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Abstract: We study a shape optimization problem for a paper
machine headbox which distributes a mixture of water and wood
fibers in the paper manufacturing process. The aim is to find a
shape which a priori ensures the given velocity profile on the out-
let part. The mathematical formulation leads to an optimal control
problem in which the control variable is the shape of the domain
representing the header, the state problem is represented by the gen-
eralised Navier-Stokes system with nontrivial boundary conditions.
The objective of this paper is to prove the existence of an optimal
shape.
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1. Introduction

Since very long ago paper has belonged to the most used everyday products.
About 19 centuries ago the ancient Chinese developed the paper manufacturing
technique using bark and hemp. Since that time many improvements have
been made in order to reduce costs and enhance quality, production speed and
environmental compatibility. Today paper production has become a complex
process.

Recently the paper machine technology has been developing mostly through
the experimental work in pilot plants. With increasing speeds and sophisticated
machines this approach has become too expensive and time-consuming so that
more effective methods must be used to bring further development. One of such
methods is mathematical modelling in the framework of continuum mechanics
resulting in the numerical simulations for a proposed model. The experimental
research is still needed to verify the simulated results.
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1075402) and MŠMT 113200007.

2Partially supported by the projects GAAS S 2076003 and MŠMT 113200007.
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The first component in the paper making process is the headbox which is
located at the wet end of a paper machine. The headbox shape and the fluid
flow phenomena taking place there largely determine the quality of the produced
paper. The first flow passage in the headbox is a dividing manifold, called the
header. It is designed to distribute the fiber suspension on the wire so that the
produced paper has an optimal basis weight and fiber orientation across the
whole width of a paper machine. The aim of this work is to find an optimal
shape for the back wall of the header so that the outlet flow rate distribution
from the headbox results in an optimal paper quality.

The paper making pulp (also called the fibre suspension, furnish or stock)
is a mixture of wood fibres, water, filler clays and various chemicals at the con-
centration of 1% solids to 99 % water by weight. In the large-scale simulation it
seems reasonable to model this complex mixture as a single continuum, with the
fluid being an incompressible liquid described by the Navier–Stokes equations

ρv,t + ρdiv(v ⊗ v) = −∇q + div (µ0D(v)) , div v = 0, (1)

where v, q, ρ, µ0 are, respectively, the velocity, the pressure, the density and the
viscosity. The symbol D(v) = 1

2

(
∇v + (∇v)T

)
means the symmetric part of

the gradient of v and |D(v)| =
(

1
2

∑2
i,j=1Dij(v)Dij(v)

)1/2

is its norm.

The turbulent character of the flow in the header is a desirable phenomenon
in the paper making process. Typically, the input Reynolds number defined as
Re = ℓV

µ0

, where V denotes the magnitude of the input velocity and ℓ is the

diameter of the input channel, is about 106. In the modelling of turbulence, the
velocity field v is usually decomposed into the sum of the average velocity u and
its fluctuation u′. Averaging of (1) then leads to the system

ρu,t + ρdiv(u ⊗ u) = −∇p+ div (µ0D(u) +R) , div u = 0, (2)

where R denotes the so-called Reynolds tensor given as the average of −u′⊗u′.
Since the flow in the header is steady and it is expected that the geometry of the
domain changes only in the part of the boundary, we use a classical algebraic
model, where

R = ρl2m,α|D(u)|D(u) (3)

with experimentally determined mixing length l2m,α, specified later. Note that
by inserting (3) into (2) we obtain the closed system for unknowns u and p.

Setting µ1 = ρl2m,α and

T (p,D(u)) = −pI + (µ0 + µ1|D(u)|)D(u) (4)

we obtain the model appearing also in non-Newtonian fluid mechanics. The
models where the Cauchy stress T (p,D(u)) takes the form

T (p,D(u)) = −pI + ν (|D(u)|)D(u) (5)
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represent a class of non-Newtonian fluids called the fluids with shear-dependent
viscosity. Since in the case (4) the viscosity increases with increasing shear rate
(in a simple shear flow), (4) is a model for fluids that have the ability to shear
thicken, see Rajagopal (1993), Málek, Rajagopal, Růžička (1995) and Málek,
Nečas, Rokyta, Růžička (1996) for more details on non-Newtonian fluids and
their mathematical analysis.

Figure 1. The header

Fig. 1 shows the geometry of the header. The inlet is on the left and the
so-called recirculation on the right hand side. Typically about 10 % of the fluid
flows out through the recirculation. The main outlet is formed by a number
(usually several hundreds or thousands) of small tubes. This fact presents a
difficulty in the numerical simulation and thus the complicated geometry of
the tube bank is replaced by an effective medium using the homogenization
technique. It introduces a nonstandard boundary condition of the form

T22 = −σ|uν |uν , (6)

where T , uν , σ are the stress tensor, normal component of the velocity and the
coefficient of suction, respectively.

This work was motivated by some previous papers: The fluid flow model
which is used here has been derived and studied numerically in Hämäläinen
(1993). The shape optimization problem has also been solved numerically and
the results are presented in Hämäläinen, Mäkinen and Tarvainen (2000), see
also Haslinger and Mäkinen (2003). Both the fluid flow model and the shape
optimization problem have been studied there formally without establishing
existence results. Therefore our goal is to give the theoretical analysis of the
flow equations and of the whole optimization problem.

The text is organized as follows. In Section 2 we present the fluid flow model
and analyze the existence of a solution. The existence proof is based on the
appropriate energy estimates and the Galerkin method. A shape optimization
problem is then formulated in Section 3 and the existence of an optimal shape
is established. The continuous dependence of solutions to state problems with
respect to shape variations is the most important result of this part.
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Shape sensitivity analysis for this problem can be done using differential
calculus developed in Sokolowski and Zolésio (1992). This, together with an
approximation and convergence analysis will be published later on.

2. Steady flow of a non-Newtonian fluid

For describing the fluid flow in the header we shall use a two–dimensional sta-
tionary model. First we define the geometry of the problem.

2.1. Description of admissible domains

Let L1, L2, L3 > 0, H1 ≥ H2 > 0, αmax ≥ αmin > 0, γ > 0 be given and
suppose that α ∈ Uad, where

Uad =
{
α ∈ C0,1([0, L]); αmin ≤ α ≤ αmax,

α|[0,L1] = H1, α|[L1+L2,L] = H2, |α
′| ≤ γ a.e. in [0, L]

}
. (7)

Here C0,1([0, L]) denotes the set of Lipschitz continuous functions on [0, L] and
L = L1 +L2 +L3. With any α ∈ Uad we associate the domain Ω(α), see Fig. 2:

Ω(α) =
{

(x1, x2) ∈ R
2; 0 < x1 < L, 0 < x2 < α(x1)

}
(8)

and introduce the system of admissible domains

O =
{
Ω; ∃ α ∈ Uad : Ω = Ω(α)

}
.

Further we shall need the domains Ω̂ = (0, L) × (0, αmax) and Ω0 =
(
(0, L1) ×

(0, H1)
)
∪

(
(0, L)×(0, αmin)

)
∪

(
(L1+L2, L)×(0, H2)

)
. Notice that Ω0 ⊂ Ω ⊂ Ω̂

for all Ω ∈ O.

Clearly Ω(α) ∈ C0,1 for all α ∈ Uad, where C0,1 is the system of bounded
domains with Lipschitz continuous boundaries. We shall denote the parts of the
boundary ∂Ω(α) as follows (see Fig. 2):

ΓD =
{
(x1, x2) ∈ ∂Ω(α);x1 = 0 or x1 = L

}

Γout =
{
(x1, x2) ∈ ∂Ω(α);L1 ≤ x1 ≤ L1 + L2, x2 = 0

}

Γα =
{
(x1, x2) ∈ ∂Ω(α);L1 ≤ x1 ≤ L1 + L2, x2 = α(x1)

}

Γf = ∂Ω(α) \
(
ΓD ∪ Γout ∪ Γα

)
.

The components ΓD, Γout and Γf are fixed for every α ∈ Uad.
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Figure 2. Geometry of Ω(α) and parts of the boundary ∂Ω(α)

2.2. Classical formulation of the state problem

The fluid motion in Ω(α) is described by the generalised Navier–Stokes system

−div T (p,D(u)) + ρdiv(u⊗ u) = 0
div u = 0

}
in Ω(α). (9)

Here u means the velocity, p the pressure, ρ is the density of the fluid and the
stress tensor T is defined by the following formulae:

Tij(p,D(u)) = −pδij + 2µ(|D(u)|)Dij(u), i, j = 1, 2,

µ(|D(u)|) := µ0 + µt(|D(u)|) = µ0 + ρl2m,α|D(u)|, µ0 > 0,

where µ0 is a constant laminar viscosity and µt(|D(u)|) stands for a turbulent
viscosity. The function lm,α represents a mixing length in the algebraic model
of turbulence and it has the following form (see Hämäläinen, Mäkinen and
Tarvainen, 2000, for more details):

lm,α(x) =
1

2
α(x1)

[
0.14 − 0.08

(
1 −

2dα(x)

α(x1)

)2

− 0.06

(
1 −

2dα(x)

α(x1)

)4
]
,

where dα(x) = min {x2, α(x1) − x2} , x ∈ Ω(α).
The equations are completed by the following boundary conditions:

u = 0 on Γf ∪ Γα,

u = uD on ΓD,

u · τ = u1 = 0 on Γout,∑2
i,j=1 Tijνiνj = T22 = −σ|u2|u2 on Γout,

(10)

where ν, τ stands for the unit normal, tangential vector, respectively and σ > 0
is a given suction coefficient. The condition (10)4 originates from the homoge-
nization of a complex geometry (for more details we refer to Hämäläinen, 1993).

By a classical solution we mean any velocity field u∈
(
C2(Ω(α))

)
2∩

(
C1(Ω(α))

)
2

and a pressure p ∈ C1(Ω(α)) ∩ C(Ω(α)) satisfying (9) and (10).
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2.3. Weak formulation of the state problem

Throughout the paper we assume that there exists a function u0 ∈
(
W 1,3(Ω0)

)2
,

which satisfies the Dirichlet boundary conditions in the sense of traces, i.e.

u0|ΓD
= uD, u0|∂Ω0\(ΓD∪Γout) = 0, u0 · τ |Γout

= 0

and, in addition, div u0 = 0 in Ω0. We extend u0 by zero on Ω̂ \Ω0. Then, due

to the boundary conditions, u0 ∈
(
W 1,3(Ω̂)

)2
and div u0 = 0 in Ω̂.

2.3.1. Function spaces

For any α ∈ Uad we introduce the following function spaces:

V(α) :=
{
ϕ ∈ (C∞(Ω(α)))2; div ϕ = 0 in Ω(α)

}
,

V0(α) :=
{
ϕ = (ϕ1, ϕ2) ∈ V(α); ϕ1 ∈ C∞

0 (Ω(α)),

dist(supp(ϕ2), ∂Ω(α) r Γout) > 0
}
,

W (α) := V(α)
‖·‖α

,

W0(α) := V0(α)
‖·‖α

,

Wu0
(α) :=

{
v ∈W (α); v − u0 ∈ W0(α)

}
,

where the norm ‖ · ‖α is defined by

‖v‖α := ‖v‖1,2,Ω(α) + ‖Mα|D(v)|‖3,Ω(α),

with

Mα(x) :=
(
lm,α(x)

)2/3

, x ∈ Ω(α). (11)

Here we use standard notations: the norm in Ls(Ω(α)), W k,s(Ω(α)) will be
denoted by ‖ ‖s,Ω(α), ‖ ‖k,s,Ω(α), respectively, in what follows. We shall also use
the Einstein summation convention, i.e. aibi :=

∑n
i=1 aibi.

Lemma 2.1 W (α) and W0(α) are separable reflexive Banach spaces.

Definition 2.1 Define the operator Aα : W (α) →
(
W (α)

)∗
by the formula

〈
Aα(v), w

〉
α

:=

∫

Ω(α)

M3
α|D(v)|Dij(v)Dij(w)dx; v, w ∈W (α).

Here
〈
·, ·

〉
α

denotes the duality pairing between
(
W (α)

)∗
and W (α).
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Remark 2.1 Since Mα = 0 on ∂Ω(α) \ ΓD, it can be extended by zero on

Ω̂ \ Ω(α). The resulting function, which is continuous in Ω̂ and which will be
used in the subsequent analysis, will be denoted by M̃α.

Lemma 2.2 (Some properties of Mα and Aα, α ∈ Uad)

(i) If αn ⇉ α in [0, L] then M̃αn
⇉ M̃α in Ω̂.

(ii) Aα is monotone in W (α):

〈
Aα(v) −Aα(w), v − w

〉
α
≥ 0 ∀v, w ∈W (α),

and strictly monotone in W0(α), i.e. the previous inequality is sharp for
v 6= w, where v, w ∈W0(α).

(iii) Aα is continuous in W (α).

Definition 2.2 For every u, v, w ∈
(
W 1,2(Ω(α))

)2
we define the trilinear form

bα:

bα(u, v, w) :=

∫

Ω(α)

uj
∂vi

∂xj
wi dx.

Remark 2.2 The same analysis can be done for any weight function Mα : Ω̂ 7→
R satisfying the following conditions:

(i) ∀α ∈ Uad Mα ∈ C(Ω̂);
(ii) ∀α ∈ Uad it holds that Mα|Ω(α) > 0;

(iii) ∀αn, α ∈ Uad αn ⇉ α in [0, L] ⇒Mαn
⇉ Mα in Ω̂.

2.3.2. Definition of a weak solution

We are now ready to give the weak formulation of the state problem. It can be
formally derived by multiplying the equations (9) by a smooth solenoidal test
function ϕ and integrating over Ω(α) with the use of the Green theorem.

Definition 2.3 A function u := u(α) is said to be a weak solution of the state
problem (P(α)) iff

• u ∈ Wu0
(α),

• for every ϕ ∈ W0(α) there holds:

2µ0

∫

Ω(α)

Dij(u)Dij(ϕ) dx+ 2ρ
〈
Aα(u), ϕ

〉
α

+ ρbα(u, u, ϕ) + σ

∫

Γout

|u2|u2ϕ2 dS = 0. (12)

Remark 2.3 Since ϕ = 0 on ∂Ω(α) r Γout and div ϕ = 0 in Ω(α), the pressure
disappeared from the weak formulation.
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In the following subsections the existence of a weak solution to (P(α)) on a
fixed domain Ω(α), α ∈ Uad will be examined. Thus for simplicity of notations
the letter α in the argument will be omitted (we shall write Ω := Ω(α), W :=
W (α), b := bα etc. in what follows).

2.4. Energy estimates

Recall that the function u0 is now defined in the whole Ω̂ and it does not depend
on α ∈ Uad.

Theorem 2.1 Let

‖∇u0‖3,bΩ < C and σ >
ρ

2
, (13)

where C > 0 is specified in (18) below. Then there exists a constant CE :=
CE(‖∇u0‖3,bΩ) such that for any weak solution u of (P(α)) the following estimate
holds:

‖∇u‖2
2,Ω + ‖M |D(u)|‖3

3,Ω +

∫

Γout

|u2|
3 dS ≤ CE . (14)

Remark 2.4 From the proof it will be seen that the estimate (14) holds with a
constant CE independent of α ∈ Uad.

Proof of Theorem 2.1. We use ϕ := u − u0 as a test function in (P(α)) and
estimate each term on the left of (P(α)) from below.

(i) The first term can be estimated by means of Hölder’s, Young’s and Korn’s
inequalities:

∫

Ω

Dij(u)Dij(u− u0)dx ≥
C2

Korn

2
‖∇u‖2

2,Ω −
1

2
‖∇u0‖

2
2,bΩ. (15)

The Korn inequality is applied to the zero extension of u from Ω to Ω̂ with
a constant CKorn := CKorn(Ω̂) which is independent of α ∈ Uad.

(ii) The second term can be estimated by using Hölder’s and Young’s inequal-
ity:

〈
A(u), u − u0

〉
≥

1

3
‖M |D(u)|‖3

3,Ω −
1

3
‖M |D(u0)|‖

3
3,bΩ. (16)

(iii) The convective term can be rearranged as follows:

b(u, u, u− u0) = b(u, u− u0, u− u0)︸ ︷︷ ︸
J1

+ b(u, u0, u)︸ ︷︷ ︸
J2

− b(u, u0, u0)︸ ︷︷ ︸
J3

.
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Since u = u0 on ∂Ω \ Γout and div u = 0 in Ω, we have:

J1 =

∫

Ω

uj
∂

∂xj

(
|u− u0|

2

2

)
dx =

∫

∂Ω

(u · ν)
|u − u0|

2

2
dS

−

∫

Ω

div u
|u− u0|

2

2
dx ≥ −

1 + η1

2

∫

Γout

|u2|
3 dS − Cη1

∫

Γout

|u02|
3 dS

for any η1 > 0 with Cη1
> 0 depending only on η1.

The term J2 can be estimated using the embedding W̃ 1,2(Ω̂) →֒ L3(Ω̂):

J2 ≥ −‖∇u0‖3,bΩ‖u‖2
3,Ω ≥ −C2

Imb‖∇u0‖3,bΩ‖∇u‖2
2,Ω, (17)

where W̃ 1,2(Ω̂) is the subspace of functions from W 1,2(Ω̂), which are equal

to zero on the top of Ω̂, i.e. on Γ̂ = (0, L)×{αmax} and CImb is the norm
of this embedding.
Further

J3 ≥ −‖u‖3,Ω‖∇u0‖3,bΩ‖u0‖3,bΩ ≥ −η2‖∇u‖
2
2,Ω − Cη2

‖∇u0‖
4
3,bΩ

holds for any η2 > 0 with Cη2
> 0 depending only on η2, by making use of

the Friedrichs inequality on W̃ 1,2(Ω̂) and the embedding of W̃ 1,2(Ω̂) into

L3(Ω̂).
(iv) Finally the boundary term can be estimated as follows:

∫

Γout

|u2|u2(u2 − u02) dS ≥ (1 − η3)

∫

Γout

|u2|
3 dS − Cη3

∫

Γout

|u02|
3 dS

holds for any η3 > 0 with Cη3
> 0 depending only on η3.

Multiplying each term by the respective physical constant and summing
them up we obtain that

(
µ0C

2
Korn − ρC2

Imb‖∇u0‖3,bΩ − ρη2

)
‖∇u‖2

2,Ω +
2

3
ρ‖M |D(u)|‖3

3,Ω

+
(
(1 − η3)σ − ρ

1 + η1

2

)∫

Γout

|u2|
3 dS

≤ CE

(
‖∇u0‖2,bΩ, ‖M |D(u0)|‖3,bΩ, ∫

Γout

|u02|
3 dS, ‖∇u0‖3,bΩ)

holds for any η1, η2, η3 > 0 with a constant CE , which depends on the indicated
arguments. Choosing

‖∇u0‖3,bΩ <
µ0

ρ

(
CKorn

CImb

)2

,
ρ

2
< σ (18)

we finally arrive at (14). Here we also used the fact that all arguments appear-
ing in CE can be estimated by ‖∇u0‖3,bΩ.
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Remark 2.5 Let us comment on the assumptions of Theorem 2.1.

(i) The condition σ > ρ
2 can be possibly satisfied by adjusting the outflow

properties of the headbox.
(ii) Assume that there exists a constant C > 0 such that

∀α ∈ Uad ‖M−1
α ‖2,Ω(α) ≤ C. (19)

Then Theorem 2.1 holds for any ‖∇u0‖3,bΩ with a constant C′
E > 0 inde-

pendent of α, provided that σ > ρ
2 .

Proof of (ii). We proceed in the same way as in the proof of Theorem 2.1
with the following minor change concerning the term J2. Using the embed-
ding W 1, 6

5 (Ω̂) →֒ L3(Ω̂) with the norm C′
Imb > 0 we have the following lower

estimate:

J2 ≥ −C′2
Imb‖∇u‖

2
6

5
,Ω‖∇u0‖3,bΩ. (20)

Korn’s inequality on W̃ 1, 6

5 (Ω̂) with the constant C′
Korn > 0 and Hölder’s in-

equality yield

‖∇u‖ 6

5
,Ω ≤ C′−1

Korn‖M
−1MD(u)‖ 6

5
,Ω ≤

C

C′
Korn

‖M |D(u)|‖3,Ω. (21)

Inserting (21) into (20) and using Young’s inequality we then obtain for any
η > 0:

J2 ≥ −η‖M |D(u)|‖3
3,Ω − Cη‖∇u0‖

3
3,bΩ

with a constant Cη > 0 depending only on η. Finally, summing up all the terms
multiplied by the respective constants, the expression

(
µ0C

2
Korn − ρη2

)
‖∇u‖2

2,Ω + 2ρ

(
1

3
− η

)
‖M |D(u)|‖3

3,Ω

+
(
(1 − η3)σ − ρ

1 + η1

2

)∫

Γout

|u2|
3 dS

appears on the left. Choosing η1, η2, η3, η > 0 small enough and σ > ρ
2 we

obtain the result.

Remark 2.6 A direct calculation shows that the function Mα defined in (11)

does not satisfy condition (19) since Mα ≈ x
2/3
2 in vicinity of ∂Ω(α) \ΓD. This

condition will be satisfied if Mα decays as x
1/2−ǫ
2 with ǫ > 0 arbitrarily small.
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2.5. Existence and uniqueness

Theorem 2.2 (Existence of a weak solution) Let the assumptions of Theorem
2.1 be satisfied. Then there exists a weak solution of (P(α)).

Proof. Will be done in two steps (for the sake of simplicity of notations we set
2µ0 = 2ρ = σ = 1):

(i) Galerkin approximations

Let
{
ωs

}∞

s=1
be a dense set of linearly independent functions in W0 and

denote by KN := span
{
ω1, ..., ωN

}
the finite-dimensional subspace of W0.

For every N = 1, 2, ... we solve the Galerkin problem:
Find uN ∈ W such that uN − u0 ∈ KN and uN satisfies equation (12) for
all ϕ ∈ KN .
Define a mapping PN : R

N → R
N by

PN (dN )s :=

∫

Ω

Dij(u
N )Dij(ω

s)dx+
〈
A(uN ), ωs

〉
+

+
1

2
b(uN , uN , ωs) +

∫

Γout

|uN
2 |uN

2 ω
s
2 dS; s = 1, ...N,

where uN(x) := u0(x) +
∑N

r=1 d
N
r ω

r(x). Then the Galerkin problem is

equivalent to finding d
N

∈ R
N such that

PN (d
N

) = 0. (22)

Next we show that this nonlinear algebraic system has a solution: Clearly
the mapping PN is continuous. Moreover, there exists R > 0 such that

∀dN ∈ R
N , |dN | = R : PN (dN ) · dN > 0

as follows from the energy estimates and positive definiteness of the Gramm

matrix. From Brouwer’s theorem the existence of d
N

∈ R
N solving (22)

follows.
(ii) Limit passages

Energy estimate (14) holds for every uN with the same constant:

CE(‖∇u0‖3,bΩ).

From this it follows that there exists u ∈ W such that (a chosen subse-
quence is denoted again by the same index N)

uN ⇀ u weakly in W as N → ∞. (23)

Clearly u ∈Wu0
. Further

uN → u strongly in Lq(Ω),
uN → u strongly in Lq(∂Ω) as N → ∞,

(24)
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as follows from the compact embedding ofW 1,2(Ω) into Lq(Ω), and Lq(∂Ω),
q ∈ [1,+∞). Let ϕ ∈W0 be given. Then

∫

Ω

Dij(u
N )Dij(ϕ)dx →

∫

Ω

Dij(u)Dij(ϕ)dx,

∫

Γout

|uN
2 |uN

2 ϕ2 dS →

∫

Γout

|u2|u2ϕ2 dS,

b(uN , uN , ϕ) = b(uN − u, uN , ϕ) + b(u, uN , ϕ) → b(u, u, ϕ), N → ∞,

making use of (23) and (24).
It remains to analyze the second term in (12). We show that

A(uN ) ⇀ A(u) in W ∗, N → ∞.

From the energy estimates the boundedness of {A(uN)} in W ∗ follows:

∣∣〈A(uN ), ϕ
〉∣∣ ≤ C‖ϕ‖α,

where C does not depend on N and therefore A(uN ) ⇀ χ in W ∗. To
prove that χ = A(u) we use the monotonicity of A:

∀ψ ∈ W : 0 ≤
〈
A(uN ) −A(ψ), uN − ψ

〉

=
〈
A(uN ), uN − u0

〉
−

〈
A(ψ), uN − ψ

〉
−

〈
A(uN ), ψ − u0

〉
. (25)

Since uN − u0 ∈ KN , the term
〈
A(uN ), uN − u0

〉
can be expressed by the

remaining terms of the Galerkin identity. Therefore (25) reads as follows:

∫

Ω

Dij(u
N)Dij(u

N − u0)dx ≤ −
1

2
b(uN , uN , uN − u0)

−

∫

Γout

|uN
2 |uN

2 (uN
2 − u02) dS −

〈
A(ψ), uN − ψ

〉
−

〈
A(uN ), ψ − u0

〉
.

Letting N → ∞ and using weak lower semi-continuity of the left hand
side of the previous inequality and continuity of the remaining terms we
obtain:

∫

Ω

Dij(u)Dij(u− u0)dx ≤ −
1

2
b(u, u, u− u0)

−

∫

Γout

|u2|u2(u2 − u02) dS −
〈
A(ψ), u − ψ

〉
−

〈
χ, ψ − u0

〉
. (26)

Further, we use uL−u0, L ≤ N as a test function in the Galerkin identity
for uN . Passing then to the limit with N → ∞ and then with L→ ∞ we
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have:

∫

Ω

Dij(u)Dij(u− u0)dx+
〈
χ, u− u0

〉

+
1

2
b(u, u, u− u0) +

∫

Γout

|u2|u2(u2 − u02) dS = 0. (27)

From (26) and (27) we arrive at the inequality

0 ≤
〈
χ−A(ψ), u − ψ

〉
∀ψ ∈W. (28)

We now use the so-called Minty trick. Instead of ψ we insert a function
u± λξ into (28), where λ > 0, ξ ∈W :

0 ≤
〈
χ−A(u ± λξ),∓λξ

〉
.

Dividing this inequality by λ we obtain for λ→ 0+:

0 ≤ ±
〈
χ−A(u), ξ

〉
∀ξ ∈ W,

making use of radial continuity of A. Thus χ = A(u).
It remains to verify that u is a weak solution: Choose ϕ ∈ W0. This
function can be approximated by a sequence {ϕL}, ϕL ∈ KL: ϕL →
ϕ in W0, L→ ∞. Inserting ϕL into the Galerkin identity for uN , N ≥ L

and letting N → ∞ and next L → ∞, we see that (12) is satisfied for
every ϕ ∈ W0. Therefore u is a weak solution.

Theorem 2.3 (Uniqueness) Let all the assumptions of Theorem 2.1 be satisfied
and ‖∇u0‖3,bΩ be small enough. Then there exists a unique solution to (P(α)).

Proof. Let u and v be two solutions of (P(α)). We subtract the weak formula-
tions for u and v with ϕ = u− v ∈ W0 as a test function. We obtain:

2µ0‖D(u− v)‖2
2,Ω + 2ρ

〈
A(u) −A(v), u− v

〉
︸ ︷︷ ︸

≥ 0

+σ

∫

Γout

(|u2|u2 − |v2|v2)(u2 − v2)︸ ︷︷ ︸
≥ 0

dS = ρb(v−u, v, v−u)+ρb(u, v−u, v−u).

The terms on the right hand side can be estimated making use of the Hölder
inequality, the imbedding of W̃ 1,2(Ω̂) into L4(Ω̂) and the energy estimates:

b(v − u, v, v − u) ≤ ‖∇v‖2,Ω‖u− v‖2
4,Ω ≤ CEC

2
Imb‖∇(u− v)‖2

2,Ω,

b(u, v−u, v−u) ≤ ‖u‖4,Ω‖∇(u− v)‖2,Ω‖u− v‖4,Ω ≤ CEC
2
Imb‖∇(u− v)‖2

2,Ω,
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where CImb is the norm of the respective embedding and CE := CE

(
‖∇u0‖3,bΩ)

is the constant from the energy estimates. Applying the Korn inequality on the
left hand side, we finally obtain:

µ0C
2
Korn‖∇(u− v)‖2

2,Ω ≤ 2ρCEC
2
Imb‖∇(u− v)‖2

2,Ω,

from which it follows that u = v a.e. in Ω if 2CE < µ0

ρ

(
CKorn

CImb

)2

.

Remark 2.7 Let us observe that the bound guaranteeing uniqueness of the so-
lution to (P(α)) is also independent of α ∈ Uad.

3. Shape optimization problem

The aim of this part is to formulate a shape optimization problem and to prove
the existence of its solution.

3.1. Formulation of the problem

We proved that, under certain assumptions, which do not depend on a particular
choice of Ω(α) ∈ O, there exists at least one weak solution of the state problem
(P(α)). Let G be the graph of the control–to–state (generally multi-valued)
mapping:

G := {(α, u); α ∈ Uad, u is a weak solution of (P(α))} .

Further, let us define the cost functional J : G → R by

J : (α, u) 7→

∫

Γ̃

|u2 − zD|2 dS, u = (u1, u2), (29)

where zD ∈ L2(Γ̃) is a given function representing the desired outlet velocity
profile and Γ̃ ⊂ Γout. This choice of J reflects the optimization goal formulated
in Section 1

We now formulate the following problem:

Find (α∗, u∗) ∈ G such that J(α∗, u∗) ≤ J(α, u) ∀(α, u) ∈ G. (P)

Next we introduce convergence of a sequence of domains.

Definition 3.1 Let {Ω(αn)}, αn ∈ Uad be a sequence of domains. We say that
{Ω(αn)} converges to Ω(α), shortly Ω(αn) ; Ω(α), iff αn ⇉ α in [0, L].

As a direct consequence of the Arzelà–Ascoli theorem we have the following
compactness result.

Lemma 3.1 System O is compact with respect to convergence introduced in De-
finition 3.1.
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3.2. Existence of an optimal shape

First let us recall that the function u0 which realizes the boundary conditions
is the same for all domains Ω ∈ O. We now rewrite (P(α)), α ∈ Uad using the

formulation on the fixed domain Ω̂:

2µ0

∫bΩDij(ũ(α))Dij(ϕ̃) dx+ 2ρ
〈
Ãα(ũ(α)), ϕ̃

〉bΩ + ρbbΩ(ũ(α), ũ(α), ϕ̃)

+ σ

∫

Γout

|ũ2(α)|ũ2(α)ϕ̃2 dS = 0 ∀ϕ ∈ W0(α), (P̂(α))

where the symbol˜stands for the zero extension of functions from Ω(α) on Ω̂,

〈
Ãα(ũ(α)), ϕ̃

〉bΩ :=

∫bΩ M̃3
α|D(ũ(α))|Dij(ũ(α))Dij(ϕ̃) dx,

bbΩ(ũ(α), ũ(α), ϕ̃) :=

∫bΩ ũj(α)
∂ũi(α)

∂xj
ϕ̃i dx.

Further let

Ŵ (α) :=
{
v ∈

(
W 1,2(Ω(α))

)2
; div v = 0 in Ω(α), Mα|D(v)| ∈ L3(Ω(α))

}

and define

Ŵu0
(α) :=

{
v ∈ Ŵ (α); v satisfies the Dirichlet

conditions (10)1 − (10)3 on ∂Ω(α)
}
.

Remark 3.1 It holds that Wu0
(α) ⊆ Ŵu0

(α). The question arises whether these
spaces are identical. This is in fact the density problem. For the moment we do
not know the answer.

Theorem 2.1 gives the following energy estimate:

‖∇ũ(α)‖2
2,bΩ + ‖M̃α|D(ũ(α))|‖3

3,bΩ +

∫

Γout

|u2(α)|3 dS ≤ CE(‖∇u0‖3,bΩ) (30)

for every (α, u(α)) ∈ G with the constant CE(‖∇u0‖3,bΩ) independent of α pro-

vided that (13) is satisfied.

Theorem 3.1 Let αn ⇉ α in [0, L], αn, α ∈ Uad and un := u(αn) be a solu-

tion of (P(αn)). Then there exists û ∈
(
W 1,2(Ω̂)

)2
and a subsequence of {ũn}

(denoted by the same symbol) such that

ũn ⇀ û in
(
W 1,2(Ω̂)

)2

M̃αn
D(ũn) ⇀ M̃αD(û) in

(
L3(Ω̂)

)2×2
, n→ ∞.

(31)

In addition, the function u(α) := û|Ω(α) solves (P(α)) provided that u(α) ∈
Wu0

(α).
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Proof. Let us denote M̃n := M̃αn
, Ωn := Ω(αn),

〈
·, ·

〉
n

:=
〈
·, ·

〉
αn

etc.

From energy estimate (30) it follows that

‖ũn‖1,2,bΩ ≤ C, ‖M̃nD(ũn)‖3,bΩ ≤ C, (32)

where C > 0 does not depend on n. Therefore we can pass to a subsequence of
{ũn} (denoted again by the same symbol) so that

ũn ⇀ û in
(
W 1,2(Ω̂)

)2
,

M̃nD(ũn) ⇀ ẑ in
(
L3(Ω̂)

)2×2
, n→ ∞.

(33)

The following properties of û and ẑ are easily verified:

(i) û = 0 in Ω̂ \ Ω(α); ẑ = 0 in Ω̂ \ Ω(α);

(ii) ẑ = M̃αD(û) in Ω̂;

(iii) div û = 0 in Ω̂;
(iv) û satisfies the required Dirichlet boundary conditions on ∂Ω(α).

We prove (ii). Since C∞(Ω̂) is dense in L
3

2 (Ω̂), it is sufficient to show that

∫bΩ M̃nDij(ũn)ψij dx→

∫bΩ M̃αDij(û)ψij dx, n→ ∞

holds for every ψ ∈
(
C∞(Ω̂)

)2×2
. Indeed:

∣∣∣∣
∫bΩ (

M̃nDij(ũn)ψij − M̃αDij(û)ψij

)
dx

∣∣∣∣ ≤

≤

∫bΩ |M̃n−M̃α||Dij(ũn)ψij | dx+

∣∣∣∣
∫bΩ M̃α (Dij (ũn) −Dij (û))ψij dx

∣∣∣∣ → 0,

making use of the fact that M̃n ⇉ M̃α in Ω̂, (33)1 and that M̃αψij ∈ L2(Ω̂).

Let u(α) := û|Ω(α). Then (i)-(iv) imply that u(α) ∈ Ŵu0
(α). Next we

prove that u(α) solves (P(α)) if u(α) ∈ Wu0
(α). We start from the definition

of (P(αn)):

2µ0

∫bΩDij(ũn)Dij(ϕ̃) dx+ 2ρ
〈
Ãn(ũn), ϕ̃

〉bΩ + ρbbΩ(ũn, ũn, ϕ̃)

+ σ

∫

Γout

|ũn2|ũn2ϕ̃ dS = 0 ∀ϕ ∈ W0(αn). (34)

Let ϕ ∈ V0(α) be an arbitrary function. Then ϕ̃|Ωn
∈ V0(αn) for n suffi-

ciently large so that it can be used as a test function in (34). The limit passage
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in the first, third and fourth term in (34) is a classical one:

∫bΩDij(ũn)Dij(ϕ̃) dx→

∫bΩDij(ũ(α))Dij(ϕ̃) dx,

∫

Γout

|ũn2|ũn2ϕ̃2 dS →

∫

Γout

|ũ2(α)|ũ2(α)ϕ̃2 dS, (35)

bbΩ(ũn, ũn, ϕ̃) → bbΩ(ũ(α), ũ(α), ϕ̃), n→ ∞.

The most difficult is to handle the second term. Let Bn ∈
(
W0(α)

)∗
be the

functional defined by

2ρ
〈
Bn, ψ

〉
α

:= −2µ0

∫bΩDij(ũn)Dij(ψ̃) dx− ρbbΩ(ũn, ũn, ψ̃)

− σ

∫

Γout

|ũn2|ũn2ψ̃ dS ∀ψ ∈ W0(α).

From the energy estimate (30) it follows that ‖Bn‖(
W0(α)

)
∗ ≤ C for all n ∈ N.

Thus, there exists B ∈
(
W0(α)

)∗
such that

Bn ⇀ B,n→ ∞. (36)

In addition, if ψ ∈ V0(α) then ψ̃|Ωn
∈ V0(αn) for n large enough and

〈
Bn, ψ

〉
α

=
〈
Ãn(ũn), ψ̃

〉bΩ. (37)

Due to monotonicity of An on W (αn) we have for any ψ ∈W (αn):

0 ≤
〈
An(un) −An(ψ), un − ψ

〉
n

=
〈
An(un), un − u0

〉
n
−

−
〈
An(ψ), un − ψ

〉
n
−

〈
An(un), ψ − u0

〉
n
. (38)

In what follows we use ψ of the form ψ̃ = u0 + ϕ̃, where ϕ ∈ V0(α) is fixed.
Then

〈
An(un), ψ − u0

〉
n

=
〈
Ãn(ũn), ϕ̃

〉bΩ =
〈
Bn, ϕ

〉
α

(39)

for n large enough making use of (37). Since un ∈ Wu0
(αn), the definition of

(P(αn)), (38) and (39) yield:

2µ0

∫bΩDij(ũn)Dij(ũn − u0) dx ≤ −ρbbΩ(ũn, ũn, ũn − u0)

− σ

∫

Γout

|ũn2|ũn2(ũn2 − u02) dS −
〈
An(ψ), un − ψ

〉
n
−

〈
Bn, ϕ

〉
α
. (40)
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Letting n→ ∞ in (40) we obtain:

2µ0

∫bΩDij(ũ(α))Dij(ũ(α) − u0) dx ≤ −ρbbΩ(ũ(α), ũ(α), ũ(α) − u0)

− σ

∫

Γout

|ũ2(α)|ũ2(α)(ũ2(α) − u02) dS −
〈
Aα(ψ), u(α) − ψ

〉
α
−

〈
B,ϕ

〉
α

(41)

using that

〈
An(ψ), un

〉
n
→

〈
Aα(ψ), u(α)

〉
α

=
〈
Ãα(ψ̃), ũ(α)

〉bΩ, n→ ∞. (42)

Indeed: from (33)2 and (ii) we know that

M̃nD(ũn) ⇀ M̃αD(ũ(α)) in
(
L3(Ω̂)

)2×2
(43)

as û = ũ(α). Further

M̃2
n|D(ψ̃)|D(ψ̃) → M̃2

α|D(ψ̃)|D(ψ̃) in
(
L

3

2 (Ω̂)
)2×2

, n→ ∞

since Mn ⇉ Mα in Ω̂ and ψ̃ ∈
(
W 1,3(Ω̂)

)2

. From this and (43) we obtain (42).

By assumption there exists w(α) ∈ W0(α) such that u(α) = u0 + w(α). From
the definition of W0(α) it follows that one can find a sequence {wk}, wk ∈ V0(α)
such that

wk → w(α) in W (α), k → ∞. (44)

Let k ∈ N be fixed. Then w̃k|Ωn
∈ V0(αn) for n large enough. Therefore w̃k|Ωn

can be used as a test function in (P(αn)). Inserting w̃k into (P(αn)) and passing
to the limit with n→ ∞ and then k → ∞ we obtain:

2µ0

∫bΩDij(ũ(α))Dij(w̃(α)) dx +
〈
B,w(α)

〉
α

+ ρbbΩ(ũ(α), ũ(α), w̃(α))

+ σ

∫

Γout

|ũ2(α)|ũ2(α)w̃2(α) dS = 0 (45)

making use of (35), (36) and (44). From (41) and (45) we have:

−
〈
Ãα(ψ̃), ũ(α) − ψ̃

〉bΩ −
〈
B,ϕ

〉
α

+
〈
B,w(α)

〉
α
≥ 0 (46)

using that w̃(α) = ũ(α) − u0. Since ũ(α) − ψ̃ = w̃(α) − ϕ̃ we see that (46) can
be written as follows:

〈
B −Aα(ψ), w(α) − ϕ

〉
α
≥ 0 ∀ϕ ∈ V0(α). (47)
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From (47), density of V0(α) in W0(α), continuity of Aα and the fact that ψ =
u0|Ω(α) + ϕ, ϕ ∈ V0(α), we obtain:

〈
B −Aα(u0 + z), w(α) − z

〉
α
≥ 0 ∀z ∈W0(α). (48)

Let z ∈ W0(α) be of the form z = w(α) ± λθ, λ > 0, where θ ∈ W0(α) is
arbitrary. Then

〈
B −Aα(u0 + w(α) + λθ),±λθ

〉
α
≥ 0.

Dividing this inequality by λ and passing to the limit λ→ 0+ we finally obtain

B = Aα(u0 + w(α)) = Aα(u(α)). (49)

This, together with (35)1-(35)3 gives

2µ0

∫bΩDij(ũ(α))Dij(ϕ̃) dx+ 2ρ
〈
Ãα(ũ(α)), ϕ̃

〉bΩ
+ ρbbΩ(ũ(α), ũ(α), ϕ̃) + σ

∫

Γout

|ũ2(α)|ũ2(α)ϕ̃2 dS = 0, (50)

for every ϕ ∈ V0(α) and consequently also for ϕ ∈W0(α).

Remark 3.2 Under the assumptions which guarantee uniqueness of the solution
to (P(α)) the whole sequence {ũn} tends to ũ(α) in the sense of Theorem 3.1.

Remark 3.3 If Wu0
(α) = Ŵu0

(α), the assumption u(α) ∈Wu0
(α) is automat-

ically satisfied.

Theorem 3.2 (Existence of an optimal shape) Let there exist a minimizing
sequence {(αn, un)}, (αn, un) ∈ G, of (P) with an accumulation point (α∗, u∗)
such that u∗|Ω(α∗) ∈Wu0

(α∗). Then (α∗, u∗|Ω(α∗)) is an optimal pair for (P).

Proof. Without loss of generality we may assume that αn ⇉ α∗ ∈ Uad in [0, L].
From the assumptions on the sequence {(αn, un)} it follows that there exists its
accumulation point (α∗, u∗) such that (α∗, u∗|Ω(α∗)) ∈ G. Further

q = inf
(α,u(α))∈G

J(α, u(α)) = lim
n→∞

J(αn, un) = J(α∗, u∗|Ω(α∗)) ≥ q

making use of continuity of J .
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4. Conclusion

The paper consists of two parts. The first one deals with the existence proof
for the generalised steady-state Navier–Stokes system. In the second part the
shape optimization problem with the Navier–Stokes system as a state constraint
is studied.

Due to an algebraic turbulence model the weak formulation of the state
problem involves the weighted Sobolev spaces. The existence and uniqueness of
a solution is proved for small data and with a constraint imposed on the model
parameters by using energy estimates, the monotone operator theory and the
Galerkin method. The analysis of the state problem shares many similarities
with the techniques presented in Ladyzhenskaya (1968, 1969), Lions (1969) and
Parés (1992).

The proof of the continuous dependence of solutions on boundary variations
is the key result in the shape optimization part. This property is proved under
an additional assumption, namely that a limit function of a minimizing sequence
belongs to an appropriate space meaning that the existence of an optimal shape
is conditional. The paper suggests, however, a way of getting an unconditional
type of result.
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