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Abstract: The topological sensitivity analysis consists in study-
ing the behavior of a shape functional when modifying the topology
of the domain. In general, the perturbation under consideration is
the creation of a small hole. In this paper, the topological asymp-
totic expansion is obtained for the Laplace equation with respect to
the insertion of a short crack inside a plane domain. This result is
illustrated by some numerical experiments in the context of crack
detection.
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1. Introduction

The detection of geometrical faults is a problem of great interest for engineers,
to check the integrity of structures for example. The present work deals with
the detection and location of cracks for a simple model problem: the steady-
state heat equation (Laplace equation) with the heat flux imposed and the
temperature measured on the boundary.

On the theoretical level, the first study on the identifiability of cracks was
carried out by A. Friedman and M.S. Vogelius (1989). It was later completed
by G. Alessandrini et al. (1996) and A. Ben Abda and associates (Andrieux and
Ben Abda, 1996; Ben Abda, Ben Ameur, Jaoua, 1999) who also proved stability
results. In the same time, several reconstruction algorithms were proposed
(Santosa, Vogelius, 1991; Baratchart, Leblond, Mandréa, Saaf, 1999; Briihl,
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Hanke, Pidcock, 2001; Ben Abda, Kallel, Leblond, Marmorat, 2002; Bryan,
Vogelius, 2001).

Concurrently, shape optimization techniques have progressed a lot. In par-
ticular, some topological optimization methods have been developed for design-
ing domains whose topology is a priori unknown (Allaire, 2002, Bendsge, 1996,
Schumacher, 1995). Among them, the topological gradient method was intro-
duced by A. Schumacher (1995) in the context of compliance minimization.
Then J. Sokotowski and A. Zochowski (1999) generalized it to more general
shape functionals by involving an adjoint state. To present the basic idea, let
us consider a variable domain 2 of R? and a cost functional j(Q) = J(uq) to
be minimized, where uq is solution to a given PDE defined over 2. For a small
parameter p > 0, let Q \ B(xg,p) be the perturbed domain obtained by the
creation of a circular hole of radius p around the point zy. The topological
sensitivity analysis provides an asymptotic expansion of j(Q\ B(zg, p)) when p
tends to zero in the form:

32\ B(zo, p)) = 5(2) = f(p)g(x0) + o(f(p))-

In this expression, f(p) denotes an explicit positive function going to zero with
p, g(xo) is called the topological gradient or topological derivative and it can be
computed easily. Consequently, to minimize the criterion j, one has to create
holes at some points Z where g(Z) is negative. The topological asymptotic
expression has been obtained for various problems, arbitrary shaped holes and
a large class of cost functionals. Notably, one can cite the papers Garreau,
Guillaume, Masmoudi (2001); Guillaume, Sididris (2002, 2004); Samet, Amstutz
and Masmoudi (2003), where such formulas are proved by using a functional
framework based on a domain truncation technique and a generalization of the
adjoint method (Masmoudi, 2001).

The theoretical part of this paper deals with the topological sensitivity analy-
sis for the Laplace equation with respect to the insertion of an arbitrary shaped
crack with a Neumann condition prescribed on its boundary. In this situation,
the contributions focus on the behavior of the solution or of special criterions like
the energy integral or the eigenvalues (Maz'ya, Nazarov, 1988; Maz’ya, Nazarov
and Plamenevskij, 2000; Khludnev, Kovtunenko, 2000). To calculate the topo-
logical derivative, we construct an appropriate adjoint method that applies in
the functional space defined over the cracked domain. This approach, combined
with a suitable approximation of the solution by a double layer potential, leads
to a simpler mathematical analysis than the truncation technique. The numer-
ical part is devoted to the inverse geometrical problem described above. The
Kohn-Vogelius criterion (Kohn, Vogelius, 1987) is used as a cost functional. We
explain the procedure as well as present some numerical results.
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2. Problem formulation

Let © be a bounded domain of R? with smooth boundary I'. We consider a
regular division I' = I'g UT;, where I'y and T'; are open manifolds, Ty is of
nonzero measure and I'o N I'y = (). The source terms consist of two functions
feLl?*Q)andge Hé({Q(I‘l)’. We recall that, for an open manifold ¥ such that
¥ C % where ¥ is a smooth, open and bounded manifold of the same dimension
as X, we have (Lions, Magenes, 1968)

Hyf* (%) = {ups,u € HYA(S),us,5 =0} . (1)
It is endowed with the norm defined for all u € H'/2(X) by
sl o sy = ey

The initial problem (for the safe domain) is the following: find ug € H*({) such
that

—Aug = f in Q,
ug = 0 on Ty, (2)
Opug = g on I},

For a given zy € , let us now consider the cracked domain 2, = Q\ 7,,
0, = To + po, where p > 0 and o is a fixed bounded manifold of dimension 1
and of class C! (see Fig. 1). We assume that (2, is connected. Possibly changing
the coordinate system, we will suppose for convenience that zop = 0. The new
solution u, € H*(Q,) satisfies

—Au, = f in

u, = 0 on Ty,
Opu, = g on Iy, (3)

Ohup, = 0 on o

Figure 1. The cracked domain
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The variational formulation of this problem reads: find u, € H'(Q,) such
that

ap(up,v) = lp(v) Yo eV, (4)
with
= {ue H'(Q),ur, =0} (5)

and for all u,v € V,,

ap(u,v) / Vu.Vv,dz,

/fvdx—i—/F gu ds. ©

As usual in analysis, the duality product between Hé({Q(I‘l)’ and Hééz (1) is
denoted by an integral. When p = 0, that formulation is also valid for Problem
(2) by setting Q¢ = Q in Equations (5) and (6).

Let D be a fixed open set containing the origin and such that D C Q. We
define the functional space

W= {ue L*Q),uc H(Q\D)}, (7)
which is equipped with the norm

lullw = (lull§ o + lull} g5

Throughout the paper, for a given domain O, we denote by ||ullo,0 and
|lull1,0 the standard norms of the function u in the spaces L*(O) and H'O),
respectively. The semi-norm |ul1,0 = ||Vullo.o will also be used.

Consider finally a differentiable functional J : W — R. We wish to study
the asymptotic behavior when p tends to zero of the criterion

J(p) = J(up).

3. An appropriate adjoint method

The following adjoint method is especially constructed to apply to the above
problem. In fact, the key point is that the functional spaces fit together as
follows: for all p > 0,

Vo CV, CW. (8)

For all p > 0, we denote by v, the solution to the problem: find v, € V, such
that

ap(u,v,) = =DJ(ug)u  Yu € V,. 9)

The functions ug and vy are respectively called the direct and adjoint states.
We assume that the following hypothesis holds.
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HyPOTHESIS 3.1 There exist § € R and f : Ry — Ry tending to zero with p
such that

1. up = uollw = O(f(p)),
2. ap(uo — up,vp) = f(p)8 + o(f(p))-

Then, the asymptotic expansion of j(p) is provided by the following Propo-
sition.

ProprosSITION 3.1 If Hypothesis 3.1 is satisfied, then

i(p) = 3(0) = f(p)d + o(f(p))-
Proof. Using the differentiability of J, Hypothesis 3.1 and Equation (9), we
obtain successively

i(p) = j(0) = J(up) = J(uo) = DJ(uo)(up — uo) + of|[u, — uollw)
—ap(up — o, v,) + o(f(p)) = f(p)d + o(f(p))- -

4. Asymptotic calculus

We have now to check Hypothesis 3.1 in the context of Problem (3). To simplify
the presentation, all technical estimates are reported in Section 5. In this way,
we assume for the moment that ||u, — ug|lyw = O(p?), which ensures that the
first condition of Hypothesis 3.1 is fulfilled if p?> = O(f(p)). We focus here on
the determination of f(p) and § such that the second part of Hypothesis 3.1
holds.

4.1. Preliminary calculus

We obtain by using the Green formula
ap(Ug — Up,vp) = / V(up —up).Vu, de = —/ Onug[v,] ds
Q, op

1/2 .
where [v,] = V|4 — Vy,~ € Hgh"(a,) (see Fig. 1).
Next we introduce the variation

Wy = Vp — V-

From (9), we obtain that w, is solution to the problem : find w, € H'(,) such
that

Aw, = 0 in 9,

w, = 0 on I,
Ohw, = 0 on Iy, (10)
Ohw, = —0Opvy on o,

We are going to search for an appropriate approximation of w,,.
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4.2. Definitions and standard results about exterior problems

Let ¥ be a bounded manifold of dimension 1, of class C! and A = R?\ 3. We
suppose that A is connected. The space W'(A) is defined by (see e.g. Jaoua,
1977; LeRoux, 1974; Giroire, Nédélec, 1978):

u

WHA) = {u € D'(A), D)

€ L*(A) and Vu € LQ(A)} .

It is equipped with the norm

2
u

[ullwr(a) = <Hm

In the above expressions, the letter » denotes the distance to the origin.
Given ¢ € Héf(i])’ , let us now consider the problem

1/2
+ |VU||2L2(A)> .

L3(A)

Au = 0 in A,
u = 0 at oo, (11)
Opu = 1 on .

To solve it with the help of a potential, we need to introduce the fundamental
solution of the Laplacian in 2D:

1
E(x) = o In |x].

We have the following theorem (see Giroire, Nédélec, 1978; Nishimura, Kobayashi,
1991).

THEOREM 4.1 1. Problem (11) has a unique solution w € W1(A) and the
map ¥ — u is linear and continuous from Héf(Z)’ into WY(A).
2. The solution u is the double layer potential

u(z) = / ()0, B(x - y)ds(y) Ve €A,

where n = Tx, Tx being a known isomorphism from HégQ(E)’ into
1/2
Hy)*(2).
3. We have the jump relation for the same orientation as in Fig. 1:

[u] = U)o+ — Us- = —10-

4. If ¥ is a line segment with curvilinear abscissa s, we have for all n €
(HY> N CH(S) and ¢ € D(X)

<15 == [ [ Pdsto) ) B - p)dsta)ds(y).
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4.3. Estimate of w,

Let us now come back to the approximation of the solution to Problem (10).

First approzimation: We approximate w, by h, the solution to the exterior
problem: find h, € W*(R?\ 7,) such that

Ah, = 0 in R2\7,
Onhp = —0nvg on o, (12)
h, = 0 at oo

Then, we use the change of variable

hy(z) = pH, (%) .

The function H, € W!(R?\ 7) verifies

AH, = 0 in R2\7,
OnH,(x) = —0pvo(pr) on o,
H, = 0 at  oo.

By Theorem 4.1, H, can be written in the form

Hylx) = [ a)on, Ea-y)dsty) Vo B\, (1)
where g, € HééQ (o) is defined by

4p = To(=0nvo(pz)). (14)

Second approzimation: We approximate now g, by
q=T,(—Vuv(0).n). (15)

4.4. Asymptotic expansion of the cost functional

We set
= —/ Onuolw, — hy,)ds
Then

ap(uog — up,vp) = /8u0wp lds = — /8u0 ol ds + E1(p)

—p/auopa: bl ds + Ei(p).
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We denote also
Ea(p) = —p / Inuo(pz)(qp — q) ds.

By the jump relation of Theorem 4.1, we have

ap(uo—u,, vp) = p° / Onuo(pr)gp ds+Er(p) = p° / Onuo(pr)q ds+Ei(p)+E2(p).

Finally, we define
Bs(p) = p° / (Onttol(p) — Vo (0)-m)q ds
and we obtain
ap (1o — 4y, ) = / Vuo(0).nqds + Ex (p) + Ea(p) + Es(p).

We will prove in Section 5 that E;(p) = o(p?) Vi = 1,2,3. Therefore, we are
allowed to set

f(p) =p?, 5=Vu0(0)./qnds.

Let us introduce the so-called polarization matrix A,, defined as the matrix
of the linear map

VeER— A,V = / T,(V.n)nds. (16)
In the case of a hole instead of a crack, similar matrices can be defined with the
help of a single layer potential (Schiffer, Szego, 1949; Polya, Szego, 1951; Fried-
man, Vogelius, 1989; Argatov, Sokotowski, 2003; Nazarov, Sokotowski, 2003).
They are proved to be symmetric positive definite, and this is still true for a
crack. Then, we can write

6= —VUO(O).AUVU()(O).
From Proposition 3.1, we derive the following theorem.

THEOREM 4.2 If
o the cost functional J is differentiable on the space W defined by (7),
e the source terms f and DJ(ug) are of reqularity H? in a neighborhood of
the origin,
o the direct and adjoint states are solutions to (4) and (9) with a, and I,
defined by (6),
e the polarization matriz A, is defined by (16),
then the criterion admits the following asymptotic erpansion when p tends to
zero:

3(p) — §(0) = —p*Vug(0).A, Vg (0) + o(p?). (17)
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4.5. Straight crack

Let o be a line segment of length 2 centered at the origin, with unit normal n.
Using Theorem 4.1, one can check that the appropriate density evaluated at the
curvilinear abscissa s is

T, (Vn)(s) = 2(V.in)y/1 — s2.
We have then
AsV =7(Vn)n.

COROLLARY 4.1 For a straight crack of normal n, the topological asymptotic
expansion reads

3(p) = 3(0) = —mp*(Vug(0)-n) (Vg (0)-m) + o(p?). (18)

This formula extends to the case of a vector field. Denoting by u} and vi,
1=1...P the components of ug and vy, one gets the expansion:

P
§(p) = §(0) = =mp* Y (Vuf(0).m) (Ve (0)-m) + o(p?). (19)

=1
5. Proofs

5.1. Preliminary lemmas

LEMMA 5.1 Consider ¢ € H&é2(0)l and let z € W (R? \ @) be the solution to
the problem

Az = 0 in R2Z\7,
z =0 at 00,
Oz = Y on o.

There exists ¢ > 0, independent of p and 1, such that
|Z|1,%(Q\5) < CPH?&HH%%)/-

Proof. According to Theorem 4.1, there exists n € Hégz (o) such that

Amz/mm%ﬂ@—ww@xWeRﬂa

where n = T,1. Using a Taylor expansion of E computed at the point x and
the continuity of T,, we have that

C
V@) € ¥l gy

from which we deduce the result. [ |
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LEMMA 5.2 Consider g € Hé({z(Fl)’, p>0,he Héé2(op)’ and let z € H(Q,)
be the solution to the problem

Az = 0inQ,,

z = 0onTy,
Onz = gonly, (20)
Onz = h ono,.

There exist some positive constants denoted by ¢ independent of p, g and h such
that for all p small enough

||Z||O7Qp < Cp2||h(px)”Hééz(g)/ + cHg”Hééz(Fl)”

|Z|17Qp < Cth(px)HHéé?(U)/ + CHg”HééQ(Fl)m

2
Izl oz < 0?11 2) gz o + elgll iz -

Proof. The function z is split into z; + 2o respective solutions to

. e A = 0 i Q
AZl = 0 m R2 \ Op, zj = - (1)II11 ]-—‘(;))7
= 0 t ’
0, 21 = h jn 207 Onza = g—0wzn on T4,
nZ1 = P Opza = 0 on 0.

The function Z;(z) = z1(pz)/p is a solution to

AZ = 0 in  R2\7,
z1 = 0 at oo,
OnzZ1 = h(pzr) on o.

By elliptic regularity, we have
121w @2\z) < cllh(pa)l sz -
Lemma 5.1 yields
|21|1,%(Q\5) < CP||h(P$)||Héé2(g)/-
Then, a change of variables brings
le1llo0, < en?lmGom)l s oy
e1li, < colla(om) oo ).
o1l s < r (o2 ey
Moreover, we have by elliptic regularity
le2lha, < cllzuly o + clgll gz ey

which completes the proof. [ |
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5.2. Proof of Theorem 4.2

The result is a consequence of Proposition 3.1 if we prove that |lu, — uglw =
O(p?) and that E;(p) = o(p?) for i = 1,2,3.

5.2.1. Estimate of the variation of the solution

It is an immediate application of Lemma 5.2 that
lup —uollw = O(p).

5.2.2. Estimate of the remainders

We will denote by ¢ any positive constant independent of p.
1. We have

[E1(p)

p

[ dualpol(w, ~ hy) o)) s

pl1910(02) a2 16000 = o) P2 g

= Cp”[ep(px)]”[.[éé?(a)a
where e, = w, — h, is solution to

ANIRVAN

Aep = 0 in Qp,

e, = —h, on T,
Onep, = —0Oph, on Iy,
One, = 0 on op.

Denoting by B some ball containing o, we obtain by using the trace the-
orem

o) sz oy = Virel% llep(p) + M sz ) < cvirel% lep(pz) +7l1,B\>
< cley(pz)]1, B\
A change of variable and the elliptic regularity yield
leo (ool g2 oy < clesla, < cint ey +l10,
< cinf ||k — <clh -
< C}VIEIRH p Tl p < clholi b
Next, a change of variable and Lemma 5.1 yield
Hep(m gz oy < P 3 0 < €210t (0) 1z -
Finally,

|E1(p)| < cp.
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2. We have
1B(o)| < 221101002 3120 00 — o
< Cp2||qp — qHHééz(o’)'
By the continuity of the operator T,, we have

lap = 4l 172y < Nt (p2) = Voo ()0l v,
< ¢ 9nvo(pr) — Ve (0).n o).

Yet, vg is of class C? in a neighborhood of the origin. Thus,

qu) - q”Hééz(g) <cp (21)
and
|Ea(p)] < cp”.
3. We have

B3()| < p2l1uuolp) — Vo ()] oo lall o -
As wyg is of class C? in a neighborhood of the origin,

91t0(p) — Fuo ()0l 12, < 9t (p) — Vao(0)-mlleno) < e
Hence,

|E3(p)| < cp. n

6. Numerical applications

In this numerical study, we use Formula (19) to detect and locate cracks with
the help of boundary measurements. The context is the one of the steady-state
heat equation.

6.1. The inverse problem

Let ©Q be a domain containing a perfectly insulating crack ¢* whose location,
orientation, shape and length are to be retrieved. We dispose of the temperature
6 measured on the boundary I for a heat flux ¢ prescribed: 6 = u(o*)|r, where
u(o™) is the solution to the PDE

Au(c*) = 0 in Q\7,
Opu(c*) = ¢ on T, (22)
Opu(c*) = 0 on o
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To ensure well-posedness of the above system, we assume the normalization
condition

/gods:O
r

and we impose that the mean value of the solution is equal to zero:

/ u(c*)dz = 0.
oo

In practice, several measurements, corresponding to different fluxes, may be
needed. But for the clarity of the presentation, let us consider the simplest case
of one measurement.

6.2. The cost functional and the topological gradient

Since the boundary conditions (6, ) are overspecified, one can define for any
crack o C Q2 two forward problems:

e the “Dirichlet” problem:

Aup(c) = 0 in Q\7,
up(c) = 6 on T, (23)
Opup(c) = 0 on o,

e the “Neumann” problem:

Auny(oc) = 0 in Q\7,
Opun(o) = ¢ on T, (24)
Opun(c) = 0 on o.

The solution to this latter system is defined up to an additive constant, which
is determined by the equation

/ un(o)dz = 0. (25)
o\

This condition plays the same role as the fact of prescribing a Dirichlet condition
on a part of the boundary, which was chosen for simplicity in the theoretical
study. The actual crack o* is reached (¢ = ¢*) when there is no misfit between
both solutions, that is, when the cost functional

J(0) = J(up(0),un(0)) = %HUD(U) —un () 720 (26)

vanishes. This is the so-called Kohn-Vogelius criterion (Kohn, Vogelius, 1987).
To compute the corresponding topological gradient, we need to solve numeri-
cally:
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e the two direct problems on the safe domain

Aup = 0 in
up = 6 on T,

Auy = 0 in
Opouy = @ on T (28)

/uNdx:(),
Q

whose solutions are denoted by up and uy instead of up(0) and uy(0) to
simplify the writing,
e two adjoint problems (defined on the safe domain too)

—Avp = —(up—uny) in €
{ vp = 0 on I (29)
—Avy = —l—(U,D —’LLN) —up in Q,
Opoy = 0 on T, (30)

/dex:(),
Q

. 1 / d
P~ Teas (Q) QuD o

The above adjoint problems are derived directly from their variational formu-
lations (a quotient functional space is needed to define the Neumann problem).
The existence of the solution to Problem (30) comes from Equation (25). Using
a vector field U = (up,un), Corollary 4.1 provides the following expression of
the topological asymptotic for that cost functional and the insertion of a small
straight crack:

T (0zpm) — T(0) = =7p*[(Vup(x).n)(Vop(z).n) + (Vuy (z).n)(Voy (z).n))]
+o(p?),

with

where 0., n is the line crack of length 2p, centered at the point z and of unit
normal n. One can also write the corresponding topological gradient

9(w,1) = —7[(Vup()n)(Vop (2).1m) + (Vi (2)0)(Voy (2)0)]
as follows:

g(z,n) =n" M(z)n,
where M (z) is the symmetric matrix defined by

M(z) = —msym (Vup(z) @ Vup(x) + Vun(z) ® Voy(z)).



Crack detection by the topological gradient method 95

The notation sym (X) stands for the symmetric part of the square matrix X:
sym (X) = (X + X7T)/2 and the tensor product of two vectors means U ® V =
UVT. According to that expression, g(z,n) is minimal at the point x when the
normal n = n; is an eigenvector associated to the smallest eigenvalue A;(x) of
the matrix M (x). Then, g(z,n1) = A\ (z). Henceforth, we will call topological
gradient this value.

6.3. Numerical result in one iteration without noise

Let us now describe a simple and very fast numerical procedure. First, we solve
the two direct problems and the two adjoint problems (Dirichlet and Neumann).
Then, in each cell of the mesh, we compute the matrix M (z) and its eigenvalues.
By regarding the unknown crack as the addition of small straight cracks whose
interactions are neglected and by using the previous asymptotic analysis, one
expects that crack to lie in the regions where the topological gradient is the
most negative.

Let Q be the unit disc and ¢* be a line segment crack. The heat flux ¢
is imposed on I" by ¢(x) = x2, the second coordinate of the point x. In this
experiment, the flux inside the safe domain is not parallel to the crack, so
that only one measurement is needed for the reconstruction (see Andrieux, Ben
Abda, 1996). We apply the procedure described above. The location of the
unknown crack as well as the topological gradient are indicated in Figs. 2 and 3.
We observe that the most negative values of the topological gradient are located
near the actual crack.

6.4. Numerical results in one iteration with noise
6.4.1. Case of a single crack

We focus here on simulated noisy measurements. A white noise is added to the
exact data. Fig. 4 shows the results obtained for 5%, 10% and 20% of noise. We
observe that the inversion procedure is quite robust with respect to the presence
of noise in the measurements.

6.4.2. Case of multi-cracks

The computation of the topological gradient does not depend on the number of
cracks inside the domain. This remark is illustrated by the following experiment.
The actual cracks and the topological gradient are shown in Fig. 5. We use now
two fluxes p1(z) = z1 and pa2(x) = x2. We take as a cost functional the sum
of the two quadratic misfits. Hence, the matrix M (z) is assembled by adding
the two corresponding contributions. We emphasize that these results are again
obtained in only one iteration.



96 S. AMSTUTZ, I. HORCHANI, M. MASMOUDI
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Figure 2. The unknown crack

-1 -1 -0.5

Figure 3. On the left: the topological gradient; on the right: superposition of
the actual crack and a negative isovalue of the topological gradient

y = y L
. .

Figure 4. Representation of a negative isovalue of the topological gradient for
5%, 10% and 20% of noise, respectively
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Figure 5. Respectively 5%, 10% and 20% of noise.

6.5. Identification of cracks with incomplete data

It is a more realistic situation where a part only of the border is accessible to
measurements. Let 2 be the unit disc with boundary I' = I'¢UT';. The heat flux
@ is prescribed on I' and the temperature 6 is measured on I'y, here a quarter
of the whole boundary. For any crack o C €, we consider the two following

problems:

e the “Neumann-Dirichlet” problem:

Aup(oc) = 0

up(c) = 6

Onup(o) = o

Opup(o) = 0

e the “Neumann” problem:
A’U,N(U) = 0

Onun(o) = ¢

Opun(o) = 0

with the normalization condition

in
on
on
on

in
on
on

0\ 7,
F17
FOv

T, (32)

/Q\UuN(a)dx - /Q\Uup(a)dx.
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We use the same cost functional as before (see Equation (26)), but for the
above fields. Hence we have the same topological gradient expression and the
numerical procedure remains unchanged. The results are represented in Fig. 6.
The cracks are located in a satisfactory manner.

Figure 6. Topological gradient with incomplete data (no noise)

6.6. An iterative method

The algorithm consists in inserting at each iteration an insulating element (that
is, numerically, an element whose thermal conductivity is very small) where the
topological gradient is the most negative. The process is stopped when the cost
functional does not decrease any more.

Algorithm

Initialization: Choose the initial domain €y and create a mesh which will
remain fixed during the process. That domain is identified with the set of its
finite elements: Q¢ = {x,,n =1,..., N}.
Set k= 0.
Repeat:

1. Solve the direct and adjoint problems in )y,

2. Compute the topological gradient gg,

3. Search for the minimum of the topological gradient: y, = argmin(gg(z),z €

Q),
4. Set Qk—i—l = O \ {yk}7
5 k«—k+1.

We wish here to recover two cracks with the help of one flux p(x) = 2
(complete data, no additive noise). The final image and the convergence history
of the cost functional are shown in Fig. 7.
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e

Figure 7. On the left: the actual cracks and the reconstructed cracks after a
few iterations; on the right: the convergence history of the criterion

7. Conclusion

The mathematical framework presented in this paper can be adapted to deter-
mine the sensitivity with respect to the insertion of a small crack for a large
class of linear and elliptic problems.

The topological gradient leads to fast methods for detecting and locating
cracks in that it only requires to solve the direct and adjoint problems and
satisfactory results are obtained after a small number of iterations performed
on a fixed grid. These methods can provide a good initial guess for more accurate
classical shape optimization algorithms (Kubo, Ohji, 1990; Santosa, Vogelius,
1991).
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