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1. Introduction

The reliable engineering is one of the important engineering tasks in design and
development of technical system. The conventional reliability of a system is de-
fined as the probability that the system performs its assigned function properly
during a predefined period under the condition that the system behavior can be
fully characterized in the context of probability measures. The reliability of a
system can be determined on the basis of tests or the acquisition of operational
data. However, due to the uncertainity and inaccuracy of this data, the esti-
mation of precise values of probabilities is very difficult in many systems (e.g.
power system, electrical machine, hardware etc., Hammer (2001), El-Hawary
(2000)). For this reason the fuzzy reliability concept has been introduced and
formulated in the context of fuzzy measures. The basis for this approach is con-
stituted by the fundamental works on fuzzy set theory of Zadeh (1978), Dubois
and Prade (1980), Zimmerman (1986) and other.

The theory of fuzzy reliability was proposed and development by several
authors, Cai, Wen and Zhang (1991, 1993); Cai (1996); Chen, Mon (1993);
Hammer (2001); El-Hawary (2000), Onisawa, Kacprzyk (1995); Utkin, Gurov
(1995). The recent collection of papers by Onisawa and Kacprzyk (1995), gave
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many different approach for fuzzy reliability. According to Cai, Wen and Zhang
(1991, 1993); Cai (1996) various form of fuzzy reliability theories, including
profust reliability theory Dobois, Prade (1980); Cai, Wen and Zhang (1993); Cai
(1996); Chen, Mon (1993); Hammer (2001); El-Hawary (2000); Utkin, Gurov
(1995), posbist reliability theory, Cai, Wen and Zhang (1991, 1993) and posfust
reliability theory, can be considered by taking new assumptions, such as the
possibility assumption, or the fuzzy state assumption, in place of the probability
assumption or the binary state assumption.

Profust reliability theory is based on the fuzzy-state assumption. Profust
reliability function, profust failure rate function and mathematically rigorous
relationships among them, lay a solid foundation for profust reliability theory.

In many cases, the notion of representing component reliability indices (such
as failure rate or mean repair time) by crisp numbers must be challenged. For
instance, a lot of reliability data are obtained by analogy from data bases asso-
ciated with equipment that is not exactly the one under analysis, either because
it was not installed under the same conditions or just because some new types
of equipment are being foreseen. Also, repair times depend not only on the
components themselves but also on other systematic factors that include com-
pany efficiency. Consequently, it is natural that some uncertainty be associated
with component indices, and this uncertainty is not of the probabilistic type. In
fact, we are dealing with a twofold dimension of uncertainty, getting at a hybrid
model that connects stochastic and fuzzy uncertainties: stochastic because we
are still dealing with a failure-repair cycle and fuzzy because we cannot accu-
rately describe all the conditions of the “experiments” that would lead to a pure
probabilistic model.

Cai, Wen and Zhang (1993) presented a fuzzy set based approach to failure
rate and reliability analysis, where profust failure rate is defined in the context
of statistics. El-Nawary (2000) presented a models for fuzzy power system reli-
ability analysis, where the failure rate of a system is represented by a triangular
fuzzy number. However, in this approach, the membership function of the fuzzy
reliability function is not completely described. Our procedure is based on the
profust reliability theory. In this paper we propose a general procedure to con-
struct the membership function of the reliability function, when the failure rate
is fuzzy. The failure rate of the system is represented by a triangular fuzzy
number.

2. Problem formulation

Let X be a universal set. Then a fuzzy subset Ã of X is defined by its mem-
bership function µÃ : X → [0, 1]. We can also write the fuzzy set Ã as

Ã = {(x, µÃ(x)) : x ∈ X} . (1)

The time dependent fuzzy set Ã(t) of the universe of discourse X is defined as,
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Virant and Zimic (1996),

Ã(t) =
{(
x, µÃ(t)(x)

)}
(2)

where µÃ(t)(x) is the dynamic membership function for x ∈ X . A convex,
normalized fuzzy set defined on the real line �, whose membership function is
piecewise continuous or, equivalently, each γ-cut is a closed interval, is called a
fuzzy number. The γ-cut of a time dependent fuzzy set Ã(t) is defined by

Ãγ(t) =
{
x

∣∣∣µÃ(t)(x) ≥ γ, x ∈ X
}
, γ ∈ [0, 1]. (3)

For example, Fig. 1 shows a fuzzy number Ã(t) which is both convex and normal.
At time t1 we have fuzzy number Ã(t1), at time t2, fuzzy number Ã(t2), etc.
Fig. 2 shows a fuzzy number Ã(t) with γ-cut.

Figure 1. A fuzzy number Ã(t).

Figure 2. A fuzzy number Ã(t) with γ-cut.

From Fig. 2 we can see that

Ãγ(t1) = [a1γ(t1), a2γ(t1)], Ãγ(t2) = [a1γ(t2), a2γ(t2)]. (4)
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Assume that X and U are two crisp sets. Let failure rate function be fuzzy
and represented by a fuzzy set H̃(t), H̃(t) =

{
h, µH̃(t) h ∈ X

}
. The γ-cut

fuzzy set of H̃(t) is H̃γ(t) =
{
γ ∈ X

∣∣∣µH̃(t) ≥ γ
}
. Note that H̃γ(t) is a crisp

set. Suppose that H̃(t) is a fuzzy number. Then for each choice of γ-cut we
have interval H̃γ(t) = [h1γ (t) , h2γ (t)]. By the convexity of the fuzzy number,
the bounds of the interval are functions of γ and can be obtained as h̃1γ =
minµH̃(t)(γ) and h̃2γ = maxµH̃(t)(γ), respectively. Let ψ : X → U be a
bounded continuously differentiable function from X to the universe U . We
wish to calculate the fuzzy set (fuzzy reliability function) induced on U by
applying ψ to the set H̃(t). If we write u = ψ(h), where h ∈ X and R̃(t) ={
u, µR̃(t)(u) |u = ψ(h), u ∈ U

}
, then the membership function of R̃(t) is defined

by the extension principle

µR̃(t)(u) = sup
h∈X

{
µH̃(t)(h) |u = ψ(h)

}
. (5)

We know that if H̃(t) is normal and convex and ψ is bounded, then R̃(t)is
also normal and convex, Mon and Cheng (1995). Therefore we can calculate the
corresponding interval [r1γ (t) , r2γ (t)] = ψ

(
H̃γ(t)

)
, where r1γ (t) and r2γ (t)

correspond, respectively, to the global minimum and maximum of ψ over the
space H̃γ(t) at γ-level:

r1γ(t) = minψ(h), s.t. h1γ(t) ≤ h ≤ h2γ(t) (6a)
r2γ(t) = maxψ(h), s.t. h1γ(t) ≤ h ≤ h2γ(t). (6b)

This pair of mathematical programs involve the systematic study of how
the optimal solutions change as the bounds h1γ (t), and h2γ (t), vary over the
interval γ ∈ [0, 1], and so they fall into the category of parametric programming.

If both r1γ (t) and r2γ (t) are invertible with respect to γ, then a left shape

function fR̃(t)(u) = [r1γ(t)]−1 =
[

min
u1≤u≤u2

u

]−1

γ

and a right shape function

gR̃(t)(u) = [r2γ(t)]−1 =
[

max
u2≤u≤u3

u

]−1

γ

can be obtained, from which the mem-

bership function µR̃(t)(u) is constructed:

µR̃(t)(u) =

⎧⎨
⎩

fR̃(t)(u) , u1 ≤ u ≤ u2

gR̃(t)(u) , u2 ≤ u ≤ u3

0 , otherwise,
(7)

where u1 ≤ u2 ≤ u3, fR̃(t)(u1) = gR̃(t)(u3) = 0 and fR̃(t)(u2) = gR̃(t)(u2) = 1.
It is obvious that fR̃(t)(u) is a continuous and strictly increasing function on
[u1, u2], and gR̃(t)(u) is continuous and strictly decreasing on [u2, u3].
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3. Main results

The system reliability function is

R(t) = exp

⎡
⎣−

t∫
o

h(t)dt

⎤
⎦ , t ≥ 0 (8)

where h(t) is failure rate function.

Let failure rate function be represented by a triangular fuzzy number H̃(t),
H̃(t) = [m(t) − α(t),m(t),m(t) + β(t)], where α(t) > 0 and β(t) > 0 are called
left and right spreads at time t, respectively. The γ-cut of the fuzzy set H̃(t) is

H̃γ(t) = [(m(t) − α(t)) + γα(t), (m(t) + β(t)) − γβ(t)] , γ ∈ [0, 1] .

Then, formulation (6) can be written as

r1γ(t) = min

⎛
⎝exp

⎡
⎣−

t∫
0

h(τ)dτ

⎤
⎦

⎞
⎠ , t ≥ 0 (9a)

s.t. (m(t) − α(t)) + γα(t) ≤ h(t) ≤ (m(t) + β(t)) − γβ(t)

r2γ(t) = max

⎛
⎝exp

⎡
⎣−

t∫
0

h(τ)dτ

⎤
⎦

⎞
⎠ , t ≥ 0 (9b)

s.t. (m(t) − α(t)) + γα(t) ≤ h(t) ≤ (m(t) + β(t)) − γβ(t).

Since the reliability function is a monotonically decreasing function, R̃(t)
attains its extreme at the bound. That is

r1γ(t) = exp

⎡
⎣−

t∫
0

((m(t) + β(t)) − γβ(t)) dτ

⎤
⎦ , t ≥ 0 (10a)

r2γ(t) = exp

⎡
⎣−

t∫
0

((m(t) − α(t)) + γα(t)) dτ

⎤
⎦ , t ≥ 0. (10b)

Taking the inverse of (10) allows for obtaining of the left and right shape
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function of µR̃(t). Accordingly

µR̃(t)(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln(u)+
t�

0
(m(t)+β(t))dt

t�

0
β(t)dt

,

exp
[
−

t∫
0

(m(t) + β(t))dτ
]
≤ u ≤ exp

[
−

t∫
0

m(t)dτ
]

−
ln(u)+

t�

0
(m(t)−α(t))dτ

t�

0
α(t)dτ

,

exp
[
−

t∫
0

m(t)dτ
]
≤ u ≤ exp

[
−

t∫
0

(m(t) − α(t))dτ
]
.

(11)

Now we will show that the fuzzy set R̃(t) is a fuzzy number. A convex
and normalized fuzzy set defined on the line � whose membership function is
piecewise continuous or, equivalently, each γ - cut is a closed interval, is called
a fuzzy number, Chen and Mon (1993), Mon and Cheng (1995), El-Hawary
(2000).

Normality implies that ∃u ∈ � ⋃
u
µR̃(t) = 1, that is, the maximum value

of the fuzzy set R̃(t) in � is 1

µR̃(t)

⎛
⎝exp

⎡
⎣−

t∫
0

m(t) + β(t)]dτ)

⎤
⎦
⎞
⎠ = 1. (12)

Convexity means that a γ-cut which is parallel to the horizontal axis R̃γ(t) =
[r1γ(t), r2γ(t)] yields the property of nesting, that is (γ < γ′) ⇒ (r1γ′ ≤
r1γ , r2γ′ ≥ r2γ). Alternatively, if we represent the γ-cut by R̃γ(t) as R̃γ(t) =
[r1γ(t), r2γ(t)] and R̃γ′(t) = [r1γ′(t), r2γ′(t)], then the condition of convexity
implies that γ′ < γ ⇒ R̃γ(t) ⊂ R̃γ′(t).

According to the property of the function ln(u), the left shape function
fR̃(t) of membership function µR̃(t)(u) is strictly continuously increasing on[
exp

{
-

t∫
0

(m(t) + β(t)) dτ
}
, exp

{
−

t∫
0

m(t)dτ
}]

and the right shape function

gR̃(t) of µR̃(t)(u) is strictly continuously decreasing on
[
exp

{
−

t∫
0

m(t)dτ
}

,

exp
{

t∫
0

(m(t) − α(t))dτ
}]

. One possible realization of the µR̃(t)(u) shown in

Fig. 3.
Complex systems usually show a decreasing failure rate at the beginning,

followed by a period with a constant failure rate and in the later part of the
life cycle, the failure rate increases. This type of failure curve is known as the
bathtub curve. There are some models that can be used to analyze this type of
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Figure 3. A normal and convex fuzzy number R̃γ(t) with γ-cut.

failure rate data. Consider the following two models:

Model 1. Let the failure rate function be constant , i.e. H̃(t) = H̃ . Then
m(t)= m=const, α(t) = α = const and β(t) = β = const. The γ-cut of the
fuzzy set H̃ is

H̃λ = [(m− α) + γα, (m+ β) − γβ] , γ ∈ [0, 1] . (13)

Since R̃(0) = 1 and R̃(∞) = 0 from (11), we obtain

µR̃(t)(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ln(u)+(m+β)t
βt , β > 0, 0 < t <∞

exp[−(m+ β)t] ≤ u ≤ exp[−mt],
− ln(u)+(m−α)t

αt , α > 0, 0 < t <∞
exp[−mt] ≤ u ≤ exp[−(m− α)t].

(14)

Model 2. Let the failure rate function not be constant. The triangular fuzzy
number H̃(t) and its membership function µH̃(t) (h) depends only on the three
parameters m(t), α(t) and β(t). Let α(t) = α = const, β(t) = β = const and

m(t) = ceωt (15)

where c is positive constant. Since R̃(0) = 1 and R̃(∞) = 0 from (11), we obtain

µR̃(t)(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ln(u)+ c
k [exp(ωt)−1]+βt

βt , β > 0, 0 < t <∞
exp

[− c
k [exp(ωt) − 1] − βt

] ≤ u ≤ exp
[− c

k [exp(ωt) − 1]
]

− ln(u)+ c
k [exp(ωt)−1]−αt

αt , α > 0, 0 < t <∞
exp

[− c
k [exp(ωt) − 1]

] ≤ u ≤ exp
[− c

k [exp(ωt) − 1] + αt
]
.

(16)
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4. Numerical example

In many system studies the raw data are usually constituted by the failure rate
and mean repair time. These data may be found in several databases. However,
it is typical for technical system components to have small failure rate values
and small repair times (compared to functioning times). Therefore, it is classical
to approximate the frequency of failures with failure rate, and therefore, we will
assume that raw data extracted from database are failure rates.

But a database is a collection of information about pieces of system possibil-
ity installed in very diverse conditions, or some different technological genera-
tions, or operated by utilities with different views about maintenance or quality.
Besides, when planning a system, one may only apply failure rates, by analogy,
to a new system that will be built in the future. In fact, failure rate will be
changing over time because of the aging of system or because of rehabilitation
actions.

It is not surprising that we may accept, for a failure rate relative to some
type of system, instead of crisp number such as 0.0015 failures/year, an interval
of confidence such as [0.001, 0.002 ] failures/year or even a fuzzy number. Recall
that designation “interval of confidence“, as used here, does not relate to any
classical statistical concepts but to the discourse of “fuzzy set community”. In
this sense, an interval of confidence γ corresponds to the cut set at level γ
defined to the membership function of fuzzy set. Assume that the failure rate is
uncertain and represented by the triangular fuzzy number such as h → “more
or less 0.015” failures/year → H̃ = [0.001, 0.0015, 0.002] (Fig. 4).

Figure 4. A membership function of the triangular fuzzy number H̃.

A direct substitution into Eq.(14) yields

µR̃(t)(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ln(u)+0.002t
0.0005t , 0 < t <∞

exp(−0.002t) ≤ u ≤ exp(−0.0015t)

− ln(u)+0.001t
0.0005t , 0 < t <∞

exp(−0.0015t) ≤ u ≤ exp(−0.001t).
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The membership functions of R̃(t) shown in Fig. 5.

Figure 5. A membership function of R̃(t).

5. Conclusion

Fuzzy reliability is based on the concept of fuzzy set. When the failure rate is
fuzzy, according to Zadeh’s extension principle, the reliability measure will be
fuzzy as well. In this paper the use of the concept of γ-cut (interval of confidence)
and time dependent fuzzy set theory leads to the proposal of a general procedure
to construct the membership function of the reliability function, when the failure
rate is fuzzy. The failure rate of the system is represented by a triangular fuzzy
number. The obtained result is acceptable also for the membership functions
which are invertible with respect to γ (e.g. the trapezoidal, gamma etc.).
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