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Abstract: This paper studies the generic identification problem:
to find the best non-parametrized object Ω which minimizes some
weighted sum of distances to I a priori given objects Ωi for metric
distances constructed from the W 1,p–norm on the oriented (resp.
signed) distance function which occurs in many different fields of
applications. It discusses existence of solution to the generic identi-
fication problem and investigates the Eulerian shape semiderivatives
with special consideration to the non-differentiable terms occurring
in their expressions. A simple example for the new cracked sets re-
cently introduced in Delfour and Zolésio (2004b) is also presented.
It can be viewed as an approximation of a cracked set by sets whose
boundary is made up of pieces of lines or Bézier curves that are not
necessarily connected.
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nal problems, set-valued and variational analysis, image processing,
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1. Introduction

In problems where a non-parametrized geometric object is the variable, special
metrics are used to measure the distance between two objects and to induce
topologies from which existence and characterization of optimal objects can be
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obtained for design, identification, or control purposes. The choice of the metric
is obviously very much problem dependent and corresponds to pertinent tech-
nological, physical, or geometric entities associated with the problem at hand.
For instance, distance functions have been used for theoretical and computa-
tional purposes in free boundary problems (Gilbarg and Trudinger, 1977; Ishii
and Souganidis, 1995), image processing and computer vision (Matheron, 1998;
Serra, 1984, 1998; Aubin, 1999; Osher and Sethian, 1988; Malladi, Sethian, Ve-
muri, 1995; Adalsteinsson and Sethian, 1999; Caselles, Kimmel, Sapiro, 1997;
Gomes and Faugeras, 2000), and robotics (Hoffmann et al., 1992; Hoffmann,
1990, 1994; Stifter, 1992). When computations are envisioned, the choice of
metrics and formulations is also influenced by the fact that they must lead to
algorithms which are efficient, easily implementable, and capable of handling
available experimental data or measurements.

This paper focuses on theoretical and practical issues associated with the fol-
lowing generic shape identification problem: given I objects or data sets Ωi, to
find the best object Ω which minimizes some combination of the distances from
Ω to each Ωi, 1 ≤ i ≤ I. This basic problem occurs in many areas of applica-
tions: biometric identification or image enhancement such as the production of
a sharp image from images produced by an array of very large telescopes (VLT).
For instance, the European Southern Observatory (ESO) VTL consists of four
8-m telescopes, which should one day work in unison and simulate the resolution
of a huge single instrument through interferometry - a technique familiar to as-
tronomers using radio telescopes (see http://www.eso.org/projects/vlt/). Even
in this simple form the problem is technically very delicate since singularities
and non-differentiabilities naturally occur even for sets of class C∞. Among
the many metrics available for non-parametrized sets, the paper specializes to
metrics and constructions based on the the W 1,p–norm1 on the oriented (resp.
signed or algebraic) distance function bΩ. This choice is simultaneously moti-
vated by the existence of efficient computer packages using distance functions
and, from the purely theoretical viewpoint, by the fact that it is playing a central
and natural role in the shape and geometric analysis (see, for instance Delfour
and Zolésio, 2001, 2004, Aubin, 1999, for a comprehensive analysis, Delfour,
Doyon and Zolésio, 2005a, b, c, for new compactness results in shape optimiza-
tion for sets verifying a uniform cusp or fat segment property, and the new
cracked sets used in the context of the image segmentation problem in Delfour
and Zolésio, 2004b).

Section 2 discusses the generic shape identification problem for the four
objective functions that have been selected to illustrate the fundamental issues
at sake: f0,p and f1,p are defined over a fixed bounded hold-all D (see (9) and
(10)) and g0,p and g1,p are defined on the boundary Γ of the set Ω (see (11)
and (12)). Section 3 reviews the family of W 2,p-Sobolev domains. For p > N ,

1This topology was introduced in Delfour and Zolésio, 1994, and further investigated in
Delfour and Zolésio, 1998, 2001.
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the boundary integral is shown to be continuous for special classes of functions.
This material is used in Section 4 to discuss the existence of solution to the four
objective functions.

The other sections are devoted to the computation of Eulerian shape semi-
derivatives of the objective functions. Section 5 reviews the Velocity Method
which transforms an initial domain Ω into domains Ωt(V ) indexed by the real
parameter t under the action of a velocity field V . We compute the partial deriv-
ative of the oriented distance function of Ωt(V ) with respect to t. Its expression
gives a complete description of the non-differentiability involved and is used to
study the Eulerian semiderivatives of the four generic objective functions. Sec-
tion 6 gives the expression of the shape semiderivative of the objective functions
f0,2 and f1,2 defined on the hold-all D (see (31) and (32)) for sets Ω with thin
boundary. For f1,2 the Ωi’s are also assumed to have thin boundaries, but the
semiderivative necessitates more smoothness on the curvatures of Ω or of all the
Ωi’s in the whole hold-all D. This can be restrictive. Since Ω is the free variable
it can be assumed sufficiently smooth to make sense of curvature terms, but this
is more delicate for the data sets Ωi that may have some skeleton away from
their boundary Γi even if they are very smooth. In Section 7 the semideriv-
atives of the objective functions g0,2 and g1,2 defined on the boundary Γ (see
(34) and (37)) require more smoothness assumptions than their counterparts
on D. It is assumed that Ω and the Ωi’s have thin boundary and that Γ has
finite (N −1)-dimensional Hausdorff measure to make sense of integration on Γ.
Since no gradients are involved in the definition (34) of g0,2, its semiderivative
makes sense by relaxing one of the terms to its non-differentiable expression.
Gradients are present in the definition of g1,2 and more assumptions have to be
put on the data sets Ωi in order to make sense of the trace of their curvature
on Γ. We discuss this much more restrictive case and give a result for a special
case in dimension 2. The function g1,2 is not always semidifferentiable.

Section 8 gives a simple example for the objective function g2,0 that does not
require any semidifferentiability assumption. The unknown set is a cracked set
(first introduced in Delfour and Zolésio, 2004b, for the segmentation functional
of Mumford and Shah) whose boundary is made up of line segments or Bézier
curves specified by a connectivity matrix. All the semiderivatives are explicitly
computed in terms of the projections. The constructions and computations
readily extend to sets in three dimensions whose boundary is made up of two-
dimensional triangular facets or curved triangular surfaces. The special set Γ
can also be viewed as an approximation of a cracked set by sets whose boundary
is made up of pieces of lines or Bézier curves that are not necessarily connected.
All the formulae for the semiderivatives can also be obtained by choosing a
special velocity field associated with each node and each control node in the
case of a Bézier curve. This approach was used in Zolésio (1984) to compute
the derivative of an objective function that depends on the solution of a finite
element problem with respect to the internal nodes of the triangulation of the
underlying domain.
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This theoretical analysis of the oriented distance function in the four generic
objective functions considered indicates that metrics involving gradients ne-
cessitate more restrictive assumptions on the set Ω and/or the data sets Ωi.
There are many intriguing issues and problems which are still open and appar-
ent restrictions might be overcome while preserving explicit expressions of the
semiderivatives. The two metrics without gradient terms are easier to handle
and the lack of control over the gradients can be fixed by minimizing over classes
of domains with bounds on the curvatures over a tubular neighborhood of the
boundary. In that case, control is exerted through both the thickness of the
tubular neighborhood and the amplitude of the curvatures.

In this paper the words set, image, and object will be used equivalently.
Given an integer N ≥ 1, mN and HN−1 denote the N -dimensional Lebesgue
and (N − 1)-dimensional Hausdorff measures. The inner product and the norm
in RN will be written x · y and |x|. The complement {x ∈ RN : x /∈ Ω} and
the boundary Ω∩ �Ω of a subset Ω of RN will be respectively denoted by �Ω or
RN \Ω and by ∂Ω or Γ. The distance function dA(x) from a point x to a subset
A �= ∅ of RN is defined as inf{|y − x| : y ∈ A}.

2. A generic shape identification problem

Assume that I objects {Ωi : i ∈ I} are given in the Euclidean space RN, N ≥ 1
an integer. In most applicationsN is equal to 2 or 3. Given a metric ρ(Ω′,Ω) de-
fined on the objects, we want to find the best object Ω which minimizes objective
functions of the form

fp(Ω) def=

{
I∑

i=1

ρ(Ω,Ωi)p

}1/p

or f(Ω) def= max
1≤i≤I

ρ(Ω,Ωi) (1)

for some finite integer p ≥ 1.

2.1. Metrics from the oriented distance function

Given a subset Ω of RN, Γ �= ∅, the oriented distance function is defined as

bΩ(x) def= dΩ(x) − d�Ω(x). (2)

The function bΩ is Lipschitz continuous of constant 1, and ∇bΩ exists and
|∇bΩ| ≤ 1 almost everywhere in RN. Thus bΩ ∈W 1,p

loc (RN) for all p, 1 ≤ p ≤ ∞.

Definition 2.1 (i) Given a nonempty subset D of RN, define the families

Cb(D) def=
{
bΩ : Ω ⊂ D and Γ �= ∅

}
, C0

b (D) def= {bΩ ∈ Cb(D) : mN (Γ) = 0} .
(3)

(ii) The boundary Γ of a subset Ω of RN is said to be thin2 if mN (Γ) = 0.
2This terminology is not to be confused with the one of thin set in Capacity Theory.
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In this paper we specialize to the following complete metrics associated with
bΩ over the subsets of a bounded open hold-all D

ρC(D)([Ω′], [Ω]) def= max
x∈D

|bΩ′(x) − bΩ(x)| (4)

ρLp(D)([Ω′], [Ω]) def=
{∫

D

|bΩ′ − bΩ|p dx
}1/p

(5)

ρW 1,p(D)([Ω′], [Ω]) def=
{∫

D

|bΩ′ − bΩ|p + |∇bΩ′ −∇bΩ|p dx
}1/p

. (6)

The space Cb(D) is a complete metric space for the metrics (4), (5), and (6), but
the space C0

b (D) is complete only with respect to the metric (6) (e.g. Delfour
and Zolésio, 2001, Chapter 5). The metrics (6) are all equivalent for 1 ≤ p <∞.

The points of RN where the gradient of bΩ does not exist can be divided
into two categories: the ones on the boundary Γ and the ones outside of Γ.

Definition 2.2 The set of projections of a point x ∈ RN onto the boundary Γ
of a set Ω, Γ �= ∅,

ΠΓ(x) def=
{
p ∈ RN : |bΩ(x)| = |p− x|}

since |bΩ(x)| = dΓ(x); the skeleton of Ω

Sk(Ω) def=
{
x ∈ RN : ΠΓ(x) is not a singleton

}
(7)

(by definition Sk(Ω) ⊂ RN \Γ); the set of cracks of Ω

C(Ω) def=
{
x ∈ RN : ∇b2Ω(x) exists but ∇bΩ(x) does not exist

}
.

The projection pΓ(x) of a point x /∈ Sk(Ω) onto the boundary Γ of Ω is given
by

pΓ(x) = x− 1
2
∇b2Ω(x) = x− bΩ ∇bΩ(x). (8)

The following families of sets with thin boundary will be used in the paper.

Definition 2.3 (i) The boundary Γ of a subset Ω of RN is said to be in-
tegrable if Γ is nonempty, thin, and the (N − 1)-dimensional Hausdorff
measure HN−1 is locally finite on Γ.

(ii) The boundary Γ of a subset Ω of RN is said to be integrable with normal3

if Γ is integrable and HN−1(C(Ω)) = 0, that is, ∇bΩ exists HN−1-almost
everywhere on Γ.

3For instance this is true for locally Lipschitzian domains, but the existence of a unique
normal is meaningless for submanifolds of RN of codimension strictly greater than one.



142 M.C. DELFOUR, J.-P. ZOLÉSIO

There are a number of important open questions. In particular how can
the sets of Definition 2.3 be characterized from the properties of the Hessian
matrix of bΩ, dΩ, or d∂Ω for sets Ω with a thin boundary. We shall see later how
this is intimately related to the well-posedness and the semidifferentiability of
objective functions defined on the thin boundary Γ of a set Ω.

2.2. Generic objective functions

Consider the following objective functions on a fixed bounded hold-all D

f0,p([Ω]) def=
I∑

i=1

∫
D

|bΩ − bΩi |p dx (9)

f1,p([Ω]) def=
I∑

i=1

∫
D

|bΩ − bΩi |p + |∇bΩ −∇bΩi |p dx. (10)

Both functions are well-defined for arbitrary sets Ω and Ωi with nonempty
boundary. In view of the boundedness of D, we only consider sets Ω that are
bounded with a compact boundary Γ.

In some applications it might be desirable to use smoothness properties in
some neighborhood of the boundary Γ of the variable set Ω rather than in the
whole hold-all D. This can be done by specifying the properties of Ω in the
open tubular neighborhood Uh(Γ) of thickness h > 0 of its boundary Γ.

The shape of an object is essentially determined by its boundary. So it is
also natural to consider the following integral over Γ

g0,p([Ω]) def=
I∑

i=1

∫
Γ

|bΩ − bΩi |p dΓ (11)

g1,p([Ω]) def=
I∑

i=1

∫
Γ

|bΩ − bΩi |p + |∇bΩ −∇bΩi |p dΓ. (12)

Since bΩ(x) = 0 on Γ, the above expressions can be slightly simplified. Here
some restrictions have to be put on the families of subsets Ω and Ωi of RN since
the two boundary integrals over Γ must make sense and the gradients ∇bΩ and
∇bΩi must be well-defined on Γ. For g0,p it is sufficient that Γ be integrable in
the sense of Definition 2.3, but, for the function g1,p, Γ it must be integrable with
normal and, in addition, some assumptions have to be put on the sets Ωi. In
general for each i the gradient ∇bΩi(x) (which only exists almost everywhere in
RN) may not be defined or have a trace on Γ. For sets Ωi which are polygonal
in dimension N = 2 or whose boundary is made up of triangular facets in
dimension N = 3, the gradient of bΩi will exist HN−1-almost everywhere on
Γi and the function g1,p will be well-defined, but the Hessian matrix will be a
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matrix of measures in the corners due to the jump in the normal related to the
angle at the corner.

Theorem 2.1 Assume that the sets Ω and Ωi, i ∈ I, have boundaries which are
integrable with normal. Further assume that HN−1(Γ ∩ Sk(Ωi)) = 0. Then

g1,2([Ω]) =
I∑

i=1

∫
Γ

|bΩi(x)|2 dΓ + 2HN−1(Γ) − 2
I∑

i=1

∫
Γ\ Sk(Ωi)

∇bΩi · ∇bΩ dΓ.

(13)

Proof. For integrable sets Ω with normal, |∇bΩ| = 1 HN−1 a.e on Γ. Similarly
|∇bΩi | = 1 HN−1 a.e on Γi. By assumption HN−1(Γ ∩ Sk(Ωi)) = 0 and∫

Γ

∇bΩi · ∇bΩ dΓ =
∫

Γ\ Sk(Ωi)

∇bΩi · ∇bΩ dΓ.

This last integral splits into two integrals∫
Γ

∇bΩi · ∇bΩ dΓ =
∫

Γ∩Γi

∇bΩi · ∇bΩ dΓ +
∫

Γ\(Sk(Ωi)∪Γi)

∇bΩi · ∇bΩ dΓ,

since Γ∩Γi\ Sk(Ωi) = Γ∩Γi. On Γ\(Sk(Ωi)∪Γi) ∇bΩi exists and, by assumption,
on Γ ∩ Γi it exists HN−1 a.e.. Therefore

|∇bΩ(x) −∇bΩi(x)|2 = 2 − 2∇bΩ(x) · ∇bΩi(x) HN−1 a.e. on Γ.

Remark 2.1 Outside of Γi ∩ Γ the only place where ∇bΩi is not well-defined
is Γ ∩ Sk(Ωi). If it is interpreted as a semi-differentiable term (i.e. df(x; v) =
limt↘0(f(x+ tv) − f(x))/t)

dbΩi(x;∇bΩ(x)) =
1

bΩi(x)
min

p∈ΠΓi
(x)

(x− p) · ∇bΩ(x) (14)

(see Delfour and Zolésio, 2001, Chapter 5, Thm 2.1 (ii)) and this new term is
defined wherever ∇bΩ(x) is defined. To use this we would also need to make
sense of |∇bΩi |2 on Sk(Ωi) and then

g1,2([Ω]) =
I∑

i=1

∫
Γ

|bΩi(x)|2 + 2 − 2 dbΩi(x;∇bΩ(x)) dΓ

=
I∑

i=1

∫
Γ

|bΩi(x)|2 dΓ + 2HN−1(Γ)

− 2
∫

Γ∩Sk(Ωi)

dbΩi(x;∇bΩ(x)) dΓ − 2
∫

Γ\ Sk(Ωi)

∇bΩi · ∇bΩ dΓ.
(15)

In practice, the case HN−1(Γ ∩ Sk(Ωi)) > 0 will seldom occur since it requires
that two sets of zero N -dimensional Lebesgue measure intersect with a non-zero
(N − 1)-dimensional Hausdorff measure.
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2.3. Main issues

The first issue is the choice of the objective function: with or without the
gradient, and defined on D or Γ? The ill-definiteness of the integral on Γ could
be overcome by averaging over the tubular neighborhood Uh(Γ)

gh
0,p([Ω]) def=

I∑
i=1

1
2h

∫
Uh(Γ)

|bΩ − bΩi |p dx (16)

gh
1,p([Ω]) def=

I∑
i=1

1
2h

∫
Uh(Γ)

|bΩ − bΩi |p + |∇bΩ −∇bΩi |p dx, (17)

but some of the advantages of working only on Γ will be lost. Note that the
presence of the gradient on Γ in (17) implicitly implies that Γ must be a sub-
manifold of codimension one. When Γ has codimension r strictly greater than
one, the objective function (17) would not be suitable and the integral in (16)
would have to be divided by hr. The next issue is the question of the choice of
the family of sets in relation to the existence of a minimizing solution. The last
issue is to find characterizations of the minimizing solutions and devise schemes
to compute them. When the topology of the sets is known (e.g. number of
connected components), shape semiderivative can be used to approximate the
best shape or at least to decrease the objective function, but other tools could
be used. If shape semiderivatives of the objective functions are to be used, one
more degree of smoothness will usually be expected from bΩ and bΩi to make
sense of the derivatives. Thus the choice of an objective function is critically
dependent on the nature of the data available, that is, the properties of the
bΩi ’s, 1 ≤ i ≤ I. If the Ωi’s are polygonal sets in R2 or Γi is made up of trian-
gular facets in R3, the skeleton Sk(Ωi) will be HN−1-measurable and the set of
cracks C(Ωi) will contain all the vertices. So ∇bΩi will only exist HN−1-almost
everywhere on Γi and D2bΩi will, at best, be a matrix of bounded measures.

3. Sobolev domains

We recall some recent results from Delfour and Zolésio (2004) on Sobolev do-
mains and establish the continuity of the boundary integral with respect to the
domain. Given h > 0 the open and closed tubular neighborhoods of a set A are
defined as

Uh(A) def=
{
x ∈ RN : dA(x) < h

}
, Ah

def=
{
x ∈ RN : dA(x) ≤ h

}
. (18)

Recalling that dΓ(x) = |bΩ(x)| we also have Uh(Γ) =
{
x ∈ RN : |bΩ(x)| < h

}
.

Definition 3.1 Given m > 1 and p ≥ 1, a subset Ω of RN is said to be an
(m, p)-Sobolev domain if Γ �= ∅ and

∃h > 0 such that bΩ ∈ Wm,p
loc (Uh(Γ)).
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We use the extension of bΩ by zero outside of Uh(Γ) to RN introduced in
Delfour and Zolésio (2004).

Theorem 3.1 Given h > 0 and a subset Ω of RN with nonempty boundary
Γ, let ρh ∈ D( ] − h, h[ ) be a non-negative function which is equal to 1 in a
neighborhood V = ] − h′, h′[ , 0 < h′ < h, of 0. Define the smooth h-extensions
of bΩ and 1 by zero

bhΩ
def= ρh ◦ bΩ bΩ, eh

Ω
def= ρh ◦ bΩ + bΩρ

′
h ◦ bΩ. (19)

It is readily seen that bhΩ = bΩ and eh
Ω = 1 in the tubular neighborhood

b−1
Ω (V ) = Uh′(Γ) ⊂ Uh(Γ) of Γ. By construction eh

Ω ∈ C0,1
0 (Uh(Γ)). The

extension bhΩ preserves the smoothness properties of bΩ in Uh(Γ) and eh
Ω can be

viewed as an extension of 1 by zero outside Uh(Γ) with the same smoothness as
bΩ in Uh(Γ). By construction

∇bhΩ = [ρh ◦ bΩ + bΩ ρ
′
h ◦ bΩ]∇bΩ = eh

Ω∇bΩ. (20)

If there exist p ≥ 1 and h > 0 such that ∆bΩ ∈ Lp
loc(Uh(Γ)), then

∆bhΩ = eh
Ω∆bΩ + ∇eh

Ω · ∇bΩ ∈ Lp
loc(R

N) (Lp(RN) if Γ is bounded).

Theorem 3.2 Given an integer N ≥ 1, let Ω be a subset of RN, ∅ �= Γ �= RN.
(i) If there exist p ≥ 1 and h > 0 such that ∆bΩ ∈ Lp

loc(Uh(Γ)), then

bhΩ ∈ W 2,p
loc (RN) and bΩ ∈ W 2,p

loc (Uh(Γ)) (21)

and mN (Γ) = 0. The gradient ∇bΩ exists in all points of Uh(Γ)\Γ and
|∇bΩ| = 1. If Γ is compact

bhΩ ∈ W 2,p
0 (RN) and ∀h′, 0 < h′ < h, bΩ ∈W 2,p(Uh′(Γ)), (22)

where W 2,p
0 (RN) is the closure in the W 2,p-norm of the space D(RN) of

all infinitely differentiable functions defined on RN with compact support.
(ii) If, in addition to the assumptions of part (i), p > N , then Ω is a Hölderian

set of class C1,1−N/p and bΩ ∈ C
1,1−N/p
loc (Uh(Γ)).

(iii) If, in addition to the assumptions of part (i), p > 1, Γ is compact, {Ωn}
is a sequence of subsets of RN such that bΩn → bΩ in W 1,p(Uh(Γ)), and
there exists a constant c such that

∀n, ‖∆bΩn‖Lp(Uh(Γn)) ≤ c,

then ‖∆bΩ‖Lp(Uh(Γ)) ≤ c and

∆bΩn χUh(Γn) ⇀ ∆bΩ χUh(Γ) in Lp(Uh(Γ))-weak.
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Proof. For (i) and (ii) see Delfour and Zolésio (2004). (iii) For convenience
denote bΩ and bΩn by b and bn. Consider the difference of the Laplacians as
distributions

∀ϕ ∈ D(Uh(Γ)), < ∆bn − ∆b, ϕ > = −
∫

Uh(Γ)

∇bn · ∇ϕdx

+
∫

Uh(Γ)

∇b · ∇ϕdx

⇒ | < ∆bn − ∆b, ϕ > | ≤ ‖∇(bn − b)‖Lp(Uh(Γ)) ‖∇ϕ‖Lq(Uh(Γ))

which goes to zero as n goes to ∞. For ϕ ∈ D(Uh(Γ)), there exists ε > 0 such
that 0 < 3ε < h, and supϕ ⊂ Uh−2ε(Γ). Moreover, there exists N such that

∀n ≥ N, Uh−2ε(Γn) ⊂ Uh−ε(Γ) ⊂ Uh(Γn).

In view of the above identities, for all n ≥ N ,∫
Uh(Γ)

(∇b −∇bn) · ∇ϕdx =
∫

Uh(Γ)

∇b · ∇ϕdx −
∫

Uh(Γn)

∇bn · ∇ϕdx

= −
∫

Uh(Γ)

∆b ϕ dx+
∫

Uh(Γn)

∆bn ϕdx

=
∫

Uh(Γ)

[
∆bn χUh(Γn) − ∆b χUh(Γ)

]
ϕdx.

This means that for all ϕ ∈ D(Uh(Γ))∣∣∣∣∣
∫

Uh(Γ)

[
∆bn χUh(Γn) − ∆b χUh(Γ)

]
ϕdx

∣∣∣∣∣ =

∣∣∣∣∣
∫

Uh(Γ)

(∇b−∇bn) · ∇ϕdx
∣∣∣∣∣ → 0

as n goes to 0. But the norms ‖∆bnχUh(Γn)‖Lp(Uh(Γ)) are uniformly bounded by
c and 1 < p <∞ implies 1 < q <∞. So, by density of D(Uh(Γ)) in Lq(Uh(Γ)),

∀ϕ ∈ Lq(Uh(Γ)),
∫

Uh(Γ)

∆bn χUh(Γn) ϕdx→
∫

Uh(Γ)

∆b χUh(Γ) ϕdx.

By reflexivity of Lp(Uh(Γ)), we get the weak Lp(Uh(Γ))-convergence.

For p > N the sets Ω such that ∆bΩ ∈ Lp(Uh(Γ)) are at least of class
C1. Therefore the boundary integral is well-defined and can be related to the
gradient and the Laplacian of bΩ. Indeed, by Stokes Theorem, for all ϕ ∈ D(RN)∫

Γ

ϕdHN−1 =
∫

Γ

ϕ∇bhΩ · n dHN−1 =
∫

Ω

div(ϕ∇bhΩ) dx

=
∫

Ω

∇ϕ · ∇bhΩ + ϕ∆bhΩ dx =
∫
RN

χΩ∇ϕ · ∇bhΩ + χΩϕ∆bhΩ dx,
(23)
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since the exterior unit normal n exists everywhere on Γ and is equal to ∇bΩ.
Identity (23) extends to all ϕ ∈W 1,q

0 (RN), p−1 + q−1 = 1.

Theorem 3.3 Fix an integer N ≥ 1 and N < p <∞. Let D be a bounded open
Lipschitzian hold-all and {Ωn} be a sequence of subsets of D such that

∃c > 0, ∀n ≥ 1, ‖∆bΩn‖Lp(Uh(Γn)) ≤ c.

Assume that bΩn → bΩ in W 1,p(Uh(D)) and that {ϕn} is a sequence in W 1,q(D),
p−1 + q−1 = 1, such that ϕn → ϕ in W 1,q(D) for some ϕ ∈W 1,∞(D). Then∫

Γn

ϕn dHN−1 →
∫

Γ

ϕdHN−1.

Proof. In view of the previous discussion for all h′, 0 < h′ < h, and n∫
Γn

ϕn dHN−1 =
∫

D

χΩn∇ϕn · ∇bh′
Ωn

+ χΩnϕn ∆bh
′

Ωn
dx.

Consider the first term χΩn∇ϕn · ∇bh′
Ωn

on the right-hand side. By assumption
∇bΩn → ∇bΩ in Lp(Uh(D))N implies that ∇bh′

Ωn
→ ∇bh′

Ω in Lp(Uh(D))N and
χΩn → χΩ in Lp(Uh(D)) since mN (Γn) = 0 and mN (Γ) = 0 for C1,1−p/N -
sets. Therefore ∇ϕn · ∇bh′

Ωn
→ ∇ϕn · ∇bh′

Ω in L1(D)-strong, χΩn ⇀ χΩ in
L∞(Uh(D))-weak*, and the corresponding integrals converge. For the second
term we already know from Theorem 3.2 (ii) that

∆bΩn χUh(Γn) ⇀ ∆bΩ χUh(Γ) in Lp(Uh(Γ))-weak

⇒ ∆bhΩn
⇀ ∆bhΩ in Lp(D)-weak,

since ∆bhΩn
= eh

Ωn
∆bΩn + (eh

Ωn
)′ with (eh

Ωn
)′ = 2ρ′h ◦ bΩn + bΩn ρ

′′
h ◦ bΩn . So it is

sufficient to show that χΩnϕn → χΩϕ in Lq(D)-strong to get the convergence
of the integral of χΩnϕn ∆bh

′
Ωn

to the integral of χΩϕ∆bh
′

Ω . This follows from
the following estimates and the assumptions

‖χΩnϕn − χΩϕ‖Lq(D) ≤ ‖(χΩn − χΩ)ϕ‖Lq(D) + ‖χΩn(ϕn − ϕ)‖Lq(D)

≤ ‖χΩn − χΩ‖Lq(D)‖ϕ‖L∞(D) + ‖ϕn − ϕ‖Lq(D),

where the right-hand side goes to zero as n goes to infinity.

4. Existence of solution

The objective functions defined on D or Uh(Γ) make sense since ∇bΩ and ∇bΩi

are well-defined a.e. on D or Uh(Γ). Existence results are discussed for D. The
functions defined on Γ require that Γ be sufficiently smooth to make sense of the
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integral with respect to the (N − 1)-Hausdorff measure. Under this assumption
g0,p makes sense, but g1,p further requires that ∇bΩ and ∇bΩi have a trace on
Γ. Furthermore we need the continuity of the boundary integral with respect to
the set in some appropriate topology. This is a much more demanding problem.
Existence results are given for g0,p and W 2,p-Sobolev domains.

4.1. Objective functions on D

Recall the minimization problems for the functions f0,p([Ω]) and f1,p([Ω]) for a
bounded open subset D of RN

f0,p([Ω]) =
I∑

i=1

‖bΩ − bΩi‖p
Lp(D), f1,p([Ω]) =

I∑
i=1

‖bΩ − bΩi‖p
W 1,p(D).

The function f0,p([Ω]) is continuous with respect to the C(D)-metric topology
associated with bΩ. For D bounded, Cb(D) is compact in C(D) and Lp(D) (see
Delfour and Zolésio, 2001, Thm 2.2 (ii), Chapter 5) and we have existence of
a minimizing bΩ ∈ Cb(D). The function f1,p([Ω]) is continuous with respect to
the W 1,p-metric topology associated with bΩ in W 1,p(D). For D bounded and
any compact subfamily of Cb(D) we have existence of a minimizing solution
(see Theorem 3.6 in Delfour and Zolésio, 2004, and families of sets of locally
bounded curvature with a bound on the norm of the Hessians, the uniform cusp
and cone properties in Delfour and Zolésio, 2001).

4.2. Objective functions on Γ

The minimization problem for the functions

g0,p([Ω]) =
∫

Γ

|bΩ − bΩi |p dx, g1,p([Ω]) =
∫

Γ

|bΩ − bΩi |p + |∇bΩ −∇bΩi |p dx
(24)

is much more delicate since the integrals are over the variable boundary Γ.
As in Section 2.2, assumptions on Γ and the Γi’s are necessary to make sense
of the objective functions. For instance assume that the conditions of The-
orem 2.1 are satisfied and consider the family of Sobolev domains for which
bΩ ∈ W 2,p(Uh(Γ)), p > N . In view of Theorem 3.2 (ii), they are of class
C1,1−N/p.

The minimization problems for the function g0,p([Ω])

inf
Ω⊂D, bΩ∈W 2,p(Uh(Γ))
‖∆bΩ‖Lp(Uh(Γ)) ≤ c

I∑
i=1

∫
Γ

|bΩi |p dx. (25)

now makes sense and has a solution. Indeed by Theorem 3.3 the objective func-
tion g0,p([Ω]) is continuous in the W 1,p-topology and by Theorem 3.6 in Delfour
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and Zolésio (2004) we minimize over a compact family. The minimization prob-
lems for g1,p([Ω])

inf
Ω⊂D, bΩ∈W 2,p(Uh(Γ))
‖∆bΩ‖Lp(Uh(Γ)) ≤ c

I∑
i=1

∫
Γ

|bΩi |p + |∇bΩ −∇bΩi |p dx. (26)

is much more delicate in view of the presence of the gradient terms. The objec-
tive function is well-defined since the function bΩ is at least C1 on Γ but ∇bΩi

must be well-defined HN−1 a.e. on Γ as was done in the case p = 2 in The-
orem 2.1 under the assumption HN−1(Γ ∩ Sk(Ωi)) = 0. As for the continuity,
from Theorem 3.3, it would require that bΩi ∈W 2,q(D).

5. Shape semiderivatives and application to bΩ

In this section the elements of the velocity method and the notion of Eulerian
semiderivative are briefly reviewed (see, for instance Delfour and Zolésio, 2001,
Chapter 8) and applied to the computation of the semiderivative of bΩ(x). From
this we show that, under suitable assumptions on the velocity field, the oriented
distance function and the projection onto the boundary are solutions of new
nonlinear evolution equations for the initial sets with thin boundary.

In shape analysis the derivative of an objective function with respect to a
set is obtained by generating perturbations of the set via a non-autonomous
velocity field V : [0, τ ] × RN → RN, 0 < τ <∞, verifying the conditions

∀x ∈ RN, V (·, x) ∈ C
(
[0, τ ];RN

)
,

∃c > 0, ∀x, y ∈ RN, ‖V (·, y) − V (·, x)‖C([0,τ ];RN) ≤ c|y − x|, (27)

where V (·, x) is the function t �→ V (t, x). The parameter t can be viewed as
an artificial time. A point X is moved to the position x(t) = x(t;X) via the
equation

dx

dt
(t) = V (t, x(t)), 0 < t < τ, x(0) = X ∈ RN . (28)

It will be convenient to define the velocity fields

x �→ V (t)(x) def= V (t, x) : RN → RN, 0 ≤ t ≤ τ. (29)

This yields the families of transformations {Tt} and perturbations {Ωt}

∀t, 0 < t < τ,

∣∣∣∣∣
X �→ Tt(X) def= x(t) = x(t;X)

∀Ω ⊂ RN, Ωt(V ) def= Tt(V )(Ω).
(30)
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Definition 5.1 Given a shape function f defined on subsets Ω of RN or D,
f has a Eulerian semiderivative at Ω in the direction V if the following limit
exists

df(Ω;V ) def= lim
t↘0

f(Ωt(V )) − f(Ω))
t

.

6. Derivatives of the objective functions over D

Introduce the notation

b′Ω(x) def=
∂

∂t
bΩt(x)

∣∣∣∣
t=0+

and (b2Ω)′ def=
∂

∂t
b2Ωt

(x)
∣∣∣∣
t=0+

(those derivatives have been computed in Theorem 5.1 of Delfour and Zolésio
(2004). From now on assume that the variable set Ω has thin boundary. First
consider the objective function

f0,2([Ω]) def=
I∑

i=1

∫
D

|bΩ − bΩi |2 dx. (31)

By assumptions (27) on V and Theorem 5.1 (ii) from Delfour and Zolésio (2004),
its shape semiderivative is

df0,2([Ω];V ) =
I∑

i=1

∫
D

2 (bΩ − bΩi) b
′
Ω dx = −

I∑
i=1

∫
D

2 (bΩ − bΩi)V (0) · ∇bΩ dx

without assumption on the the sets Ωi. For the second objective function

f1,2([Ω]) def=
I∑

i=1

∫
D

|bΩ − bΩi |2 + |∇bΩ −∇bΩi |2 dx (32)

we only need to concentrate on the second term

k([Ω]) def=
I∑

i=1

∫
D

|∇bΩ −∇bΩi |2 dx =
I∑

i=1

∫
D

2 − 2∇bΩ · ∇bΩi dx.

If, for each i, bΩi ∈W 2,2(D) and V (0) = 0 on ∂D, we get

df1,2([Ω];V ) = −2
I∑

i=1

∫
D

{bΩ − bΩi + ∆bΩi}∇bΩ · V (0) ◦ pΓ dx.

Otherwise its Eulerian semiderivative is formally given by the expression

dk([Ω];V ) = −2
I∑

i=1

∫
D

∇bΩi · ∇b′Ω dx

= 2
I∑

i=1

∫
D

∇bΩi · ∇ (∇bΩ · V (0) ◦ pΓ) dx.

(33)
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In this computation we have implicitly used the property

(∇bΩ)′ = ∇b′Ω = −∇(∇bΩ · V (0) ◦ pΓ)

which means that the terms

∇(∇bΩ · V (0) ◦ pΓ) = D2bΩV (0) ◦ pΓ +DpΓ
∗DV (0) ◦ pΓ ∇bΩ

DpΓ = I −∇bΩ ∗∇bΩ − bΩD
2bΩ

make sense as vectors and matrices of L2-functions. If bΩ ∈W 2,2(D):

df1,2([Ω];V ) = 2
I∑

i=1

∫
D

− {bΩ − bΩi}∇bΩ · V (0) ◦ pΓ

+ ∇bΩi ·
(
D2bΩV (0) ◦ pΓ +DpΓ

∗DV (0) ◦ pΓ ∇bΩ
)
dx.

So, the semiderivative of the objective function f1,2([Ω]) exists if bΩ ∈ W 2,2(D)
or bΩi ∈ W 2,2(D) for each i. This can be restrictive.

7. Derivative of the objective functions on Γ

Start with the square of the objective function (11) for p = 2

g0,2([Ω]) def=
I∑

i=1

∫
Γ

|bΩ(x) − bΩi(x)|2 dΓ =
I∑

i=1

∫
Γ

|bΩi(x)|2 dΓ. (34)

To compute the semiderivative of this boundary integral, use the following slight
generalization from C2 to C1,1-domains of the theorem found in Delfour and
Zolésio (2001, Chapter 8, § 4.2, Theorem 4.3, p. 355) and the results of Delfour
(2000) for C1,1-domains.

Theorem 7.1 Let Ω be a bounded open subset of RN of class C1,1 with boundary
Γ, that is, there exists h > 0 such that bΩ ∈ C1,1(Uh(Γ)). Assume that, for some
ε > 0 and τ > 0, ψ is a function defined on [0, τ ] × Uh(Γ) such that

ψ ∈ C1([0, τ ];H1/2+ε(Uh(Γ))) ∩ C0([0, τ ];H3/2+ε(Uh(Γ)))

and that V ∈ C0([0, τ ];C1
loc(R

N,RN)). The semiderivative of the function

JV (t) def=
∫

Γt(V )

ψ(t) dΓt

with respect to t > 0 in t = 0 is given by

dJV (0) =
∫

Γ

ψ′(0) + ∇ψ · V (0) + ψ (div V (0) −DV (0)n · n) dΓ

=
∫

Γ

ψ′(0) +
(
∂ψ

∂n
+Hψ

)
V (0) · n dΓ,

(35)

where ψ′(0)(x) def= ∂ψ/∂t(0, x).
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7.1. Objective function g0,2

First apply Theorem 7.1 to the objective function g0,2 with ψ(t) = b2Ωi
. Here

there is no dependence on t and we get the following theorem with an assumption
on b2Ωi

in the tubular neighborhood of Γ for all i ∈ I.

Theorem 7.2 Let Ω be a bounded open subset of RN of class C1,1 with boundary
Γ, that is, there exists h > 0 such that bΩ ∈ C1,1(Uh(Γ)). Assume that

∀i ∈ I, b2Ωi
∈ H3/2+ε(Uh(Γ))

for some ε > 0. Further assume that V ∈ C0([0, τ ];C1
loc(R

N,RN)). Then

dg0,2([Ω];V (0)) =
I∑

i=1

∫
Γ

∇b2Ωi
· V (0) + b2Ωi

(div V (0) −DV (0)∇bΩ · ∇bΩ) dΓ

=
I∑

i=1

∫
Γ

(
∂

∂n
b2Ωi

+ ∆bΩ b2Ωi

)
V (0) · n dΓ.

(36)

The assumption on the b2Ωi
’s implies that for all i ∈ I the skeleton Sk(Ωi)

of Ωi is outside of the tubular neighborhood Uh(Γ) of Γ. It is interesting to
observe that the two formulae (36) would still be well-defined or could be relaxed
to weaker assumptions. Of course their validity would be contingent to the
availability of a new proof of the theorem under such weaker assumptions.

For instance the first formula would still be well-defined for a domain Ω with
a thin boundary Γ with normal (∇bΩ(x) exists HN−1 a.e. on Γ) and V (0) of
class C1, provided that HN−1(Sk(Ωi) ∩ Γ) = 0, for all i ∈ I. Furthermore, if
HN−1(Sk(Ωi) ∩ Γ) > 0 for some i ∈ I, the term ∇b2Ωi

· V (0) makes sense on
Γ\ Sk(Ωi), but on Sk(Ωi) ∩ Γ it can be replaced by the semiderivative

db2Ωi
(x;V (0, x)) = 2 min

pi∈ΠΓi
(x)

(x− pi) · V (0, pi)

(see Delfour and Zolésio, 2001, Chapter 8, Definition 2.1 (ii)). Finally, the first
formula (36) would become

dg0,2([Ω];V (0))

=
I∑

i=1

∫
Γ

2 min
pi∈ΠΓi

(x)
(x− pi) · V (0, pi) + b2Ωi

(div V (0) −DV (0)∇bΩ · ∇bΩ) dΓ.

The same technique can be applied to the second formula with the assumption
that Ω be of class C1,1 in which case D2bΩ and ∆bΩ exist and are bounded
HN−1 a.e. on Γ (see Delfour, 2000). Indeed on Γ ∩ Sk(Ωi)

db2Ωi
(x;∇bΩ(x)) = 2 min

pi∈ΠΓi
(x)

(x − pi) · ∇bΩ(x)
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(see Delfour and Zolésio, 2001, Chapter 8, Definition 2.1 (ii)) and the second
formula (36) would yield

dg0,2([Ω];V (0))

=
I∑

i=1

∫
Γ

(
2 min

pi∈ΠΓi
(x)

(x − pi) · ∇bΩ(x) + ∆bΩ(x) b2Ωi
(x)

)
V (0)(x) · n(x) dΓ.

From the computational point of view the projections pi = pΓi are as easy
to generate as the partial derivative ∂b2Ωi

/∂n. Note that the second formula
requires more smoothness on Ω than the first one.

7.2. Objective function g1,2

Now turn to the objective function (12) with p = 2

g1,2([Ω]) def=
I∑

i=1

∫
Γ

b2Ωi
+ |∇bΩ −∇bΩi |2 dΓ. (37)

In general this function is not well-defined since the gradients may not exist on
Γ. It is well-defined under the assumptions of Theorem 2.1 and

g1,2([Ω]) =
I∑

i=1

{∫
Γ

b2Ωi
dΓ + 2HN−1(Γ) − 2

∫
Γ\ Sk(Ωi)

∇bΩi · ∇bΩ dΓ
}

(38)

is well-defined, but for all i ∈ I, HN−1(Γ ∩ Sk(Ωi)) = 0.
There are three terms in the objective function and they are semidifferen-

tiable under different sets of assumptions. The first term has been discussed
in Section 7.1. It is differentiable under the assumptions of Theorem 7.2 which
means that Sk(Ωi) ∩ Γ = ∅ for all i ∈ I. Theorem 7.1 can be applied to the
second term HN−1(Γ) under the assumption that Ω be of class C1,1:

d

dt

∫
Γt

dΓt

∣∣∣∣
t=0

=
∫

Γ

H V (0) · n dΓ, H
def= ∆bΩ. (39)

As for the last term it can be handled without the formulae of Theorem 7.1.
We shall consider two cases: Γ ∩ Sk(Ωi) = ∅ and, in dimension N = 2, the
special case where Γ ∩ Sk(Ωi) is a singleton. We also consider an example of
an objective function g1,2 which is non-differentiable unless weighted norms are
used on V near points ai of Sk(Ωi) where the Hessian matrix has terms of the
form 1/|x− ai|. So there are several open issues floating around.
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7.2.1. The bΩi ’s are smooth in Uh(Γ)

Assume that bΩ ∈ C1,1(Uh(Γ)) for some h > 0. Let eh
Ω be the extension of

the function equal to one by zero outside Uh(Γ) as introduced in Definition 3.1.
Under this assumption and those of Theorem 2.1

g1,2([Ωt])
def=

I∑
i=1

∫
Γt

b2Ωi
+ (2 − 2∇bΩt · ∇bΩi) dΓt

=
I∑

i=1

∫
Γt

b2Ωi
dΓt + 2

∫
Γt

dΓt − 2
∫

Γt

eh
Ω ∇bΩi · nt dΓt

=
I∑

i=1

∫
Γt

b2Ωi
dΓt + 2

∫
Γt

dΓt − 2
∫

Ωt

div
(
eh
Ω ∇bΩi

)
dx.

The semiderivative of the first and second terms have already been computed.
Apply the formula for the volume integral (see Delfour and Zolésio, 2001, Chap-
ter 8, Thm 4.2) to the third term

dg1,2([Ω];V ) def=
I∑

i=1

∫
Γ

{
H b2Ωi

+
∂

∂n
b2Ωi

+ 2H − 2 div
(
eh
Ω ∇bΩi

)}
V (0) · n dΓ

=
I∑

i=1

∫
Γ

{
H b2Ωi

+
∂

∂n
b2Ωi

+ 2H − 2∆bΩi

}
V (0) · n dΓ,

since eh
Ω = 1 on Γ. This formula requires that eh

Ω ∇bΩi ∈ W 2,1
loc (RN). For

instance this condition will be verified for bΩi ∈ W 3,1(Uh′(Γ)) for some h′,
0 < h′ ≤ h, and even for bΩi ∈ H5/2+ε(Uh′(Γ)) for some ε > 0 by using the
derivative of the boundary integral given by Theorem 7.1.

Theorem 7.3 Let Ω be a bounded open subset of RN with boundary Γ such that
bΩ ∈ C1,1(Uh(Γ)) for some h > 0. Assume that

∃h′, 0 < h′ ≤ h, ∀i ∈ I, b2Ωi
∈ H3/2+ε(Uh′(Γ)) and bΩi ∈ H5/2+ε(Uh′(Γ))

for some ε > 0. Further assume that V ∈ C0([0, τ ];C1
loc(R

N,RN)). Then

dg1,2([Ω];V (0))

=
I∑

i=1

∫
Γ

{
∂

∂n
b2Ωi

+H b2Ωi
+ 2 (H − ∆bΩi)

}
V (0) · n dΓ. (40)

7.2.2. The skeleton Sk(Ωi) intersects Γ in dimension N = 2

It is instructive to look at what is happening in dimension 2 to the semiderivative
of the third term in expression (38) when a component of the skeleton Sk(Ωi)
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of Ωi is a segment of smooth curve which crosses Ω in one point a ∈ Γ∩ Sk(Ωi)
which is not an end point of Sk(Ωi). Note that this case has been excluded by
the assumptions used to get the semiderivative of the first term in Theorem 7.3.

Consider the simple example where Ωi is a triangle. Its skeleton Sk(Ωi) is
made up of the three bisectors as shown in broken lines on Fig. 1. The part of
Sk(Ωi) intersecting the smooth domain Ωt is a segment of line. Put a clockwise
orientation on the boundary of Ωt. By convention the clockwise orientation will
correspond to the normal nt on Γt pointing outward of Ωt.

n+
t

τ+
t

nt Ωi

a
Sk(Ωi)

Ω+
t

Ω−
t

Ωt
nt

Figure 1. Domains Ωt, Ω+
t , Ω−

t , and Ωi with clockwise orientation of Ωt and
Ω+

t .

The piece of skeleton inside Ωt can be seen as a crack in the domain. What we
need is a Stokes formula for a domain with a crack to specify the boundary term
on the crack. First extend the piece of Sk(Ωi) in Ωt to get a smooth interface Σt

in Ωt which divides up Ωt into two domains Ω+
t and Ω−

t . Choose the clockwise
orientation on Ω+

t . This means that on Σt we choose the unit exterior normal
n+

t to Ω+
t and the unit tangent vector τ+

t in the clockwise direction. Choose
as the direction of the normal ni and the tangent τi to the skeleton Sk(Ωi) the
ones specified by Ω+

t on the piece of boundary Sk(Ωi) ∩ Σt of Γ+
t . With this

construction use Stokes Theorem in Ω+
t and Ω−

t .∫
Ωt\ Sk(Ωi)

∆bΩi dx =
∫

Ω+
t

∆bΩi dx+
∫

Ω−
t

∆bΩi dx

=
∫

Γ+
t

∇bΩi · n+
t dΓt +

∫
Γ−

t

∇bΩi · n−
t dΓt

=
∫

Γt

∇bΩi · nt dΓt +
∫

Σt

∇bΩi

+ · n+
t + ∇bΩi

− · n−
t dΓt

=
∫

Γt

∇bΩi · nt dΓt +
∫

Σt

[∇bΩi ] · n+
t dΓt
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=
∫

Γt

∇bΩi · nt dΓt +
∫

Ωt∩Sk(Ωi)

[∇bΩi ] · ni dΓt

where ∇bΩi

+ and ∇bΩi

− are the vector ∇bΩi in the domains Ω+
t and Ω−

t , and

[∇bΩi ]
def= ∇bΩi

+ −∇bΩi

−

is the jump of the ∇bΩi across Sk(Ωi). Finally we obtain the following identity∫
Γt

∇bΩi · nt dΓt =
∫

Ωt\ Sk(Ωi)

∆bΩi dx−
∫

Ωt∩Sk(Ωi)

[∇bΩi ] · ni dΓt

=
∫

Ωt

∆bΩi dx−
∫

Ωt∩Sk(Ωi)

[∇bΩi ] · ni dΓt

(41)

since Sk(Ωi) has zero measure. The artificial part of Σt has disappeared.
This is the delicate term appearing in the objective function

g1,2([Ωt]) =
I∑

i=1

∫
Γt

b2Ωi
+ 2 − 2∇bΩt · ∇bΩi dΓt.

We leave aside the first two terms and concentrate on the term involving the
inner product of the gradients and use expression (41) to differentiate it

k([Ωt])
def=

∫
Ωt

∆bΩi dx −
∫

Ωt∩Sk(Ωi)

[∇bΩi ] · ni dΓ.

The first term is a standard integral with an integrand which is independent of
t. It is semidifferentiable for ∆bΩi ∈ W 1,1(Uh(Γ)\ Sk(Ωi)). The second term
is an integral over a curve with a free end point Tt(a) on Γt since the point
a ∈ Γ ∩ Sk(Ωi) is not an end point of Sk(Ωi). Using the orientation τi along
that curve Sk(Ωi) ∩ Ωt

dk([Ω];V ) =
∫

Γ

∆bΩi V (0) · n dΓ + [∇bΩi ](a) · ni(a)V (0, a) · τi(a), (42)

where τi is the unit tangent vector to the skeleton in the direction corresponding
to the clockwise orientation of Ω+ and, a fortiori, of Σ and the piece of skeleton
Sk(Ωi) which intersects Ω. This means that τi points away from Ω on Γ.

Observe that the expression (42) of the semiderivative is linear in V and that
its support is Γ. So k is differentiable. For the example of the triangle ∆bΩi = 0
almost everywhere in a neighborhood of the point a on Sk(Ωi)∩Σ since a is not
an end point of Sk(Ωi) and the formula reduces to

dk([Ω];V ) =[∇bΩi ](a) · ni(a)V (a) · τi(a).
We have proved the following result:
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Theorem 7.4 Let Ω be a bounded open subset of RN of class C1,1 with boundary
Γ, that is, there exists h > 0 such that bΩ ∈ C1,1(Uh(Γ)). Assume that Sk(Ωi)∩Ω
is a smooth curve and that Sk(Ωi)∩ Γ = {a} is a singleton and that a is not an
end point of Sk(Ωi). Further assume that

∀i ∈ I, ∆bΩi ∈ W 1,1(Uh(Γ)\ Sk(Ωi))

and that V ∈ C0([0, τ ];C1
loc(R

N,RN)). Then the derivative is given by

dk([Ω];V ) =
∫

Γ

∆bΩi V (0) · n dΓ + [∇bΩi ](a) · ni(a)V (0, a) · τi(a). (43)

Remark 7.1 In the theorem the condition ∆bΩi ∈ W 1,1(Uh(Γ)\ Sk(Ωi)) does not
mean that bΩi ∈ W 3,1(Uh(Γ)) as can be seen from the examples of the triangle
or the square. When a is an end point of the smooth segment of Sk(Ωi), the
objective function might only be semidifferentiable in some directions V or not
be semidifferentiable at all.

nt

Ωi
Sk(Ωi)

Ωt
nt

Figure 2. Domains Ωt and Ωi and skeleton Sk(Ωi) for the disk

In dimension 2 another special case is when a point a of Γ is also an isolated
point of Sk(Ωi) for some i ∈ I. A typical simple example is the disk of center a
and radius R whose skeleton is {a}. As Γ is moved to Γt the point Tt(a) is on
Γt or an isolated point inside or outside of Ωt. When a ∈ Ωt, we do not obtain
the usual Stokes formula on Γt since ∆bi has a singularity in x = a. To be more
specific, recall from Delfour and Zolésio (2001, Chapter 5, Example 6.2) that
for Ωi = BR(a)

bΩi(x) = |x− a| −R, ∇bΩi(x) =
x− a

|x− a| ,

< ∆bΩi , ϕ >=
∫
R2

1
|x− a|ϕdx ⇒ ∆bΩi =

1
|x− a| .
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But, since a ∈ Γ, ∆bΩi is not an L1-function on the curve Γ and the term∫
Γ

∆bΩi V (0) · n dΓ =
∫

Γ

1
|x− a| V (0) · n dΓ

which appears in formula (43) can blow up depending on the choice of V ! Fur-
thermore it is not clear what will happen to the second term of formula (43).
So g1,2([Ω]) is probably not semidifferentiable for all V . Another problematic
example is the circle for which ∆bΩi is a bounded measure

bΩi(x) =
∣∣|x− a| −R

∣∣, ∇b∂Ωi(x) =

{
x−a
|x−a| , |x− a| > R,

− x−a
|x−a| , |x− a| < R,

< ∆bΩi , ϕ >= 2
∫

Γi

ϕds−
∫

Ωi

1
|x− a|ϕdx+

∫
�Ωi

1
|x− a|ϕdx

⇒ ∆bΩi = 2δΓi −
1

|x− a|χΩi +
1

|x− a|χRN \Ωi
.

7.2.3. The skeleton Sk(Ωi) intersects Γ in dimension N

In dimension N , one issue is to find Stokes formulas for smooth domains with
cracks of codimension 1, 2, 3, etc. When the piece of skeleton which intersects
Γ is a piece of smooth submanifold of co-dimension 1 and Γ ∩ Sk(Ωi) is a piece
of smooth submanifold of co-dimension 2, the formula obtained in the special
case N = 2 will very likely generalize to an expression of the following type

dk([Ω];V (0))

= 2
I∑

i=1

∫
Γ

∆bΩi V · n dΓ −
∫

Γ∩Sk(Ωi)

[∇bΩi ] · ni V (0) · τi dHN−2,
(44)

where τi is the unit vector tangent to Sk(Ωi), normal to Ω∩Sk(Ωi) on the (N−2)-
dimensional submanifold Γ ∩ Sk(Ωi), and pointing outward of Ω ∩ Sk(Ωi).

8. A simple example for the objective function g0,2

In this section we consider the problem of specifying a nominal object from I
samples of that object using the objective function g0,2. Here the object is not
assumed to be the boundary of a smooth set. For instance, it can feature cracks
in dimension 2. Conversely, the nominal object and the maximum deviation as
measured by g0,2 can be used as criteria to detect similar objects from several
observations.

Since only the boundary Γ of the object Ω appears in g0,2, it is sufficient
to specify Γ. Further assume that Γ is the union of line segments in R2.
For instance Ω could be a cracked set first introduced in Delfour and Zolésio
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(2004) in the context of the segmentation problem of Mumford and Shah. Let
x1, x2, . . . , xj , . . . , xM be a sequence of M distinct points in R2, A = {ajk} the
connectivity matrix, and Cjk the line between the points xj and xk

ajk
def=

{
1, if xj and xk are connected
0, if xj and xk are not connected

(45)

Cjk
def= {sxj + (1 − s)xk : s ∈ [0, 1]} , if ajk = 1. (46)

From another viewpoint, the above set made up of pieces of lines can also be
viewed as an approximation to cracked sets and the material below as a first
step towards a numerical implementation of a descent method.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

Figure 3. Boundary Γ of a cracked set Ω.

Clearly ajk = akj and Cjk = Ckj . With the above definitions

Γ def=
⋃
j<k

ajk=1

Cjk, g0,2 =
M∑
i=1

∫
Γ

|bΩ − bΩi |2 dΓ =
M∑

j=1

∑
j<k≤M
ajk=1

∫
Cjk

M∑
i=1

b2Ωi
dΓ.

(47)

The sample objects can be specified by the sets Ωi’s or their boundaries Γi’s
since b2Ωi

= d2
Γi

. For simplicity further introduce the notation f =
∑I

i=1 b
2
Ωi

.
Each b2Ωi

is semi-differentiable in the sense explained for the formula (14) and
db2Ωi

(x; v) can be explicitly computed from the set of projections ΠΓi(x) of x
onto Γi

db2Ωi
(x; v) = min

p∈ΠΓi
(x)

(x− p) · v. (48)

Therefore df(x; v) exists and can be explicitly computed.
To complete this section we compute the directional semiderivative of the

objective function with respect to node xj in the direction v. Only the terms
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connected to xj will depend on xj

j(xj)
def=

∑
k �=j

ajk=1

∫
Cjk

f dΓ =
∑
k �=j

ajk=1

∫ 1

0

f(sxj + (1 − s)xk) |xj − xk| ds. (49)

Compute for t > 0 the k-term of the differential quotient [j(xj + tv) − j(xj)] /t

1
t

[ ∫ 1

0

f(s[xj + tv] + (1 − s)xk) |[xj + tv] − xk|

− f(sxj + (1 − s)xk) |xj − xk| ds
]

→
∫ 1

0

df(sxj + (1 − s)xk; sv) |xj − xk|

+ f(sxj + (1 − s)xk)
xj − xk

|xj − xk| · v ds

⇒ dj(xj ; v) =
∫ 1

0

df(sxj + (1 − s)xk; v) |xj − xk|s ds

+
xj − xk

|xj − xk| · v
∫ 1

0

f(sxj + (1 − s)xk) ds
(50)

This expression is made up of a differentiable part and a nondifferentiable
part when the skeleton of one of the Ωi’s intersects the curve Γ along one or more
segments. It does not require any semidifferentiability assumption on the bΩi ’s.
Since the formula is valid for any semidifferentiable function f , it is interesting
to consider the case f = 1 for which the objective functional is equal to the
total length of the boundary Γ. Here the nondifferentiable term is zero and the
integral in the second term is one. We are left with the sum of the tangent
vectors to all lines connected to xj .

It is interesting to notice that the above formula can be obtained by the
special choice of velocity

Vj(x)
def= cj(x) v (51)

associated with the point xj and the direction v ∈ R2, where cj is a continuous
piecewise linear function such that at the node xk

cj(xk) def=

{
1, if xk = xj

0, if xk �= xj .
(52)

This approach was used in Zolésio (1984) to compute the derivative of an ob-
jective function that depends on the solution of a finite element problem with
respect to the internal nodes of the triangulation of the underlying domain. For t
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sufficiently small, the transformation generated by Vj is Tt(x) = x+t cj(x)v that
maps lines onto lines. Indeed for the objective function∫ xj

xk

f dΓ,

we have

δ(t) def=
1
t

∫ Tt(xj)

Tt(xk)

f dΓ −
∫ xj

xk

f dΓ

=
1
t

∫ xj

xk

f ◦ Tt
|Tt(xj) − Tt(xk)|

|xj − xk| − f dΓ

=
∫ xj

xk

f ◦ Tt − f

t

|Tt(xj) − Tt(xk)|
|xj − xk| − f

1
t

[ |Tt(xj) − Tt(xk)|
|xj − xk| − 1

]
dΓ.

But

f(Tt(x)) − f(x)
t

=
f(x+ t cj(x)v) − f(x)

t
→ df(x; cj(x)v) = cj(x) df(x; v)

since cj(x) is positive. Also for xj �= xk

1
t

[ |Tt(xj) − Tt(xk)|
|xj − xk| − 1

]
→ xj − xk

|xj − xk| · v
1

|xj − xk| .

Finally we get the intrinsic form of formula (50)∫ xj

xk

cj(x) df(x; v) +
xj − xk

|xj − xk| · v
1

|xj − xk|f dΓ. (53)

In the above model the unknowns are the nodes and possibly the connectivity
matrix A. In its full generality the numerical minimization will require nondif-
ferentiable optimization techniques and 0-1 combinatorial methods to take care
of the matrix A. Implementation of such methods is obviously beyond the scope
of this paper.

The above constructions and computations can be extended from piecewise
linear curves to piecewise Bézier curves currently used in aeronautics and other
areas. For instance, the case of the piecewise second order Bézier curves can
readily be obtained by adding to each pair of connected nodes xj and xk a control
node ujk and modifying the definition of the sets Cjk from lines to curves as
follows

Cjk
def=

{
s2xj + 2s(1 − s)ujk + (1 − s)2xk : s ∈ [0, 1]

}
, if ajk = 1,

where s = 0 corresponds to the point xk and s = 1 to the point xj . To complete
this section we compute the directional semiderivative of the objective function
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with respect to node xj in the direction v. Only the terms that correspond to
segments connected to xj will depend on xj

j(xj)
def=

∑
k �=j

ajk=1

∫
Cjk

f dΓ

=
∑
k �=j

ajk=1

∫ 1

0

f(s2xj + 2s(1 − s)ujk

+ (1 − s)2xk) 2|sxj + (1 − 2s)ujk − (1 − s)xk| ds
and its semiderivative in the direction v is given by the following expression

dj(xj ; v) =
∑
k �=j

ajk=1

∫ 1

0

df(s2xj + 2s(1 − s)ujk + (1 − s)2xk; v)

|sxj + (1 − 2s)ujk − (1 − s)xk| 2s2 ds

+
∫ 1

0

f(s2xj + 2s(1 − s)ujk + (1 − s)2xk)
sxj + (1 − 2s)ujk − (1 − s)xk

|sxj + (1 − 2s)ujk − (1 − s)xk| · v 2s ds.

Similarly for a pair of indices such that ajk = 1, the only term depending
on the control node ujk is

j(ujk) def=
∫

Cjk

f dΓ

=
∫ 1

0

f(s2xj + 2s(1 − s)ujk + (1 − s)2xk) 2|sxj + (1 − 2s)ujk − (1 − s)xk| ds

and its semiderivative in the direction v is given by the following expression

dj(ujk; v) =
∫ 1

0

df(s2xj + 2s(1 − s)ujk + (1 − s)2xk; v)
|sxj + (1 − 2s)ujk − (1 − s)xk| 4s(1 − s) ds

+
∫ 1

0

f(s2xj + 2s(1 − s)ujk + (1 − s)2xk)
sxj + (1 − 2s)ujk − (1 − s)xk

|sxj + (1 − 2s)ujk − (1 − s)xk| · v 2(1 − 2s)ds.

The above formula can also be obtained by introducing the following special
velocity field associated with the control node ujk and the direction v ∈ R2

Vjk(x) def= cjk(x) v, (54)

where cjk is a continuous piecewise linear function such that at each node xk′

and control node uj′k′

cjk(xk′ ) def= 0, cjk(uj′k′ ) def=

{
1, if uj′k′ = ujk

0, if uj′k′ �= ujk.
(55)
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For t sufficiently small, it transforms the triangle {xj , xk, ujk} onto the triangle
{Tt(xj), Tt(xk), Tt(ujk)} and the Bézier curve s2xj + 2s(1 − s)ujk + (1 − s)2xk

that is contained in the triangle {xj , xk, ujk} onto the Bézier curve s2Tt(xj) +
2s(1 − s)Tt(ujk) + (1 − s)2Tt(xk) in the triangle {Tt(xj), Tt(xk), Tt(ujk)}.

The above constructions and computations extend to three space dimensions
by representing Γ by triangular facets or curved triangular surfaces with control
nodes.
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