
Control and Cybernetics

vol. 33 (2004) No. 4

Fault injection stress strategies in dependability analysis

by

J. Sosnowski, P. Gawkowski and A. Lesiak

Institute of Computer Science
Warsaw University of Technology

ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: jss@ii.pw.edu.pl

Abstract: The paper deals with the problem of testing com-
puter system’s susceptibility to hardware faults by means of software
implemented fault injectors. Basing on our experience with fault in-
jection techniques we present various strategies of fault stressing in
relevance to fault impact analysis in the function of the application
input data profile, fault injection profile in time and space, resource
activities etc. We discuss the problem of test result qualification
and significance. Fault hardening at the software level is also out-
lined. The considerations presented are illustrated with numerous
experimental results obtained in Windows and Linux environments.

Keywords: fault injection, fault modeling, test coverage, fault
detection and fault tolerance evaluation.

1. Introduction

As computer systems become more complex, designers have to deal with various
error detection and fault tolerance mechanisms (in hardware and software). An
important issue is to analyze fault effects in the system. Doing this at high
abstraction levels with analytic methods is significantly limited. In practice,
designers have to go to lower levels of system implementation and to physical
fault models in order to get a better insight into fault effect propagation etc.
Hence, we observe recently an increasing interest in fault injection techniques.

Faults can be injected into systems or their models. The second approach
relates to different abstraction levels e.g. functional or RTL defined in VHDL.
Some simulators of this kind have been proposed in Arlat et al. (2003), Carderilli
et al. (2002), Carreira et al. (1998), Leveugle (2000), Rebaudengo and Reorda
(1999), Sieh et al. (1997), Velazco et al. (2002). In this case we face the problems
of model accuracy and simulation time. These problems are eliminated by fault

680 J. SOSNOWSKI, P. GAWKOWSKI, A. LESIAK

injection (physical or logical) into the target or prototype system. Physical fault
injections are accomplished by corrupting a logic value at circuit pins, disturbing
voltage on power lines, bombarding hardware with heavy ion radiation, laser
beam etc. These techniques need special and expensive equipment and the class
of injected faults and experiment controllability are limited (see, e.g., Chen et
al., 1997; Constantinescu, 2003; Folkesson et al., 1998; Madeira and Silva, 1994;
Samson, 1998; Vargas et al., 2003). More flexible are the software implemented
fault injectors, which disturb the states of CPU registers and memory locations
(e.g. Baldini et al., 2000; Carreira et al., 1998; Choi and Iyer, 1992; Kanawati
et al., 1992; Madeira et al., 2002; Segall and Lin, 1988).

Fault injection experiments should mimic the occurrence of faults within the
analyzed system so as to evaluate the dependability features of the system, e.g.
fault tolerance effectiveness, safety and reliability. It is not possible to inject
all faults and simulate all conditions that could occur during system operation.
Hence, fault susceptibility evaluation needs statistical methods. Cukier et al.
(1999) discuss mathematical methods of estimating confidence limits for the
result samples. Some other aspects of fault stressing are described by Tsai et
al. (1999). Depending upon the goal of the performed analysis (dependability
evaluation, identification of weak points in the design), we have to design test
strategies with an appropriate test stimuli profile and fault effect observation
schemes. This problem has been neglected in the literature, as most authors
restricted their considerations to a general and coarse-grained analysis. In our
approach we tune the fault injection campaign to experiment objectives and
application properties. For this purpose we have developed quite sophisticated
and flexible fault injectors (Section 2) with high level of experiment controllabil-
ity/observability and flexible result granularity and qualification. These tools
allow us to identify factors influencing test strategies (Section 3), e.g. fault
stress coverage (class of faults, localization in time and space, test profiles) and
resource activity. In this paper we do not only generalize our observations from
many experiments but also develop special test scenarios to illustrate critical in-
terpretation issues (Section 4). We show that the presented approach improves
test effectiveness.

2. Fault injection tools

We have studied the problem of software implemented fault injections (SWIFI)
for several years (Derezińska and Sosnowski, 2002; Gawkowski and Sosnowski,
2001a, 2002a, b; Sosnowski et al., 2003), using special fault injectors developed
at the Institute of Computer Science of the Warsaw University of Technology.
Two injectors (FITS, MTFI) relate to Windows and one (LI) to Linux en-
vironment. FITS is targeted for classical applications, whereas MTFI covers
multithreaded applications (neglected in the literature). These tools have sys-
tematically been enhanced with various monitoring and data logging procedures
very useful in system behavior analysis.

Fault injection stress strategies in dependability analysis 681

In the SWIFI injectors faults are specified as disturbances of processor reg-
isters, disturbances of the executed code and disturbances of memory locations.
The following fault types are possible: bit inversion (XOR), bit setting, bit
resetting, bridging (logical AND or OR of coupled bits). The disturbed bits
are specified in the fault mask register. It is also possible to select pseudoran-
dom generation of the mask register (within specified category, e.g. single or
k-bit faults). Duration of faults is specified by the number of instructions for
which the fault must be active (starting from the triggering instruction). The
injector provides high flexibility in specifying the moment of fault injection -
fault-triggering point (in time and space), fault type and location. All these
specifications can be defined explicitly by the experiment designer or generated
in a pseudorandom way. Fault triggering specifies the moment of fault injection.
It can be related to the execution time of the analyzed application, the executed
codes or the memory references. We discuss this in more detail in Section 3.

The fault injector compares the generated states of registers with those found
during the golden run (fault free). The golden run collects information on ex-
ecuted instructions, states of registers, generated events, exit code, calculated
results etc. Such a complete dynamic image allows us to find various statistics
useful in the application characterization (e.g. code, data and stack area, distri-
bution of register states, executed instructions). During experiments we collect
detailed or aggregated test results (such flexibility is also assured for the golden
run). Result aggregation can be done at various levels. In most cases we use
coarse-grained aggregation with five classes of test results: C - correct result,
INC - incorrect result, S - fault detected by the system (specification of the num-
ber and types of registered exceptions), T - time-out, U - user defined messages
(generated by the application, they may overlap with other categories).

Fine-grained result specification takes into account tolerance margins, fault
severity levels, side-effects (e.g. loss of data integrity, disturbing internal states
influencing rarely used functions), statistics of collected exceptions or user mes-
sages etc. Recent COTS (commercial-off-the-shelf) systems comprise various
mechanisms for fault detection or tolerance. They are implemented in hardware
and software. In hardware they are mostly related to parity or more complex
error detection and error correction codes used in memories (cache, RAM, disc)
or transmission channels. Moreover, microprocessors comprise built-in detectors
which signal various exceptions: access violation (within RAM), in page error,
array bounds exceeded, data type misalignment (wrong word boundaries), ille-
gal instruction, etc. (Sosnowski et al., 2003).

The fault injectors developed assure many possibilities in designing sim-
ulation experiments. Moreover, they deliver various statistics related to the
analyzed application (e.g. static and dynamic distribution of instructions or
referenced addresses, test coverage, resource activity, register state changes fre-
quency) as well as to the performed fault injections (e.g. distribution of fault
injections in time and space, error detection or recovery latency). These sta-
tistics are very useful while interpreting final results and evaluating the fault

682 J. SOSNOWSKI, P. GAWKOWSKI, A. LESIAK

stressing level. For facilitating interpretation of simulation results we have in-
troduced an original resource activity measure. The activity ratio (ARr) is the
percentage of the execution time during which the considered resource r (e.g. a
specified register, memory location) holds useful data (from its loading to the
last read operation). The non-activity ratio is NAr = 1 − ARr. The activity
ratio is defined as follows:

ARr = (Tr1 + Tr2 + + Trk)/T

where T is the time of the application operation and Tri are so-called active
periods during which resource ri (e.g. RAM location, processor accumulator
register - EAX) stores data that is used in calculations etc. Active periods Tri

can be found by calculating the time between loading the considered resource
with new data and the last use of this data (i.e. the last read operation). To
evaluate the activity ratio of a given resource r we have to analyze all exe-
cuted instructions in the program, identify the type of the operation (related to
resource r) and execution time stamp. An instruction can perform simple oper-
ation read from or write to some resource r. Complex operations like read/write
or write/read are also possible. However, in the activity analysis only the first
operation is important (read or write). The identified type of operation deter-
mines whether the analyzed instruction starts a new activity period (the first
operation is write) or extends its duration (the first operation is read). This
analysis is quite complex, because instructions can use the resource indirectly or
do some operations conditionally (according to the states of different resources).
Other problems relate to the structure of the analyzed resource. Some instruc-
tions use only selected parts of the resource e.g. only specific bytes or bit fields
of a register. In such cases it is preferable to analyze separately every part of
the resource. Identification of resources used by a given instruction sometimes
is not easy due to complex addressing modes (e.g. indirect memory addressing)
or relative indexing (e.g. FPU stack registers). The general idea of the devel-
oped algorithm generating lists of activity periods for all used resources is given
below (in Visual Basic notation):

FOR EACH r IN ResourcesSet
 r.ActivePeriodsList.AddNewPeriod(0)
NEXT r
FOR EACH Ins IN InstructionStream
 FOR EACH r IN ResourcesSet
 SELECT CASE InvestigateInstructionActions(Ins, r)
 CASE read
 r.ActivePeriodsList.CurrentPeriod.ExtendTo(Ins.Timestamp)
 CASE write
 r.ActivePeriodsList.AddNewPeriod(Ins.Timestamp)
 CASE ELSE
 END SELECT
 NEXT r
NEXT Ins

Fault injection stress strategies in dependability analysis 683

All activity periods of a given resource r are held in a list (r.ActivePeriodsList)
associated with this resource. The activity period is defined by the starting and
terminating timestamps. At the beginning the algorithm initializes all the activ-
ity period lists with null periods (i.e. the starting and terminating timestamps
are equal and relate to the first instruction in the program). This is done
in the FOR....NEXT loop with the operation AddNewPeriod(0) performed for
resource r in the set of all used resources (ResourcesSet). Next, the content
of the lists is filled in successively according to the performed read and write
operations. These operations are identified with the function InvestigateInstruc-
tionActions(Ins, r), which returns the type of the first operation performed by
instruction Ins on the resource r. For the read operation the current activity
period is updated by assigning the considered instruction time stamp as ter-
minating the activity period (function ExtendTo(Ins, Timestamp) performed
on the resource r list). The write operation appends to the resource list a
new activity period (with the same starting and terminating instruction time
stamp. This is performed by function AddNewPeriod(Ins, timestamp). The
lists of active periods are updated in nested loops running over all resources and
instructions.

3. Fault stresses and test profiles

Dependability evaluation of complex and real applications creates many prob-
lems. In particular, they relate to the test profile of the analyzed application,
fault injection policy (the class and the number of faults, their distribution in
time and space), qualification of experiment results, experiment execution time
etc.

The location, timing, type and conditions for faults being injected exert a
significant influence on test results, and so they should be carefully defined.
Faults can be injected in different functional blocks, e.g. specified processor
registers, floating point unit register stack, control or state registers, and speci-
fied RAM locations. In practice, not all system resources (functional blocks) are
used in the analyzed applications, moreover, if used, they can perform different
functions in the realized algorithm. Faults injected into the unused resources
have no effect on system operation. Another issue relates to the timing of fault
injection. Injecting faults into a code segment after its execution or into a
register before its reloading does not activate errors.

When designing experiments we have to take into account the operational
profile of the analyzed applications. It is important to assure compatibility of
the test profile with the operational one. For this purpose we can use statistics
of input data and module utilization (activity ratio ARr). In order to limit the
number of experiments, we select the representative test scenarios to cover all
possible situations. Depending upon data combinations we may have different
resource activity, program and data flow, which influence significantly program
sensitivity to faults. In Carreira et al. (1998) some correlation between error

684 J. SOSNOWSKI, P. GAWKOWSKI, A. LESIAK

detection capabilities and data combinations has been reported and explained in
reference to program flow fluctuations. In our experiments (Section 4) we found
that data impact on fault sensitivity is much more complex. Let us consider
three classes of data processing:

1. finding relations between data objects (e.g. a < b, a mod(k) b = c),
2. finding data object properties (e.g. set cardinality) and data objects ful-

filling some criteria (e.g. max{a, b, c......k}),
3. performing complex calculations involving all data.
In the first case many faults will not influence the final result. Moreover, the

fault effect may depend upon the values of data e.g. small values of data can
change easily their relations due to faults (compare Section 4). Similar observa-
tion holds also for type 2 data processing. Complex and pipelined calculations
are more susceptible to erroneous results due to faults. In practice, we have a
mixture of different data processing activities - the same algorithm can be im-
plemented in different ways with higher or lower use of intermediate variables
(for partial results), different resource activity etc.

When selecting test data for experiments we have to assure representative-
ness of the test scenarios. In this process some functional or structural program
coverage measures are helpful. The functional coverage is related to specifica-
tions of the program modules, their functions and mutual interactions, whereas
the structural coverage relates to program data and control flow (Briand and
Pfahl, 2000). We use a specially developed tool, which measures such structural
features as:
block coverage – coverage of blocks composed of code fragments without branch-

ing (as program is composed of branch free segments of code comprising
entry and exit points);

decision coverage – measures the fraction of decisions executed during testing;
c-use coverage – counts the number of combinations of an assignment to a vari-

able and the use of this variable in a computation that is not part of a
conditional expression;

p-use coverage – counts the number of combinations of an assignment to a vari-
able, the use of this variable in a conditional expression, and all branches
based on the value of the conditional expressions;

all-use coverage – c-use or p-use;
du-path coverage – counts the number of paths from the definition of a variable

to its use, which contains no redefinition of this variable.
Structural coverage measures are considered here as well correlated with

fault detection capabilities. Many experiments proved that reducing the test
set of the application in such a way that the test coverage is stable influences
marginally the effectiveness of the test. In Section 4 we shall give some il-
lustrations of using coverage measures to optimize test sets for fault injection
experiments. For calculation oriented programs, this relates to representative
values and relations of the data items only. Transaction oriented applications

Fault injection stress strategies in dependability analysis 685

need also specification of the tested transactions or operation sequences. Real
time applications depend strongly on the controlled object‘s behavior and may
require environment simulators (Derezińska and Sosnowski, 2002; Gawkowski
and Sosnowski, 2001b).

Having specified the test profile, we face the problem of choosing fault injec-
tion moments (fault triggering). These can be related to the program execution
time, executed instruction, referenced memory location etc. In time-triggered
injections we have the knowledge of the execution time and inject faults within
this period e.g. at random time moments with equal distribution. In code-
triggered injections various strategies are possible:

CS1 – equal distribution within the executed code;
CS2 – equal distribution restricted to the executed instructions with specified

features (e.g. ALU related instructions, branches, FPU instructions);
CS3 – more sophisticated profiles of distributions.

In CS1 we can define segments of the code which will be disturbed, select
specific loop iterations etc. It is important to note that time- and code-triggered
fault injections may have quite different stressing capabilities. For example, in
applications with some small program segment executed for a long time (typical
for many microcontroller applications), time-triggered injections will result in
stressing mostly this segment of the code. Code-triggered injections give the
possibility of better instruction coverage and assure better experiment control-
lability. Moreover, execution of operating system functions or other supporting
procedures may disturb time-triggered injections. In code triggering we can
specify code areas which are of interest for submission to fault injections. Limit-
ing fault triggering to specified instruction codes gives the possibility of checking
the impact of specified functional blocks (e.g. FPU, ALU). Moreover, it allows
us to mimic permanent faults of the instruction sequencer, decoder etc.

Some comment is needed about fault injections into the data area. It is
reasonable to disturb only the used data area. Hence during the golden run,
we have to identify such areas. Some applications deal with a large size of
the data area (operations on files, documents), moreover the data structure
may be quite complex. In such cases we correlate fault injections with these
structures. For example, while disturbing documents we distinguish control
and data fields, specify different distribution strategies (e.g. fault bombardment
in specified subareas at the beginning, in the middle and at the end of the
document, see Gawkowski and Sosnowski, 2002b).

Another problem relates to the test result analysis. For simple calculation
oriented applications the correct result is unique. In the case of real-time ap-
plications quite often some fluctuation of generated signals (in value and time)
is acceptable. More difficult is dealing with the indeterminism, which appears
in applications with parallelism or multithread processing, like the programs
related to communication protocols. In such a case we define various classes of
system responses and use specially designed (application dedicated) supporting

686 J. SOSNOWSKI, P. GAWKOWSKI, A. LESIAK

procedures. In these situations the general result classes: correct (C), incorrect
(INC), system exceptions (S) and user messages (U) are appropriately extended.
In practice, it is most important to distinguish various levels of correctness or
incorrectness (Section 4.2).

The result qualification is based on the comparison of the test outcome with
the golden run reference data. In calculation oriented applications the final re-
sult is uniquely defined and can be compared. For long calculations this leads
to long experiment duration, each fault injection needing complete program ex-
ecution. Some optimization is possible by checking partial results. However,
this approach needs more sophisticated collection of reference data during the
golden run. Quick identification that the injected fault does not activate an
error or that the error is masked allows us to inject another fault in the same
program run. We may skip fault injections into non-active resources etc. Fur-
ther acceleration of fault injections is made possible by starting test runs from
intermediate points. For this purpose during the golden run intermediate sys-
tem states have to be stored at specified checkpoints. This reduces the delay of
fault injection while assuring full controllability of triggering points. Moreover,
in this case fault effects can be identified sooner (by inspecting the system state
in the next checkpoint).

In the case of real-time or transaction oriented applications it may be difficult
to define the final result. If the analyzed system operates continuously (and
delivers appropriate outputs), an injected fault can disturb some internal state
of the system and its impact may be visible after a long delay (e.g. in a newly
initiated function). Hence an important issue is to identify such states of the
system and include them in the analysis. Another problem relates to acceptable
output disturbances of short duration (typical for microcontrollers delivering
outputs to elements with some inertia). Hence test result analysis may be quite
complex and application oriented (see, e.g. Gawkowski and Sosnowski, 2001b).

The performed experiments can be targeted to checking fault susceptibility
of the considered application or to the analysis of the effectiveness of error
detection and fault tolerance mechanisms. In the latter case we face the problem
of selecting appropriate benchmarks of applications, e.g. using extensively CPU
functional blocks (a mixture of arithmetic integer or floating point operations,
loops or branches with different ranges, different cache hit ratio etc.), memory or
I/O intensive processing, transaction or data processing oriented. An important
issue is also to collect reports on fault injection and to correlate the results
obtained with fault injection distribution, executed program flow paths, resource
activity etc. Our injectors deliver such statistics. All aspects of test strategies
are illustrated in Section 4.

4. Simulation experiments

We have performed many fault injection experiments using FITS, MTFI and LI
fault injectors (Section 2) for a wide spectrum of applications. The experience

Fault injection stress strategies in dependability analysis 687

gained is very useful in designing test scenarios. In this section we concen-
trate on three problems: test coverage (Section 4.1), result interpretation and
experiment tuning (Section 4.2). The test coverage relates to input data test
profiles, fault location and triggering strategies. These features have significant
impact on experiment results. Knowing this impact makes it easier to interpret
the results and optimize experiments. The presented experiments have been
performed for a sample of programs and bit flip (transient) faults, which domi-
nate in modern technologies (Vargas et al., 2003; Velazco, 2002). All programs
have been executed in IBM PC Windows environment except for one (clearly
specified) in Linux.

4.1. Test coverage problems

In fault injection experiments an important issue is the definition of the fault
stress profile, in particular, the selection of input data, the strategy of injecting
faults (in time, space, and type).

A B C D E F G H I J
0
1
2
3
4
5
6
7
8
9

10

%
 o

f
in

co
rr

ec
t

te
st

s

Input combination

Borland C++ 5.5
GNAT ADA95
MsVC++ 6.0

Figure 1. Incorrect results for faults injected into registers (program Qsortf)

Let us start with the problem of fault susceptibility to input data. In Fig. 1
we give the percentage of incorrect results for the Qsortf program (quick sort of
floating point numbers) disturbed by transient faults injected into registers. The
experiments have been carried out for the same program compiled with Borland
C++, GNAT ADA and MSVC++ compilers. All experiments (random fault
injections) have been repeated for 10 different input data combinations differing
in the input data set ordering. For faults injected into the code, incorrect results
fluctuated in the ranges 22-25.5%, 12-16% and 10-11%, respectively for Borland
C++, GNAT ADA and MSVC++. For faults injected into data area, incorrect
results fluctuated in the ranges: 22-26%, 8-15.2% and 9-11%, respectively. We
observe different fault susceptibility depending upon program compilation and
also some fluctuation of results as a function of the input data. This confirms

688 J. SOSNOWSKI, P. GAWKOWSKI, A. LESIAK

the need to support the selection of the input data with some tools, so as to
cover all instructions, program control flow etc.

In order to facilitate selection of representative test cases, we can use test
coverage measures (Section 3). In Fig. 2 we illustrate basic coverage measures for
up to 15 test data sets of the Qsortf program. It was easy to assure the coverage
level exceeding 70% using single data combination A - test 1. By adding two
data combinations B and C, we assured a significant coverage increase (test
3). Subsequent combinations D - J practically did not change the coverage.
Further increase has been achieved with specially developed four additional
combinations (tests 11 - 15 in Fig. 2). In general, we face the problem of
assuring high-test coverage at the minimal number of test cases. So for the
application considered we can eliminate test cases D-J and use the set composed
of 7 test cases.

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Block
Branch
c-use
p-use
All-use

Figure 2. Test coverage (in percent) for Qsortf program as a function of 15 test
sets.

For some applications with big impact of input data on program control flow
(e.g. real-time applications - see Gawkowski and Sosnowski, 2001b, 2002b) we
can observe significant test result differences depending upon the input. This
effect is negligible in fixed calculations, e.g. matrix operations.

While designing experiments we have to specify the places where to inject
faults (registers, RAM segments etc.). In the referenced papers the authors
publish mostly the averaged results for random injections. Such information
is not precise and it does not show dominant fault susceptibility resources in
the analyzed program. Hence, it is reasonable to disturb specific functional
blocks, e.g. selected registers, memory locations, ALU, FPU. These blocks
have different impact on fault susceptibility due to various activities in different
applications. This is illustrated in Table 1, which shows fault susceptibility of
CPU registers for four applications: MATM (multiplication of matrices), Qsort

Fault injection stress strategies in dependability analysis 689

(sorting integer numbers), MAX (finding maximum value in a given set of integer
numbers), INT1 and INT2 (a mixture of integer calculations performed in C and
C++, respectively). For the MAX application we give results for two different
input combinations (A and B).

Table 1. Percentage of correct results (C) versus register non-activity ratio (NA)

MATM Qsort MAX-A MAX-B INT1 INT2
Faults injected into register EAX

C 46.1 92.4 20.6 94.7 42.1 61.3
NA 45.4 87.3 3.5 3.5 41.5 60.2

Faults injected into register EBX
C 10.4 99.8 7.9 12.2 60.1 100

NA 7.8 8.9 2.6 2.6 60.2 100
Faults injected into register ECX

C 0.2 79.7 26 8.8 28.2 63.3
NA 0.0 67.8 1.7 1.7 26.8 55.6

Table 1 shows the percentage of correct results (C) for faults injected into
three registers. In italic we give also the non-activity ratio (NA) of the registers
(calculated by the injector - Section 2). For calculation oriented applications
(MATM, INT1, INT2) we observe very good correlation between C and NA.
In Qsort and MAX programs correct result percentages exceed the non-activity
ratio, which is caused by specific data relations (e.g. result comparison) which
are less susceptible to faults. The Qsort program sorts the input data set in a
loop by checking relations between elements and exchanging their positions if
needed. Register EBX is used to store the indices of the compared elements.
In the experiment the input data are preliminarily sorted, so that the faults in-
jected into the EBX register resulted in irrelevant additional iterations (without
influencing the final result). Hence despite the low inactivity ratio (8.9%) of the
register EBX we obtain high percentage of correct results (99%). In the MAX
program register EAX is used to store the currently identified maximum value in
the analyzed input vector, and its inactivity ratio is low (3.5%). By disturbing
this register with transient faults we obtain 20.6% of the correct results for the
input vector A and 94.7% for vector B. Vector B comprises elements with high
value and the maximum one was the last one verified in the loop. The result
is determined mostly by the last iteration, and so the injected faults have low
impact on the final result (94.7% correct results).

Another interesting result has been obtained (with LI injector) for the ap-
plication Qsortf, which sorts floating point numbers and uses the FPU unit.
In spite of significant percentage of floating point instructions (14%), the faults
injected into FPU registers had low impact on the final result. We have injected

690 J. SOSNOWSKI, P. GAWKOWSKI, A. LESIAK

faults into the following registers: CWD (control word: specification of the stack
top, FPU precision and rounding strategy), SWD (FPU status word: identified
exceptions and comparison results), STK data stack registers (8x80-bit regis-
ters) and TWD stack status register (for each stack register two bits specify its
content: valid, invalid, empty, zero).

We have obtained very high percentage of correct results (Table 2). Disturb-
ing of the control register had practically no impact on the results of comparison
(hence it is not shown in Table 2), while disturbing of the status register is crit-
ical only during comparison instructions, moreover only 3 bits are critical. Bits
related to exceptions are sensitive, if exceptions are enabled. The FPU data
stack comprises eight registers and practically only one or two are used. They
are sensitive to faults during data comparisons. We also observed that disturb-
ing of the little significant bits of the mantissa has low impact on results. Most
of injected faults were not critical for the realized algorithm.

Table 2. Detailed fault injection results for program Qsortf

Fault location
SWD TWD STK RND INS

C – correct results
99.76 95.22 98.56 98.56 21.8

INC – incorrect results
0.24 4.78 0.24 1.20 11.7

S – system exceptions
0.0 0.0 1.2 0.24 62.1

T – time-out
0.0 0.0 0.0 0.0 4.4

In order to get a better insight into the fault effects, we injected faults into
the specified bits of some registers. For instance, three bits of the CWD register
indicating the top of the stack were the most sensitive to faults (30-50% incorrect
results), whereas the remaining bits practically did not show any impact. This
proved that practically only the top of the stack was used for storing data. In
the RND column we give the results for faults injected at random in all FPU
registers. They confirm high robustness of FPU to faults but this is due to
low percentage of resource utilization. More sensitive to faults are instructions
within the program code (INS).

In the literature the authors present only averaged results for faults injected
into the code, and so tracing of fault effect propagation is not possible. In
our simulators we are able to perform fine-grained analysis targeted to finding
the most critical code segments, instructions etc. or to characterization of the
architectural platform used. For Intel IA-32 architecture we have found that
different instructions have different fault susceptibility, moreover, code bits 7

Fault injection stress strategies in dependability analysis 691

and 15 are less susceptible than other bits. More results are given in Gawkowski
and Sosnowski (2004).

Let us consider the third aspect of the experiment coverage, namely fault
triggering strategy (related to execution time or program code - Section 3). In
time-triggered fault injections an important issue is to check the obtained distri-
bution of fault injections. We illustrate this for the Mqsort program performing
sorting in two threads. This program uses some procedures from the dynam-
ically linked library (DLL), related mostly to thread management. Assuming
100 elements in the input set and random distribution of the triggering points in
time, we obtained (using the MTFI injector) a somewhat strange results (Table
3). For 93% of instructions there were no more than five injections per instruc-
tion and these injections contributed only 6.94% of all injections. The most
frequent triggering points related to only 2.38% of instructions of the whole
program and these injections contributed 89.9% of all injections. Deeper analy-
sis proved that most of these instructions were included in the DLL procedures.
In the case of sorting a larger input set (100,000 elements), we obtained a bet-
ter distribution due to relatively lower impact of DLL procedures. In particular
1-10 and 11-20 fault injections related to 87.03% and 39.64% of instructions, re-
spectively. For the remaining instructions (12.97%) the fault injection frequency
was 11-208 and these injections contributed 60.36% of faults.

Table 3. Distribution of fault injections into instructions (program Mqsort)

Number of Percentage of Percentage of
fault injections covered program all injections
per instruction instructions

1-5 93.54% 6.94%
6-10 2.04% 0.92%
11-15 0.68% 0.56%
16-20 0.68% 0.66%
21-25 0.68% 0.96%

26-1609 2.38% 89.96%

In code related triggering injections we have better controllability of distrib-
ution of fault injection moments, and so equal distribution can be easily assured,
moreover fault injections can be limited to the considered application (excluding
the DLL code or the invoked functions of the operating system) or even its speci-
fied segment. The latter issue is important in real-time applications where some
program segments are quite often executed frequently and other ones scarcely.
Hence, equal distribution of fault injection into executed (dynamic) instructions
could result in a very large number of experiments needed to assure statistical
significance of results. Thus, it is better to analyze independently the fault sus-
ceptibility of segments for different operational profiles (usage frequency) and
then calibrate the final results (Section 4.2).

692 J. SOSNOWSKI, P. GAWKOWSKI, A. LESIAK

The results presented relate to bit flip faults (XOR). In Gawkowski and
Sosnowski (2002b) we have analyzed the impact of the fault type (stuck-at,
XOR), multiplicity and duration. Long duration faults are easier to detect,
since many registers show asymmetric sensitivity to stuck-at-0 and stuck-at-1
faults. For practical purposes it is reasonable to concentrate on transient (XOR)
faults, which create most problems.

4.2. Experiment interpretation and tuning

As it was shown in Section 4.1, we can obtain different experimental results
depending upon the assumed fault stress strategy etc. Hence interpretation
of these results should be done carefully in association with the experiment
and application features. While defining the test strategy we should take into
account the goal of the performed experiments and possibilities of experiment
acceleration. We will discuss these issues in the sequel.

At the beginning we have to comment on the problem of result qualification.
In the literature the authors deal with the general result classes: C, INC, S and
T (Section 4.1) and they consider applications with unique correct results. Quite
often some limited result accuracy is accepted. Moreover in many applications
it is reasonable to use a fine-grained classification of system responses. We
illustrate this for a distributed communication protocol (Table 4).

Table 4. Test results for transmission protocol in a grid network system

Fault Test result classes
location C1 C2 C3 I1 I2 S
Reg. 67.3 0.55 0.05 0.4 0.4 31.3
Data 82.5 2.3 0.7 5.6 3.6 5.3
Code 17.7 0.5 4.0 7.2 11.6 59.0

Here we distinguish three correct and two incorrect result groups (Derezińska
and Sosnowski, 2002):
C1 – correctly transmitted data and correct system behavior,
C2 – correctly transmitted data and some disturbances in internal states of

protocol processes,
C3 – correctly transmitted data and some disturbances in control messages of

the protocol,
I1 – incorrect data transmissions and correct behavior of the protocol and the

system,
I2 – incorrect data and protocol messages.

The most important data is received correctly for C1-C3 cases (and partially
for I1-I2). The result qualification can be further extended (finer granularity -
see Derezińska and Sosnowski, 2002).

Fault injection stress strategies in dependability analysis 693

Similar problems arise for real-time, database and other non-computation
oriented applications (Gawkowski and Sosnowski, 2002b). In the case of a car
immobilizer (Gawkowski and Sosnowski, 2001b) we have defined the correct
behavior as the one which was consistent with the non-faulty behavior at the
level of the generated output signals. The inconsistencies of up to two consec-
utive control loop iterations (100ms) were accepted due to some inertia of the
system. In general, various subclasses of correct results (differing in value or de-
livery time) and incorrect results can be defined by taking into account the fault
severity levels related to the application analyzed. For facilitation of the result
identification the developed fault injectors comprise some special mechanisms.

System exceptions and messages generated by the applications can also be
classified in a more detailed way. This allows us to check the effectiveness of
hardware fault detection mechanisms. For Intel IA-32 architecture we found
that most exceptions were generated by memory access violation detector (50-
100%), the illegal instruction detector generated exceptions in 0-14% of all ex-
ceptions. The latter mechanism is much more efficient for Motorola processors.

Having defined result categories, we face the most important problem of
defining test strategies. This relates to the distribution of injected faults in
space and time, fault types etc. While evaluating system dependability we are
interested in assessing the probability of incorrect, correct results etc. We can
evaluate this with the SWIFI fault injector, although the relation between the
physical fault model probability and the model used in the experiments should
be defined. It is convenient to assume equal probability of physical faults for
all hardware elements. Considering that the activity of available hardware re-
sources is limited, we face the problem of injecting faults into unused circuits.
This leads to high time overhead of experiments. It is more efficient to disturb
the used resources and then calibrate results by taking into account the percent-
age of the chip area of the disturbed functional blocks (similarly as in Carderilli
et al., 2002). Here we can disturb only those resources (or their segments) which
may have a real impact on the considered application. The presented detailed
analysis allows us to find such points, e.g. top of the stack, stack status register
flags and specified status register bits in the FPU unit (see Qsorf application in
Section 4.1).

For complex applications composed of many modules it may be easier to
arrange fault injections for these modules independently. Here we have to find
typical inputs/outputs for the co-operating modules, which could significantly
improve experiment effectiveness. We illustrate this for the MIX2TMR applica-
tion, which performs some integer calculations in three versions (triple redun-
dancy), and the final result is delivered by a voting procedure. After having
performed calculations for randomly chosen 10,000 input data we have got only
273 different results, which are used in voting. Moreover, dominant value is 0
(in more than 74% of cases). The percentage of division by zero exception was
1%. Such statistics show the possible reduction of the number of experiments
for testing the voting procedure.

694 J. SOSNOWSKI, P. GAWKOWSKI, A. LESIAK

If we are interested in testing the effectiveness of fault detection or tolerance
mechanism, we should concentrate on finding fault sensitive points and check
the effectiveness of the used mechanisms. Equal distribution of injected faults
into the whole program may hide such points. We illustrate this for a sample
of applications with embedded fault detection and fault masking mechanisms.
Such mechanisms can rely on data and program redundancy (e.g. triplication
and voting), assertions etc., discussed in Gawkowski and Sosnowski (2001a,
2002b) and references therein. In Table 5 we give some results for the matrix
multiplication program (MAMUL+) with embedded checksum column and row,
a mixture of integer calculations with triplicated code and voting (MIX2TMR),
and the Qsort program with final assertion checking (Qsort+). In all cases the
detected faults invoke retry procedure. Apparently, the mechanisms used in
Qsort+ are not so efficient as in MATMUL+ and MIX2TMR.

Table 5. Reducing fault susceptibility with software procedures

Fault MATMUL+ MIX2TMR Qsort+
location C INC C INC C INC
EAX 99.9 0.1 100 0.0 83.1 7.2
ESP 39.1 0.0 40.7 0.1 34.6 3.1
EIP 86.1 0.9 98.8 0.4 90.4 6.6
Code 86.5 1.0 86.3 0.2 20 9.3
Data 51.6 0.4 100 0.0 29.7 53.4
Reg. 88.2 0.0 82.7 0.3 81.8 2.1

In classical experiments, the authors use random fault injections in code,
registers and data. In the case of fault hardened systems, this approach usually
gives high percentage of detected or tolerated faults and no direct indication of
the most sensitive points. Table 5 shows that faults injected in some specific
resources (e.g. ESP - stack pointer register) are critical. Similarly, the faults
injected into error detection or masking procedures result in a significant per-
centage of incorrect results. Duplication or triplication of internal variables etc.
can improve it, as we have shown in Gawkowski and Sosnowski (2002b). To get
a better insight into this problem, we can check fault detection and handling
procedures independently. This is especially important if these procedures (e.g.
comparison, voting, assertions) are used frequently within the analyzed appli-
cation (fine granularity).

Another important issue is to find the representative experimental results.
By repeating experiments with fault injection for the same program, we obtain
test results that may differ (due to pseudorandom injections and partial test
coverage). Hence we should evaluate the standard deviation of the results and
decide how many fault injections should be performed. Fig. 3 shows the stan-
dard deviation (in percent) of experiment results (C, INC, S and T) for the

Fault injection stress strategies in dependability analysis 695

Qsortf application (compare Table 2) disturbed by faults injected into the code.
The plots show simulation results in dependence of the fault triggering cov-
erage (the percentage of instructions during whose execution faults have been
injected). Input data for the tested application was the same in all experiments.
The standard deviation is in the range: 1.8-6.1%, 1.2-4.8%, 2.1-7% and 0.8-3%
for C, INC, S and T results, respectively. The standard deviation increases with
code coverage decrease.

While comparing the standard deviation with average values of test results
(24.4, 9.5, 62.2 and 4.0%, respectively), we can observe that the relative stan-
dard deviation is higher for results of lower average values. For the Qsort (quick
sort of integers) application we performed similar experiments but faults were
injected into the accumulator register EAX. In this case the standard deviation
is lower than for faults injected into the code. This is due to the higher impact
of disturbed instructions on program flow than on the register EAX. For the
Qsort application the standard deviation of incorrect results ranged from 1.2
to 3.7% (for 5-100% coverage) and the average percentage of incorrect results
was 5.6%. It is worth noting that the average test results C, INC, S and T for
Qsortf application were respectively in the ranges: 20.51-24.36%, 9.53-12.51%,
62.16-62.63% and 3.95-4.69% for 10-100% triggering coverage. The performed
experiments confirmed that for complex applications we could use partial cover-
age of fault injections and obtain representative results. The number of injected
faults should be tuned to the required confidence interval of the results according
to the classical statistical theory.

0
1
2
3
4
5
6
7
8

10
%

20
%

30
%

4 0
%

5 0
%

6 0
%

7 0
%

8 0
%

9 0
%

1 0
0%

C
INC

S
T

Figure 3. Standard deviation of results (percents) for fault injections into Qsortf
code.

While designing experiments with fault injection, we face the problem of
defining fault classes, their locations etc. This should be done in correlation
with the objective of the performed analysis. In particular, the designer may be

696 J. SOSNOWSKI, P. GAWKOWSKI, A. LESIAK

interested in the effectiveness of fault detection and fault tolerance mechanisms
etc. In most cases a large number of faults is needed to obtain representative
and statistically significant results. Hence, these faults must be generated in an
automatic way, e.g. pseudorandomly (various parameters of the generator can
adapt this process appropriately). Since the time overhead of experiments could
be significant for complex programs, the fault selection process is important.
We should inject faults into locations with a high probability of being activated.
This relates also to the problem of selecting appropriate input data sets for the
analyzed program. On the other hand, if we inject faults randomly, we should
correlate the obtained results with some properties of the analyzed application,
e.g. resource activity (Section 4.1).

To evaluate the system fault coverage (e.g. tolerated or detected) on the
basis of fault injection experiments, we have to take into account the fault
injection space (sp) and time (tp) profiles as well as the realistic fault profile
(e.g. equal distribution in time and device cross area for radiation faults). Hence
the system fault coverage is defined as:

FC =
∑

i

spi tpi FCi

where FCi is the i-th resource fault coverage in the experiment, and i runs
over all system resources e.g. data, code segments, registers. In fault hardened
systems for some resources FCi can be equal to 100%, so in the experiments we
can concentrate on critical resources only, e.g. fault-handling procedures.

If we are interested in assuring a high level of system dependability, we
should identify fault sensitive points and check the effectiveness of the used
mechanisms. So, the test scenarios should assure stressing only those code areas,
registers (or their segments) etc. which really might impact upon the considered
application. In Section 4.1 we have analyzed the impact of FPU registers on
test results for Qsortf. The detailed analysis showed the most critical points
related to the top of the stack, its status register flags and specific FPU status
register bits. Further acceleration of stressing may require selection of the most
critical triggering points.

For complex applications fault injection experiments may lead to long dura-
tion. Hence some optimization is required (Section 3). We can limit experiments
to fault handling procedures or inject faults only during the active periods of
disturbed resources or even just before the last operations (these points are
identified in our algorithm given in Section 2). To get the overall dependability
evaluation we have to normalize the obtained fault injection results with the
ratio of activity periods etc.

5. Conclusion

Large complex applications and time constraints make exhaustive fault injection
experiments impractical and difficult for interpretation. Hence an important is-

Fault injection stress strategies in dependability analysis 697

sue is to design carefully test strategies. This includes specification of fault
stresses (fault types, space and time distribution), test profiles (related to con-
trol and data flow in the tested application) and result qualification. We have
illustrated this for several sample applications.

The pre-injection analysis of the application properties (control flow fea-
tures, operational profile, resource activity etc.) is helpful in finding efficient
test strategies. The collected preliminary statistics from pseudorandom fault
injections as well as from the analyzed application (in the golden run) can be
used for the final experiment tuning. Detailed reports and statistics from the
performed experiments assure better result interpretation. This is especially
important in the case of experiments with limited controllability or some non-
determinism like time-triggered fault injections or multithreaded applications.
Such analysis facilitates confirming reliability and finding week points in fault
hardened applications being designed.

By combining fault injection profiles with the real fault distribution, we
can estimate system fault susceptibility. Carderilli et al. (2002) analyzed the
relation between SWIFI faults and irradiation faults by taking into account the
functional block cross-section. An interesting analysis of fault effect propagation
in CPU functional blocks is given in Kim and Somani (2002), this problem
requiring further research.

Acknowledgement

The authors wish to thank A. Derezińska, P. W�loda-wiec and T. Czarnecki for
their help in arranging some experiments. This work was supported by grant
KBN 4T11C 049 25.

References

Arlat, J., Crouzet, Y., Karlsson, J., Folkesson, P., Fuchs, E. and
Leber, G.H. (2003) Comparison of physical and software implemented
fault injection techniques. IEEE Trans. on Computers 52 (9), 1115-1135.

Bernrojo, L., Gonzales, I., Corno, F., Reorda, M.S., Squillero, G.

and Lopez, C. (2002) An industrial environment for high level fault tol-
erant structures insertion and validation. Proc. 20th IEEE VLSI Test
Symposium, 229-236.

Baldini, A., Benso, A., Chiusano, S. and Prinetto, P. (2000) ’BOND’:
An interposition agents based fault injector for Windows NT. Proc. IEEE
Defect and Fault Tolerance in VLSI Symposium, 387-395.

Briand, L.C. and Pfahl, D. (2000) Using simulation for assessing the real
impact of test coverage on defect coverage. IEEE Trans. on Reliability 49
(1), 60-70.

698 J. SOSNOWSKI, P. GAWKOWSKI, A. LESIAK

Carderilli. G.C., Kaddur, F., Leanori, A., Ottavi, M., Pontarelli,

S. and Velzaco, R. (2002) Bit flip injection in processor based architec-
tures: a case study. Proc. IEEE On-Line Testing Workshop, 117-128.

Carreira, J., Madeira, H. and Silva, J.G. (1998) Xception: a technique
of the experimental evaluation of dependability in modern computers.
IEEE Trans. on Software Engineering 24 (2), 125-136.

Chen, M., Tsai, T.K. and Iyer, R.K. (1997) Fault injections and tools.
IEEE Computer 30 (4), 75-56.

Choi, G. and Iyer, R. (1992) Focus: an experimental environment for fault
sensitivity analysis. IEEE Trans. on Computers 41 (12), 1515-1526.

Constantinescu, C. (2003) Experimental evaluation of error detection mech-
anisms. IEEE Trans. on Reliability 52 (1), 53-57.

Cukier, M., Powell, D. and Arlat, J. (1999) Coverage estimation meth-
ods for stratified fault injection. IEEE Trans. on Computers 48 (7), 707-
723.

Derezińska, A. and Sosnowski, J. (2002) Experimental checking of fault
susceptibility in a parallel algorithm. Proc. IEEE Int. Conf. on Parallel
Computing in Electrical Engineering, 33-38.

Folkesson, P., Svensson, S. and Karlsson, J. (1998) A comparison of si-
mulation based and scan chain implemented fault injection. Proc. IEEE
Fault Tolerant Computing Symp., 284-293.

Gawkowski, P. and Sosnowski, J. (2001a) Experimental evaluation of fault
handling mechanisms. Lecture Notes in Computer Science 2187, Springer-
Verlag, 109-118.

Gawkowski, P. and Sosnowski, J. (2001b) Evaluation of fault effects in
programmable microcontrollers. Proc. 5th IFAC Workshop PDS 01, Perg-
amon, 121-126.

Gawkowski, P. and Sosnowski, J. (2002a) Experimental validation of fault
detection and fault tolerance mechanisms. Proc. IEEE Int. High Level
Design Validation and Test Workshop, 181-186.

Gawkowski, P. and Sosnowski, J. (2002b) Using software implemented fault
inserter in dependability analysis. Proc. IEEE Pacific Rim Int. Sympo-
sium on Dependable Computing, 81-88.

Gawkowski, P. and Sosnowski, J. (2004) Evaluation of transient fault sus-
ceptibility in microprocessor systems. Proc. of Digital System Design Eu-
romicro Symposium, IEEE Comp. Soc., 432-439.

Kanawati, G., Kanawati, N. and Abraham, J. (1992) ”FERRARI”: a tool
for the validation of system dependability properties. IEEE Proc. Fault
Tolerant Computing Symp., 336-344.

Kim, S. and Somani, A.K. (2002) Soft error sensitivity characterization for
microprocessor dependability enhancement strategy. Proc. IEEE Depend-
able System Network Symposium, 416-428.

Fault injection stress strategies in dependability analysis 699

Leveugle, R. (2000) Fault injection in VHDL descriptions and emulation.
Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems,
414-419.

Madeira, H. and Silva, J.G. (1994) RIFLE: a general purpose pin-level fault
injector. Lecture Notes in Computer Science 852, Springer-Verlag, 199-
216.

Madeira, H., Some, R.R., Costa, F.D. and Rennels, D. (2002) Experi-
mental evaluation of a COTS system for space applications. Proc. IEEE
Int. Conference on Dependable Systems and Networks, 325-330.

Rebaudengo, M. and Reorda, M.S. (1999) Evaluating the fault tolerance
capabilities of embedded systems via BDM. Proc. IEEE VLSI Test Sym-
posium, 452-459.

Samson, J. (1998) A technique for automated validation of fault tolerant de-
signs using laser fault injection. Proc. IEEE Fault Tolerant Computing
Symp., 162-187.

Segall, Z. and Lin, T. (1988) FIAT: fault injection based automated testing
environment. Proc. IEEE Fault Tolerant Computing Symp., 102-107.

Sieh, V., Tschade, G. and Balbach, F. (1997) Verify: evaluation of relia-
bility using VHDL-model with embedded fault descriptions. Proc. IEEE
Fault Tolerant Computing Symp., 32-36.

Sosnowski, J., Gawkowski, P. and Lesiak, A. (2003) Software implement-
ed fault inserters. Proc. of IFAC PDS2003 Workshop, Pergamon, 293-298.

Tsai, T.K., Hsueh, M.Ch., Zhao, H., Kalbarczyk, Z. and Iyer, R.K.

(1999) Stress based and path based fault injection. IEEE Trans. on Com-
puters 48 (11), 1183-1201.

Vargas, F., Brum, D., Prestes, D., Bolzani, L. and Lettmin, D. (2003)

On the mitigation of conducted electromagnetic immunity by means of
SW-based fault handling mechanisms. Proc. IEEE Latin America Test
Workshop, 130-135.

Velazco, R., Corominas, A. and Ferreyera, P. (2002) Injecting bit flip
faults by means of a purely software approach. Proc. IEEE Int. Defect
and Fault Tolerance in VLSI Symposium, 108-116.

