzy
goal, when considering the priority order.

Here we use another model to formulate the FGP with different priorities.
First comes the preference of solutions. Given two solutions x (1),x (2) of this
problem which satisfy

x (1),x (2) ∈ F (α,x ) ∩ G(α,x ), (0 ≤ α ≤ 1)
µf1(x (1)) ≤ µf2(x (1) ≤ ... ≤ µfm(x (1))
µf1(x (2)) ≤ µf2(x (2)) ≤ ... ≤ µfm(x (2))

(12)

we say that x(1) is more preferable than x (2) if there exists k ∈ [1, n], which
satisfies

µfi(x (1)) = µfi(x (2)), (for all i > k)
µfk

(x (1)) > µfk
(x (2))

}
. (13)
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So the FGP with different priorities is formulated as:

Find x∗ such that
maxα

s.t.
{ ∀x ∗ ∈ F (α,x ) ∩ G(x ), (0 ≤ α ≤ 1)

µf1(x
∗) ≤ µf2(x

∗) ≤ ... ≤ µfm(x ∗)

⎫⎪⎬
⎪⎭ .

(14)

Then comes the same drawback as described by (11). In the next section we
introduce a new domain optimization method to solve this problem.

3. The domain optimization method and its generaliza-
tion

3.1. The domain optimization method

For FGP with different priorities as expressed in (14), with objective f(x ) =
(f1(x ), ..., fm(x )) and their corresponding goal values f∗

i , (i = 1, 2, ..., m) and
the membership functions defined as (3) (shown in Fig. 1), we do not use the con-
stant domain [fmin

i , fmax
i ] for every objective fi (i = 1, 2, ..., m), but introduce

new variables and use the varying domain [βmin
i , βmax

i ]. In fact, by rewriting the
objective functions fi(x ) with their goal values f∗

i as fi(x )−f∗
i → f ′

i(x ), we can
revise the objectives so that they have the same goal value 0. Because selection
of domains is a very flexible process, we multiply them with some factors and
simply get the same symmetric domain [−1, 1] for each objective.

For example

f1(x ) → 2 and f1(x ) ∈ [0, 4], then f ′
1(x ) =

1
2
(f1(x ) − 2)

and

f2(x ) → 4 and f2(x ) ∈ [1, 7], then f ′
2(x ) =

1
3
(f2(x ) − 4) .

The new objectives f ′
1(x ) and f ′

2(x ) have the goal 0 and the same symmetric
domain [−1, 1]. In this way we can normalize the objective functions. It can be
easily proved that µfi(x ) and µf ′

i
(x ) have the same value for the same x .

After the modification of the objectives, we can select [−βi, βi], βi ∈ [0, 1],
i = 1, 2, ..., m as the varying domains.

Since f1(x ) is the least important objective, let α = µf (x ) = µf1(x ) =
µf ′

1
(x ) and β1 = 1. Now we consider getting a solution x ∗ that maximizes α

and satisfies the condition µf1(x ∗) ≤ µf2(x ∗) ≤ ... ≤ µfm(x ∗) in a probability
perspective.

Enlightened by the epistemic utility function introduced in Goodrich et al.
(1998), we introduce a variable γ and rewrite the problem (14) as follows:
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Find x∗ such that
max(α − λ · γ)

s.t.

⎧⎨
⎩

αβi − βi ≤ f ′
i(x ) ≤ βi − αβi

βi − βi−1 ≤ γ, βi ∈ [0, 1], (i = 2, 3, ..., m)
∀x ∈ G(x ), (0 ≤ α ≤ 1), 0 < λ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

where αβi − βi ≤ f ′
i(x ) ≤ βi − αβi, (i = 2, 3, ..., m) is the transformation of

x ∈ F (α,x ).

We solve the above optimization problem with some optimization method
and obtain a solution. If in the solution we get γ∗ ≤ 0 then we have

β∗
i ≤ β∗

i−1, (i = 2, ..., m)

and

α∗β∗
i − β∗

i ≤ f ′
i(x

∗) ≤ β∗
i − α∗β∗

i , (i = 1, 2, 3, ..., m)

as shown in Fig. 2.

' ( )if x

'
1( )if x

' ( )
f

x

i i 1i1i

' ( )f x

Figure 2. Two-side domain optimization

It can be easily seen from the domain illustration that the final point fi(x ∗)
might be in a smaller interval than that of fi−1(x ∗) and is nearer to the goal
value 0. We call this ”domain optimization”. If the values of fi−1(x ∗) and
fi(x ∗) are random in their final domains, then we satisfy the priority request of

µfi−1(x
∗) ≤ µfi(x

∗), i = 2, ..., m (16)

in a probability perspective.
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To get an initial feasible solution for a certain iterative algorithm meant to
solve the optimization problem (15), we can choose γ0 > 0. But if γ∗ > 0 in
the solution we obtain, then the priority order cannot be preserved during the
solving process, and we assign the parameter λ a larger value. If, ultimately,
γ∗ > 0, the priority structure proposed by the decision-maker may have turned
out unreasonable.

Denote

µ
fi

(x ) = inf(µfi(x )) ≤ µfi(x
∗), f(x ) ∈ [−α∗β∗

i − β∗
i , β∗

i − α∗β∗
i ] .

Then it is obvious that

µ
fi

(x ) = 1 − (β∗
i − α∗β∗

i ) = 1 − (1 − α∗)β∗
i (i = 1, 2, ..., m) .

Since

β∗
i ≤ β∗

i−1, (i = 2, 3, ..., m)

then (16) can be achieved. Consequently, we can get

µ
f1

(x ) ≤ µ
f2

(x ) ≤ ... ≤ µ
fm

(x ) . (17)

In this paper, we do not apply the strict constraints expressed as (10) but
only satisfy the expression (17). Thus we allow a certain tolerance of the priority
order condition, the solving process may be more flexible and the solution for
each objective may feature a higher membership.

The parameter λ in (15), as the result of a satisfactory decision (Goodrich,
Stirling, Frost, 1998), shows the balance between optimization and priority order
of the objectives. If λ → 0, then the final solution we obtain can approximate
or reach the goal very well, but the priority order might be seriously violated. If
λ → ∞, then we will get the solution that satisfies the priority order very well
but some of the objectives may deviate significantly from their goal values.

3.2. The generalization of the domain optimization method

Actually, in distinction from the expression (3), the membership functions of
the objectives may have the following forms:

µfi(x ) =

⎧⎪⎪⎨
⎪⎪⎩

1 fi(x ) ≤ f∗
i

Ui − fi(x )
Ui − f∗

i

f∗
i ≤ fi(x ) ≤ Ui (18.1)

0 fi(x ) ≥ Ui

or

µfi(x ) =

⎧⎪⎪⎨
⎪⎪⎩

1 fi(x ) ≥ f∗
i

fi(x ) − Li

f∗
i − Li

Li ≤ fi(x ) ≤ f∗
i . (18.2)

0 fi(x ) ≥ Li
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The shape of µfi(x ) is shown in Fig. 3.
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1
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1

Figure 3. The membership function of µfi(x )

Considering that the membership functions of the objectives may take one
of the above two forms, or the hybrid forms involving (3), (18.1), (18.2), it is
necessary that we generalize the domain optimization method.

3.2.1. The single-side domain optimization method

When the goal value f∗
i is the minimum of fi(x ) (a usual case in the multi-

objective minimization problem), or less than fmin
i , i.e., the objective func-

tions all have the membership functions like (18.1) (since the maximization of
fi(x ) equals the minimization of −fi(x ), the case like (18.2) can be converted
to (18.1)), then the single-side domain optimization method is proposed as fol-
lows:

Find x∗ such that
max(α − λ · γ)

s.t.

⎧⎨
⎩

0 ≤ f ′
i(x ) ≤ βi − αβi

βi − βi−1 ≤ γ, βi ∈ [0, 1], (i = 2, 3, ..., m)
∀x ∈ F (α,x ) ∩ G(x ), (0 ≤ α ≤ 1), λ > 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
(19)

Like in the two-side domain optimization method, if in the solution we get
γ∗ ≤ 0, we also have

β∗
i ≤ β∗

i−1 (i = 2, 3, ..., m)

and

0 ≤ f ′
i(x

∗) ≤ β∗
i − α∗β∗

i (i = 1, 2, 3, ..., m)

as shown in Fig. 4.
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Figure 4. Single-side domain optimization

3.2.2. The hybrid-side domain optimization method

When a hybrid case appears, i.e., some goal values of the objective functions
lie in the domain, [fmin

i , fmax
i ], while the other ones follow the forms of (18.1)

and/or (18.2), we propose the hybrid-side domain optimization method as fol-
lows:

Find x∗ such that
max(α − λ · γ

s.t.

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ f ′
i(x ) ≤ βi − αβi, i ∈ I1

αβi − βi ≤ f ′
i(x ) ≤ βi − αβ, i ∈ I2

βi − βi−1 ≤ γ, βi ∈ [0, 1], (i = 2, 3, ..., m)
∀x ∈ G(x ), (0 ≤ α ≤ 1), λ > 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(20)

where I1 is the set of the goal values of the objective functions conforming
to (18.1) and/or (18.2), and I2 is the set of the goal values from the domain
[fmin

i , fmax
i ].

Like before, if in the solution we get γ∗ ≤ 0, then we have

β∗
i ≤ β∗

i−1, (i = 2, 3, ..., m)

as shown in Fig. 5.
One of the difficulties associated with the optimization problems (15), (19)

or (20) is that the respective problem may be nonconvex, especially when some
of the constraints are nonconvex functions. Then the optimization problem
(15), (19) or (20) is a complex nonconvex programming problem and the stan-
dard solving methods such as SQP may only get a local optimum. In order to
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Figure 5. Hybrid-side domain optimization method

obtain the global optimum, GENOCOP III, a GA is introduced to solve the
optimization problems (15), (19) and (20).

4. The optimization algorithms based on GENOCOP III

4.1. Genetic algorithm - GENOCOP III

Because the optimization problem (15), (19) or (20) is nonlinear, the conven-
tional solving method is the Sequential Quadratic Programming (SQP) (Chen,
1994). SQP is an iterative procedure, which solves a Quadratic Programming
(QP) problem at each iteration. As a classical method for constrained nonlin-
ear optimization, it is based on Kuhn-Tucker (KT) conditions. When the op-
timization problem is convex, Kuhn-Tucker (KT) equation is the sufficient and
necessary condition of the extremum problems with constraints. However, KT
equation is only the necessary condition for the nonconvex programming prob-
lem, and the result may be a local solution. If the reformulated optimization
problem is nonconvex for the reason of the original problem and the varying-
domain optimization method, then the algorithms to get the global optimum,
proposed in this paper, are GAs.

4.1.1. Overview of GAs

Genetic algorithms (GAs) proposed by Holland (1975) are very efficient global
optimization methods, and belong to the family of the optimization techniques
that are inspired by the mechanism of evolution and natural genetics. From
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the optimization point of view, they represent the random search techniques
with a better kind of post search activities. They are robust in nature and
applicable to a wide range of problems. GAs can converge in cases for which
classical solutions come up with the problem of instability or do not converge
at all. They have been extensively used in a wide variety of applications, such
as manufacturing (Jensen, 2003; Pongcharoen, Hicks, Braiden, 2004; Wu et al.,
2004), network optimization (Chou, Premkumar, Chu, 2001; Buczak, Wang,
2001), economy (Arifovic, 199; Ceylan, Öztürk, 2004), etc.

GAs are basically composed of three main operators: reproduction, crossover
and mutation. Their principle is outlined in Fig. 6. Starting from an initial pop-
ulation, each iteration or generation consists in choosing some pairs of parent
chromosomes for ”mating”. The reproduction process generates the offspring
through crossing-over and mutations. The new generation of the offspring chro-
mosomes obtained in this way offers solutions, whose adaptation to the problem
considered is better. The algorithm stops as soon as the pertinence of solutions
ceases to improve.

Initializing: randomly create a population
Evaluating: evaluate the pertinence of all the individuals 
While the process is envolving: 

Select a subset of the population 
Recombine the parents’ genes of the subset 
Mutate some genes of the subset 
Evaluate the subset and replace the original population with it 

End

Figure 6. The principles of the genetic algoritm

4.1.2. GENOCOP III

As a co-evolutionary genetic algorithm, GENOCOP was proposed to solve Con-
strainted Optimization Problems (COPs) by Michalewicz (1996) and Micha-
lewicz, Schoenauer (1996). GENOCOP III, according to the idea of repair
algorithms, unlike the methods based on penalty function, is a revised version
of GENOCOP. It is a very effective method especially for handing the gen-
eral nonlinear programming problems with nonlinear constraints (Michalewicz,
Nazhiyath, 1995). GENOCOP III incorporates the original GENOCOP system
for solving the linear constraints, but extends it by maintaining two separate
populations, where a development in one population influences evaluations of
individuals in the other population. The first population, Ps, consists of the
so-called search points that satisfy the linear constraints of the problem (as in
the original GENOCOP system). The second population, Pr, consists of the
so-called reference points that satisfy all of the constraints of the problem.
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In GENOCOP III, for the purpose of initialization, an initial reference point
is assumed to be generated randomly from individuals satisfying the lower and
upper bounds. If GENOCOP III has difficulties in locating such a reference
point, the user is prompted for it. In case where the ratio ρ between the sizes
of the feasible and the whole search spaces is very small, it may happen that
the initial set of reference points consist of a multiple copies of a single feasible
point.

GENOCOP III uses the objective function for evaluation of fully feasible
individuals (reference points) only, so the evaluation function is not distorted
as in the penalty based methods. The infeasible search points are repaired for
evaluation. Suppose that a search point s is not fully feasible, then the repair
process works as follows:

1. Select one reference point r ∈ Pr.
2. Create random points z from a segment between s and r by generating

random numbers from the range < 0, 1 >: z = as + (1 − a)r.
3. Once a feasible z is found and the evaluation of z is better than that of

r, then replace z by r as a new reference point. Also replace s by z with
some probability of replacement pr.

In Sakawa, Yauchi (2001), the revised GENOCOP III is proposed to improve
the computational efficiency and to find the initial feasible solution. If it is hard
to find an initial feasible solution, information from Sakawa and Yauchi (2001)
may be of use.

Note: The preliminary version of GENOCOP III is available from
ftp.uncc.edu/coe/evol/genocopIII.tar.Z.

4.2. Optimization algorithm based on GENOCOP III

Based on the generalized domain optimization method and GENOCOP III, we
propose the following algorithm for goal programming with different priorities:

Step 1 : Modify the objectives so that they have the uniform goal value 0
and domains [−1, 1] and/or [0, 1].

Step 2 : According to the priority order, form the optimization problem
expressed as (15), (19) or (20).

Step 3 : Using GENOCOP III solve the optimization problem formulated
in Step 2.

Step 4 : If γ∗ > 0, then assign the parameter λ a larger value, go to Step 3.

5. Numerical examples

In this section, the results of SQP and GENOCOP III in solving the follow-
ing numerical examples via transformation of the varying-domain optimization
method are given. The comparison between the optimal solutions by these
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algorithms is provided. The results show not only the efficiency of the varying-
domain optimization method proposed in this paper, but also the superiority of
GENOCOP III to SQP for nonconvex optimization problem.

Example 5.1 (Sakawa, Yano, 1989)

min f1(x) = (x1 + 5)2 + 4x2
2 + 2(x3 − 50)2

min f2(x) = 2(x1 − 45)2 + (x2 + 15)2 + 3(x3 + 20)2

max f3(x) = 3(x1 + 20)2 + 5(x2 − 45)2 + (x2 + 15)2

s.t. x2
1 + x2

2 + x2
3 ≤ 100

0 ≤ xi ≤ 10, i = 1, 2, 3.

The priority structure is:

f3(x ) 
 f1(x ) 
 f2(x )

Step 1 : Calculate the respective minimum or maximum of the objective
functions, the intervals are [3225, 5433], [3875, 7002] and [7550, 13078], and
therefore transformation of the objective functions can be expressed as

f ′
1(x ) =

f1(x ) − 3225
2208

∈ [0, 1]

f ′
2(x ) =

f2(x ) − 3875
3127

∈ [0, 1]

f ′
3(x ) =

f3(x ) − 13078
5528

∈ [−1, 0].

Step 2 : Reformulate the optimization expression using the single-side do-
main optimization method:

max(α − λ · γ)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ f ′
1(x ) ≤ (1 − α)β1

0 ≤ f ′
2(x ) ≤ (1 − α)

−(1 − α)β3 ≤ f ′
3(x ) ≤ 0

β1 ≤ 1 + γ

β3 − β1 ≤ γ

x2
1 + x2

2 + x2
3 ≤ 100

0 ≤ α, β2, β3 ≤ 1
−1 ≤ γ ≤ 1
0 ≤ xi ≤ 10, i = 1, 2, 3.

Step 3 : Use SQP and GENOCOP III to solve above programming problem.
For different values of the parameter λ, the respective solutions are obtained.
The results of SQP are given in Table 1. The results of GENOCOP III are
shown in Table 2.

From Table 1 and Table 2, we can see that the results of SQP and GENOCOP
III satisfy the requirements of the decision-maker.
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Table 1. Results for different λ values using SQP

λ x1 x2 x3 µ1 µ2 µ3

0.5 6.9182 0.0000 7.2207 0.7386 0.5288 0.9484
1 6.9182 0.0000 7.2207 0.7386 0.5288 0.9484
2 6.9182 0.0000 7.2207 0.7386 0.5288 0.9484

Table 2. Results for different λ values using GENOCOP III

λ x1 x2 x3 µ1 µ2 µ3

0.5 7.4689 0.0711 6.5413 0.6794 0.5898 0.9535
1 7.4166 0.1391 6.3846 0.6676 0.5946 0.9452
2 6.9549 0.0510 6.5535 0.6861 0.5645 0.9400

Remark 5.1 Since the nonconvex nonlinear character of this problem is not ob-
vious, both SQP and GENOCOP III can be used to solve it. And the satisfactory
results are also obtained. However, SQP is not sensitive to the adjustment of λ
because the solutions are very similar and they may be local. On the contrary,
GENOCOP III not only satisfies the priority order f3(x) 
 f1(x) 
 f2(x), but
also is very sensitive to the adjustment of λ according to the requirements, and
the satisfactory solutions can be obtained successfully.

Example 5.2 (Sakawa and Yauchi, 2001)

min f1(x) = 7x2
1 − x2

2 + x1x2 − 14x1 − 16x2 + 8(x3 − 10)2 + 4(x4 − 5)2

+(x5 − 3)2 + 2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + x2

10 + 45
min f2(x) = (x1 − 5)2 + 5(x2 − 12)2 + 0.5x4

3 + 3(x4 − 11)2 + 0.2x5
5 + 7x2

6

+0.1x4
7 − 4x6x7 − 10x6 − 8x7 + x2

8 + 3(x9 − 5)2 + (x10 − 5)2

min f3(x) = x3
1 + (x2 − 5)2 + 3(x3 − 9)2 − 12x3 + 2x3

4 + 4x2
5 + (x6 − 5)2

+6x2
7 + 3(x7 − 2)x2

8 − x9x10 + 4x3
9 + 5x1 − 8x1x7

The system constraints are:
−3(x1 − 2)2 − 4(x2 − 3)2 − 2x2

3 + 7x4 − 2x5x6x8 + 120 ≥ 0
−5x2

1 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0
−x2

1 − 2(x2 − 2)2 + 2x1x2 − 14x5 − 6x5x6 ≥ 0
−0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x2

5 + x5x8 + 30 ≥ 0
3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0
4x1 + 5x2 − 3x7 + 9x8 ≤ 105
10x1 − 8x2 − 17x7 + 2x8 ≤ 0
−8x1 + 2x2 + 5x9 − 2x10 ≤ 12
−5.0 ≤ xi ≤ 10, i = 1, ..., 10.
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The priority structure is:

f2(x ) 
 f3(x ) 
 f1(x ).

Note: Due to the semi-positive definiteness of the criterion function’s Hessian
matrix, this example is obviously a nonconvex multi-objective problem. The KT
conditions and the SQP are improper for soving this problem. Consequently,
GENOCOP III is used to find the global solution. Also the computations for
each objective will be conduct with this algorithm.

Step 1 : Calculate the respective minimum and maximum of the objective
functions by GENOCOP III, to obtain the interval of each function: [89, 3437],
[314, 7507] and [307, 9000]. Therefore, define the following membership func-
tions:

f ′
1(x ) =

f1(x ) − 89
3348

f ′
2(x ) =

f2(x ) − 314
7193

f ′
3(x ) =

f3(x ) − 307
8693

.

The initial feasible solution is chosen as (x1, ..., x10) = (2, 2, 8, 6, 1,−2, 1, 6, 8, 8).

Step 2 : Formulate the optimization problem using the single-side domain
optimization version:

max(α − λ · γ)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ f ′
1(x ) ≤ 1 − α

0 ≤ f ′
2(x ) ≤ (1 − α)β2

0 ≤ f ′
3(x ) ≤ (1 − α)β3

β3 ≤ 1 + γ
β2 − β3 ≤ γ
system constraints
0 ≤ α, β2, β3 ≤ 1
−1 ≤ γ ≤ 1
−5 ≤ xi ≤ 10, 1 ≤ i ≤ 10 .

Step 3 : Use GENOCOP III to solve the above programming problem again.
When λ = 1, we get⎧⎨
⎩

x = (1.9421 2.8821 5.3164 5.6807 0.2245 1.2515 1.1823 6.1321 6.1178 7.7145)
f ′

i = (0.1057 0.0872 0.0965)
µfi(x ) = (0.8943 0.9128 0.9035) .

It can be seen that the priority order f2(x ) 
 f3(x ) 
 f1(x ) is satisfied.
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Remark 5.2 Because of the obviously nonconvex nonlinear nature, SQP cannot
be used to find the final solution. This particular problem was solved using
only GENOCOP III. The satisfactory results were obtained, and the priority
requirement was realized. It appears, therefore, that GENOCOP III is suitable to
deal with strongly nonconvex nonlinear optimization with nonlinear constraints.

6. Conclusions

In this paper, the GP problem with different priorities is solved through the
generalized domain optimization method and GENOCOP III genetic algorithm
is used to solve the nonconvex programming problem formulated on the basis of
the original problem and the generalized domain optimization method. Accord-
ing to different positions of the goal values, three domain optimization versions
are presented to overcome the respective problem. The method proposed in this
paper can solve GP (multi-objective programming) problems with priorities and
complex objective functions as well as constraints. The optimization results of
the examples show the efficiency of generalized domain optimization method
and GENOCOP III, when used instead of SQP. It can be used in complicated
real-word decision-making problems and offers a promising prospect.
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