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Abstract: A framework for descent algorithms using shape as
well as topological sensitivity information is introduced. The con-
cept of gradient-related descent velocities in shape optimization is
defined, a corresponding algorithmic approach is developed, and a
convergence analysis is provided. It is shown that for a particular
choice of the bilinear form involved in the definition of gradient-
related directions a shape Newton method can be obtain. The level
set methodology is used for representing and updating the geome-
try during the iterations. In order to include topological changes in
addition to merging and splitting of existing geometries, a descent
algorithm based on topological sensitivity is proposed. The over-
all method utilizes the shape sensitivity and topological sensitivity
based methods in a serial fashion. Finally, numerical results are
presented.
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1. Introduction

In this paper we are interested in devising efficient numerical algorithms for
solving the shape optimization problem

minimize J(ω) over ω ∈ D, (1)

where D denotes the set of admissible shapes in Rm, m ∈ N. Whenever ω
denotes a domain in Rm, we write ω = Ω. If ω represents a lower dimensional,
typically m − 1 dimensional, manifold we write ω = Γ. In the latter case we
refer to J as a boundary shape functional, while in the former case we call it a
domain shape functional. In some applications, like for instance in edge detector
based image segmentation, as in Caselles et al. (1993), or Yezzi et al. (1997),
J is written as the sum of a domain and a boundary shape functional.
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In subsequent sections we present shape gradient, shape gradient-related and
shape Newton-type algorithms. All these algorithms require sensitivity infor-
mation of J with respect to perturbations of ω. By now, there is a considerable
number of papers and monographs available that deal with shape sensitivity
issues related to functionals such as J . Here we only cite the two recent mono-
graphs by Delfour and Zolésio (2001), and Sokolowski and Zolésio (1992), and
the many references therein. Modern concepts rely on the speed method; see,
e.g., Section 2.9 in Sokolowski and Zolésio (1992). We give a brief account of the
method in Section 2, which is then used for computing the shape gradient j(ω)
and the shape Hessian H(ω) of J at ω. The famous structure theorem (Theorem
2.27 in Sokolowski and Zolésio, 1992, or Theorem 3.5 of Chapter 8 in Delfour
and Zolésio, 2001) states that j(Ω) has its support in Γ = ∂Ω. An analogous
assertion is true for H(Ω) as well. For the shape Hessian based on the speed
method it is well-known that it is in general a non-symmetric expression involv-
ing a Lie bracket; see Delfour and Zolésio (2001), p. 373. Symmetry is achieved
by imposing additional conditions on the perturbations of ω. Positive-definite
symmetric forms representing the shape Hessian or approximations thereof are
essential in devising descent algorithms for minimizing J . Further, interesting
relations between second and first variations of shape functionals and an out-
look to shape gradient-descent and shape Newton-type iterations can be found
in Simon (1989).

Descent algorithms are iterative methods which, based on a current approx-
imation ωk of an optimal solution of (1), compute a search direction d(ωk) such
that

〈d(ωk), j(ωk)〉Γ < 0, (2)

where 〈·, ·〉Γ denotes a suitable pairing. The subscript Γ relates to the fact that,
by the structure theorem, the shape gradient has its support in an (m − 1)-
dimensional set. Then, this direction is used to update ωk such that J(ωk+1) <
J(ωk). The reduction in J has to be sufficiently large such that the method
achieves in the limit a stationary point ω∗, i.e., a shape satisfying j(ω∗) = 0.

One of the key aspects of numerical methods which iteratively update the
geometry is related to the transport of geometry from one iteration to the next.
Marker or particle techniques discretize the boundary of the geometry and evolve
these boundary points with a prescribed velocity in the direction normal to the
boundary. As the iterations proceed these boundary points (markers) may clus-
ter which eventually degrades the numerical performance. This problem is typi-
cally circumvented by redistributing the points, if necessary, from time to time.
Other techniques based on, e.g., parameterizations or particular discretizations
of the boundary may suffer from similar effects. Also, changes of the topology
require expensive reparameterizations. Another common feature is given by
the Lagrangian nature of these approaches. Rather than operating on a fixed
reference frame, these techniques follow the particles along their trajectories.
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In Osher and Sethian (1988) a concept was introduced which operates on a
fixed reference frame, or Cartesian grid in the discretized setting, and represents
the geometry of interest by means of the zero-level set of a so-called geometrical
implicit function φ. This fact coined the name level set method. It is well-
known that the level set method is a numerically robust technique which can
easily handle topological changes of the domain, such as merging or splitting. To
describe some of its key features, let us assume that ω(t) = Ω(t), or otherwise it
represents a closed curve Γ(t) = ∂Ω(t). A typical requirement in the definition
of the continuous function φ = φ(x, t) is

Ω(t) = {x : φ(x, t) < 0} and Rm \ Ω(t) = {x : φ(x, t) > 0}.
The transport of the geometry is achieved by advecting the level-set function
φ = φ(x, t) by

∂φ

∂t
(x, t) + F (x, t)|∇φ(x, t)|2 = 0, φ(x, 0) = φ0(x), (3)

where | · |2 denotes the Euclidian norm of a vector in Rm. The equation in (3) is
called the level set equation. By applying the chain rule, it can be easily derived
from the requirement that Γ(t) remains the zero-level set of φ for all times t.
The scalar-valued function F in (3) denotes the velocity along the outward unit
normal n(x, t) = ∇φ(x, t)/|∇φ(x, t)|2 . In our case, it is related to the shape
gradient or Newton-type direction.

The combination of level set methods and shape sensitivity was considered in
a variety of applications; see Allaire, Jouve and Toader (2004), Burger (2004),
Dorn, Miller and Rappaport (2000), Hintermüller and Ring (2004), Litman,
Lesselier and Santosa (1998), Osher and Santosa (2001), and Santosa (1996).
For a more general functional-analytic setting we refer to Burger (2003). Our
goal in this paper is to develop a unified framework based on descent methods.

Though robust and flexible, one major drawback of level-set-type algorithms
based on shape sensitivity information is the lack of creating topological changes
other than merging or splitting of existing components of ω. Note that in a level
set based approach using shape sensitivity, components of ω may even vanish,
but new ones cannot be created (except for splitting). As a remedy, we propose
to consider topological sensitivity information in addition to shape sensitivity
information.

In a pioneering work, Eschenauer and Schumacher (1994) introduced the so-
called bubble method for topology and shape optimization of structures. In Gar-
reau, Guillaume and Masmoudi (2001), or Sokolowski and Żochowski (1999) the
topological asymptotic and the topological gradient are introduced, respectively.
Roughly, these results describe the sensitivity of J with respect to creating a
hole in Ω. In an algorithmic framework one may now use velocities based on
topological sensitivity for updating Ω. This is done again in a time-evolution
scheme slightly different to (3). We refer to Burger, Hackl and Ring (2004) for
some preliminary numerical experience. In the present paper we combine shape
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and topological sensitivities in a serial fashion. Hence, our algorithm starts
with a topology optimization phase which is then followed by a phase using
solely shape sensitivities. If necessary, this cycle is repeated until some suitable
stopping rule is satisfied.

The remaining sections are organized as follows. In Section 2 we collect
some basic results from shape and topological sensitivity which are needed for
our algorithms. The definition of shape gradient-related search directions and a
corresponding descent algorithm involving an Armijo-type line search procedure
are the subject of Section 3. We also provide a convergence result and discuss
modifications for obtaining a shape Newton method. The subsequent Section 4
is concerned with a practical procedure for updating geometry from one iteration
to the next within a gradient-related descent method. We propose a technique
based on the level set method. In Section 5 we devise a descent algorithm
utilizing the topological gradient. Finally, in Section 6 we report on an excerpt
of numerical test runs.

2. Basics in shape and topological sensitivity

2.1. Shape sensitivity

Let V = V (x) denote a sufficiently smooth admissible vector field with values
in Rm. For the conditions of admissibility we refer to Sokolowski and Zolésio
(1992). Also note that we focus here on the autonomous case, i.e., the case
where V does not depend on t. This vector field is used for defining suitable
perturbations of ω ⊂ D, where the bounded set D ⊂ Rm defines the ”hold-all”
domain. In fact, let Tt(V )(X) = x(t) denote the solution to the differential
equation{

dx
dt (t) = V (x(t)), 0 < t < τ,

x(0) = X ∈ Rm

for τ > 0 sufficiently small. Then the mapping Tt allows to define

ω(t)(V ) = Tt(V )(ω) = {Tt(V )(X) : ∀X ∈ ω} ⊂ D

with ω(0)(V ) = ω. The Eulerian semiderivative of J at ω in direction V is
defined as

dJ(ω; V ) := lim
t↓0

J(ω(t)(V )) − J(ω)
t

(4)

if the limit in (4) exists and is finite. The shape function J is said to be shape
differentiable at ω if dJ(ω; V ) exists for all V , and the mapping V �→ dJ(ω; V )
is linear and continuous. If ω = Ω with Γ = ∂Ω and V are sufficiently smooth,
then, by the structure theorem, there exist k ≥ 0, and a scalar distribution
j(Ω) ∈ Ck(Γ)′ such that

dJ(Ω; V ) = 〈j(Ω), γΓ(V ) · n〉Ck(Γ)′,Ck(Γ) for all V ∈ Dk(Rm,Rm). (5)
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In the above, Dk(Rm,Rm) denotes the k-times continuously differentiable func-
tions with compact support in Ω, γΓ is the trace operator on Γ, and n is the
outward unit normal to Γ. The distribution j(ω) is referred to as the shape
gradient of J at ω. We remark that (5) may also be related to the Lebesgue
respectively Sobolev space settings.

Example 2.1 In Hintermüller and Ring (2003) the shape gradient and the shape
Hessian for the shape functional

J(Γ) =
∫

Γ

gdS + ν

∫
Ω

gdx (6)

were considered. Here, ν > 0 is fixed and g denotes a sufficiently smooth and
non-negative function which is independent of Γ = ∂Ω. The Eulerian semideriv-
ative of J at Γ is given by

dJ(Γ; V ) =
∫

Γ

〈( ∂g

∂n
+ g (κ + ν)

)
, V |Γ · n

〉
dS,

where κ denotes the mean curvature of Γ; see Sokolowski and Zolésio (1992).
From this we can identify the shape gradient by

j(Γ) =
(

∂g

∂n
+ g (κ + ν)

)
.

In analogy to (4) one defines the second-order Eulerian semiderivative of J
at ω in direction (V, W ). In fact, let V and W be admissible vector fields and
assume that for all t ∈ [0, τ ], τ > 0 sufficiently small, dJ(ω(t)(W ); V ) exists.
Then J is said to have a second-order Eulerian semiderivative at ω in direction
(V, W ), if

d2J(ω; V ; W ) = lim
t↓0

dJ(ω(t)(W ); V ) − dJ(ω; V )
t

(7)

exists. Note that (4) and (7) together imply that the following expansion of
J(ω(t)(V )) makes sense:

J(ω(t)(V )) = J(ω) + tdJ(ω; V ) +
t2

2
d2J(ω; V ; V ) + O(t2). (8)

The function J is said to be twice shape differentiable at ω, if d2J(ω; V ; W )
exists for all admissible V and W , and the map (V ; W ) �→ d2J(ω; V ; W ) is
bilinear and continuous. The latter bilinear form is denoted by h. Let H(ω) ∈
(D(Rm,Rm) ⊗ D(Rm,Rm))′ denote the vector distribution associated with h,
i.e.,

d2J(ω; V ; W ) = 〈H(ω), V ⊗ W 〉 = h(V, W ),
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where (V ⊗ W )ij(x, y) = Vi(x)Wj(y) for all 1 ≤ i, j,≤ m. Then H(ω) is called
the shape Hessian of J at ω. It has its support in Γ × Γ, i.e., there exists a
vector distribution hΓ⊕Γ(Ω) such that for all V, W there holds

〈hΓ⊕Γ(Ω), (γΓ(V )) ⊕ (γΓ(W ) · n)〉Γ = d2J(Ω; V ; W ).

Here (γΓ(V )) ⊕ (γΓ(W ) · n) is defined as the tensor product

((γΓ(V )) ⊕ (γΓ(W ) · n))i (x, y) = (γΓ(Vi))(x) ((γΓW ) · n) (y) for x, y ∈ Γ.

For more details we refer to chapter 8.6 in Delfour and Zolésio (2001).

Example 2.2 Here we continue Example 2.1 and present the second-order
Eulerian semiderivative of J . Since our goal is to use the shape Hessian in
a shape Newton method, we are interested in a symmetric expression for d2J .
As noted earlier, this requires a restriction on the admissible vector fields. For
this purpose let F : Γ → R and let Fext denote an extension of F to D such
that

∇Fext · n = 0, and Fext|Γ = F. (9)

Here n denotes a suitable extension of the unit normal on Γ. Then VF is given
by

VF = Fext n. (10)

Analogously we define VG. Using these vector fields, the second-order Eulerian
semiderivative is found to be

d2J(Γ; VF ; VG)=
∫

Γ

[( ∂2g

∂n2
+ (2κ + ν)

∂g

∂n
+ νκg

)
FG + g〈∇ΓF,∇ΓG〉

]
dS (11)

Here ∇ΓF denotes the tangential gradient of F which is given by

∇ΓF = ∇F |Γ − ∂F

∂n
n.

The second term under the integral is the weak form of the Laplace-Beltrami
operator on Γ. If Γ is a closed curve it is considered together with periodic
boundary conditions.

2.2. Topological sensitivity

The concept of sensitivity of a domain shape functional with respect to the
nucleation of holes is considered, e.g., in Garreau, Guillaume and Masmoudi
(2001), Sokolowski and Żochowski (1999). Here, to some extent, we follow
Sokolowski and Żochowski (1999). For x ∈ Ω let Br(x) := {y ∈ Rm : |y − x|2 <
r} with r > 0. By Br(x) we denote the closure of Br(x) and by |Br(x)| the
measure of Br(x). Assume that the limit

T (x) = lim
r↓0

J(Ω \ Br(x)) − J(Ω)
|Br(x)| (12)

exists. Then T (x) is called the topological derivative of J at x.
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Example 2.3 Consider the problem

minimize J̄(u, Ω) =
1
2

∫
Ω

(u − ud)2dx + µ

∫
Ω

1dx (13)

subject to − ∆u = fΩ in D, u = 0 on ∂D, (14)

where ud ∈ L2(D) is given data, µ > 0 fixed and

fΩ(x) =
{

1 if x ∈ Ω,
0 else.

Since the equation (14) admits a unique solution u(Ω), we can reduce problem
(13)–(14) to

minimize J(Ω) =
1
2

∫
Ω

(u(Ω) − ud)2dx + µ

∫
Ω

1dx.

Then the topological gradient of J at x ∈ Ω is given by

T (x) = −p(x) − µ,

where p ∈ H1
0 (D) solves the adjoint equation

−∆p = u(Ω) − ud in D, p = 0 on ∂D.

Let us point out that due to the lack of requiring additional boundary con-
ditions on the boundary of the hole, i.e., ∂Br(x), our notion of topological
sensitivity differs from the ones in Garreau, Guillaume and Masmoudi (2001)
and Sokolowski and Żochowski (1999). In this sense, the hole is not cut into the
computational domain D which would support additional boundary conditions
as in the above references. Rather it is cut into the support of Ω, which, in the
context of our example, relates to the right hand side of the partial differential
equation in (14).

3. Shape gradient-related descent methods

In this section we introduce the notion of shape gradient-related descent direc-
tions. Based on this concept we then devise descent methods for solving (1).
In the sequel we work under the assumption that the domains of interest are
sufficiently regular.

We are interested in search directions or, equivalently, descent flows for J(ω),
i.e., we are interested in velocity fields V yielding J(ω(t)(V )) < J(ω) for all suffi-
ciently small t. To this end, let H denote a suitable Hilbert space of admissible
vector fields, which might depend on the current shape ω, and observe that
V ∈ H with

〈V, W 〉H = −dJ(ω; W ) for all W ∈ H (15)
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satisfies

dJ(ω; V ) = −‖V ‖2
H. (16)

Further, ‖V ‖H = 0 if and only if dJ(ω; W ) ≥ 0 for all W ∈ H.

Definition 3.1 Let dJ(ω; W ) denote the Eulerian semiderivative of J at ω in
direction W ∈ H. If

dJ(ω; W ) ≥ 0 for all W ∈ H
then ω is stationary.

If j(ω) exists and ω is stationary, then, by the structure theorem, j(ω) = 0.
Let b : H×H → R denote a bounded and uniformly positive bilinear form,

i.e., there exist constants M > 0 and ε > 0 independently of ω such that
b(V, W ) ≤ M‖V ‖H‖W‖H and b(W, W ) ≥ ε‖W‖2

H. Now we can generalize (15).
If V ∈ H satisfies

b(V, W ) = −dJ(ω; W ) for all W ∈ H, (17)

then

dJ(ω; V ) ≤ −ε‖V ‖2
H. (18)

Again we have ‖V ‖H = 0 if and only if dJ(ω; W ) ≥ 0 for all W ∈ H.

Definition 3.2 Let dJ(ω; W ) denote the Eulerian semiderivative of J at ω in
direction W ∈ H. We call V ∈ H shape gradient-related if it satisfies (17) for
some bounded and uniformly positive bilinear form b : H×H → R.

We point out that in an iterative process for finding a stationary shape, the
bilinear form b may vary with the iterations. Then, one has to require that the
bounds ε and M are also uniform with respect to the iteration index. This is in
the spirit of variable metric methods in classical finite dimensional optimization
as in Nocedal and Wright (1999).

Let 0 < ε < ε be fixed. We say that V ∈ H yields a sufficient reduction (or
sufficient decrease) of J at ω in direction V , if there exists some τ > 0 such that

J(ω(t)(V )) ≤ J(ω) − εt‖V ‖2
H for all 0 ≤ t < τ. (19)

This sufficient decrease definition is useful because it allows to argue convergence
of descent methods which satisfy (19) in every iteration. For a gradient-related
direction we have the following result:

Lemma 3.1 Let J be twice shape differentiable at ω, and let V ∈ H be a gradient-
related vector field for J at ω, then there exists τ > 0 such that (19) is satisfied.
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Proof. Since J is twice shape differentiable we have

J(ω(t)(V )) = J(ω) + tdJ(ω; V ) + O(t).

The direction V is gradient-related for J at ω. Thus, (18) is satisfied which
yields for some ε with 0 < ε < ε

J(ω(t)(V )) ≤ J(ω) − tε‖V ‖2
H + O(t)

= J(ω) − tε‖V ‖2
H + t(ε − ε)‖V ‖2

H + O(t)
≤ J(ω) − tε‖V ‖2

H,

where the last inequality holds true for all sufficiently small t.

Our results so far can be used for defining a general descent framework algorithm
and analyze its convergence properties.

Algorithm 3.1
(i) Initialize ω0 := ω(0) ∈ D; set k := 0 and t0 := 0. Choose ζ ∈ (0, 1),

0 < ε < ε, and α > 0.
(ii) Unless a stopping rule is satisfied, compute the Eulerian semiderivative

dJ(ωk; V ) for arbitrary V ∈ Hk.
(iii) Compute a gradient-related descent direction by solving

b(V, W ) = −dJ(ωk; W ) for all W ∈ Hk.
Let the solution be denoted by Vk.

(iv) Find the first element ∆tk,� of the sequence {∆tk,l} = {ζlα}∞l=0 such that
J(ωk(∆tk,�)(Vk)) − J(ωk(0)) ≤ −∆tk,�ε‖Vk‖2

Hk
. (20)

(v) Set tk+1 = tk + ∆tk,�, ωk+1 = ωk+1(0) = ωk(∆tk,�), and k := k + 1. Go
to (ii).

Concerning the convergence of the above algorithm we first establish an
auxiliary result which, under suitable assumptions, shows that there exists t > 0
such that ∆tk,� ≥ t for all k ∈ N. In Algorithm 3.1 and below we use the
notation Hk to indicate the possible dependence of the space of admissible
velocity fields on the actual shape ωk.

Lemma 3.2 Assume that J is twice shape differentiable, that the shape Hessian
is uniformly bounded, the remainder term in (8) for ω = ωk is uniform in k,
and ‖Vk‖Hk

≤ MV for all k. Then there exists t > 0 such that ∆tk,� of step
(iii) in Algorithm 3.1 satisfies

∆tk,� ≥ t for all k ∈ N.

Proof. Since J is twice shape differentiable we have

J(ωk(∆tk,�)) − J(ωk(0)) = ∆tk,�dJ(ωk(0); Vk) +
(∆tk,�)2

2
d2J(ωk(0); Vk; Vk) + O((∆tk,�)2)‖Vk‖2

Hk
,
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where O(·) is uniform with respect to k. Let C denote the bound to the second-
order Eulerian semiderivative. Then

J(ωk(∆tk,�)) − J(ωk(0)) ≤ (−ε∆tk,� +
C(∆tk,�)2

2
+ O((∆tk,�)2))‖Vk‖2

Hk

≤ (−ε∆tk,� +
C(∆tk,�)2

2
+ (∆tk,�)2

ε − ε

2
)‖Vk‖2

Hk
,

where we used the existence of t̄ > 0 such that

O((∆tk,�)2) ≤ ε − ε

2
(∆tk,�)2

for all ∆tk,� ≤ t̄. Thus, if(
−ε∆tk,� +

C(∆tk,�)2

2
+ (∆tk,�)2

ε − ε

2

)
‖Vk‖2

Hk
≤ −ε∆tk,�‖Vk‖2

Hk
, (21)

then (20) is satisfied. A simple calculation shows that for

∆tk,� ≤ 2(ε − ε)
C + ε − ε

(21) is fulfilled. The update rule for ∆tk,l yields

∆tk,� ≥ ζ
2(ε − ε)

C + ε − ε
=: t > 0.

Next we address convergence of Algorithm 3.1.

Theorem 3.1 Let the assumptions of Lemma 3.2 be satisfied. If J(ω) is bounded
from below, then limk→∞ J(ωk) = J∗ for some J∗ ∈ R and limk→∞ ‖Vk‖Hk

= 0.

Proof. Note that by Lemma 3.2 there exists t > 0 such that

J(ωk+1(0)) ≤ J(ωk(0)) − εt‖Vk‖2
Hk

for all k ∈ N0. (22)

Since {J(ωk)} is bounded from below and monotonically decreasing, it is con-
vergent to some J∗ ∈ R. Further, from (22) and the convergence of {J(ωk)} we
infer lim ‖Vk‖Hk

=0.

Theorem 3.1 shows that if there is a limit shape ω∗ of {ωk} and {Hk} is
well-behaved, then it is stationary in the sense of Definition 3.1.

Remark 3.1 We point out that the existence and boundedness assumptions on
the first and second-order shape derivatives are implied by sufficient smoothness
of the iterates ωk. This is also true for the uniformity assumptions with respect
to (8) in Lemma 3.2.
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The smoothness requirements for {ωk} alluded to in Remark 3.1 are related
to regularity properties of the velocity fields utilized by the speed method; see,
e.g., chapter 7 in Delfour and Zolésio (2001). By choosing ω0 sufficiently regular
and close to a solution ω∗, and requiring that the velocity fields be sufficiently
regular as well, one can argue that the iterates ωk remain regular (at least for
small ∆tk,� > 0).

3.1. Shape Newton methods

In Section 2 we defined the shape Hessian H(ω) and its associated bilinear form
h(V, W ). If h is uniformly positive (with constant ε > 0) and continuous on H,
then it may serve in (17) instead of b. Then our descent algorithm becomes a
shape Newton method for minimizing the shape functional J . The actual descent
direction is computed as the solution Vk ∈ Hk to the Newton-type equation

d2J(ωk; W ; V ) = −dJ(ωk; W ) for all W ∈ Hk. (23)

From classical optimization – see Nocedal and Wright (1999) – it is known that,
under suitable assumptions, Newton’s method converges locally at a fast rate.
We will address this aspect in our numerics Section 6 in connection with level
set based approaches. However, let us mention here another aspect. In many
situations the shape Hessian acts as a smoothing operator. For instance, in our
Example 2.2 the shape Hessian contains the Laplace-Beltrami operator which
is a second-order elliptic differential operator. In this case (23) amounts to
solving a Helmholtz-type problem with periodic boundary conditions on Γk.
As a consequence, Vk enjoys typically more regularity properties than the shape
gradient. Besides the analytical aspect, this has also an impact on the numerical
level.

4. Level set based descent methods

Algorithm 3.1 is conceptual in the sense that in a practical realization we need
a method for updating the geometry. A useful tool which can be viewed in
function space as well as in a finite dimensional framework after discretization
is given by the level set method in Osher and Fedkiw (2002). It relies on the
representation of Γ(t)(·) as the zero-level set of a sufficiently smooth function
φ : D × [0, τ ] → R. Consider{

dx
dt (t) = VF (x(t)), 0 < t < τ,

x(0) = x ∈ Γ(0) = Γ,
(24)

where VF is according to (9)–(10). This defines Γ(t)(VF ) = {x ∈ D : φ(x, t) =
0}. Further we assume that Γ(t)(VF ) consists of closed curves for all t and

Ω(t)(VF ) = {x ∈ D : φ(x, t) < 0}, (25)
D \ Ω(t)(VF ) = {x ∈ D : φ(x, t) > 0}. (26)
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Then, for x ∈ Γ(t)(VF ) the gradient ∇φ(x, t) points in the direction of the
outward normal.

Since Γ(t)(VF ) is required to remain the zero-level set of φ for all t and
assuming that x(t) ∈ Γ(t)(VF ) travels with velocity F (x(t), t) in outward unit
normal direction, after differentiating φ(x(t), t) = 0 with respect to t, we obtain
the transport equation

∂φ

∂t
(x, t) + Fext(x, t)|∇φ(x, t)|2 = 0, φ(x, 0) = Γ(0), x ∈ D. (27)

In (27) Fext denotes a suitable extension of F to D. Given some geometry Γ
which is moved along its outward normal direction with velocity F , the level set
equation (27) can be used to obtain the updated geometry Γ(t)(VF ). Notice that
(27) is a partial differential equation of Hamilton-Jacobi type. A popular choice
for φ satisfying the sign conditions in (25)–(26) is given by signed distance func-
tions. In this case geometrical information can be expressed in a convenient way.
For instance, n(x, t) = ∇φ(x, t) and κ(x, t) = ∆φ(x, t). Further, numerically it
allows a stable identification of the zero-level set.

If F respectively Fext are gradient-related descent directions, then an algo-
rithmic framework analogous to Algorithm 3.1 can be defined.

Algorithm 4.1
(i) Choose Γ0(0) = Γ, and initialize φ0(x, 0) such that

Γ0(0) = {φ0(x, 0) = 0},
Ω0(0) = {φ0(x, 0) < 0},

D \ Ω0(0) = {φ0(x, 0) > 0}.
Set k := 0 and t0 := 0, and choose 0 < ε < ε, ζ ∈ (0, 1) and α > 0.

(ii) Compute a gradient-related descent direction Vk of J at Γk and its exten-
sion Vk,ext.

(iii) Update φk by solving
∂φk

∂t
(x, t) − Vk,ext(x, t)|∇φk(x, t)|2 = 0, 0 ≤ t ≤ ∆tk,�, x ∈ D (28)

with φk(x, 0) = φk−1(x, ∆tk−1,�), where the time step ∆tk,� is the first
element of the sequence {∆tk,l} = {ζlα}∞l=0 which satisfies

J(Γk(∆tk,�)(Vk)) − J(Γk(0)) ≤ −∆tk,�ε‖Vk‖2
Hk

. (29)
(iv) Set

tk+1 = tk + ∆tk,�,

φk+1(x, 0) = φk(x, ∆tk,�),
Γk+1(0) = {φk+1(x, 0) = 0},

and k := k + 1. Go to (ii).

The difference between Algorithm 3.1 and Algorithm 4.1 is mainly related
to the representation of Γk(0) as the zero-level set of φk(x, 0) and the transport
of the geometry by means of the level set equation (28) in step (iii). In detail



Level set based algorithms 317

step (iii) operates as follows: The level set equation is solved in 0 ≤ t ≤ ∆tk,l,
where ∆tk,l > 0 denotes the actual trial time step. Then, φk(∆tk,l) is deter-
mined and Γk(∆tk,l)(Vk) = {φk(x, ∆tk,l) = 0} as well as J(Γk(∆tk,�)(Vk)) are
computed. If (29) is satisfied, then ∆tk,� := ∆tk,l; else the actual trial time
step is reduced and step (iii) is repeated. Since (29) is identical to (20), the
convergence of Algorithm 4.1 can be established by similar reasoning as in the
case of Algorithm 3.1.

Now the regularity considerations with respect to {ωk} are related to {Vk}
via the level set equation. The latter Hamilton-Jacobi-type partial differential
equation can be analyzed using the techniques as developed in, e.g., Crandall
and Lions (1986) or in Bardi, Crandall, Evans, Soner and Souganidis (1997).
These results guarantee that for uniformly continuous initial data φk(·, 0) and
sufficiently regular Vk the update φk(·, ∆tk,�) remains smooth. Further consid-
erations concerning the consistency of the level-set approach in relation with
the original front propagation based on shape gradients can be found in the
contribution of Souganidis (pp. 186–242 in Bardi, Crandall, Evans, Soner and
Souganidis, 1997).

Let us assume that h(V, W ), the bilinear form associated with the shape
Hessian, is uniformly positive and bounded. If we choose h(V, W ) as the bilinear
form for computing the gradient related direction in step (ii) of Algorithm 4.1,
then a level-set based version of the shape Newton method is obtained.

5. A descent method based on topological gradients

It was noted earlier that methods based solely on shape sensitivity information
have a limited potential of changing the topology. In this section, we discuss
an algorithm which uses the topological derivative (or topological gradient) in
a descent framework.

The topological gradient at x ∈ Ω ⊂ D is given by

T (x) = lim
r↓0

J(Ω \ Br(x)) − J(Ω)
|Br(x)| .

In many applications one has shape functionals of the type

J(Ω) =
∫

D

g(u(Ω), Ω)dx,

where u(Ω) solves a differential equation (on D) with data related to Ω; see
Example 2.3. In this case it makes sense to consider the topological gradient in
D \ Ω as well:

T (x) = lim
r↓0

J(Ω ∪ Br(x)) − J(Ω)
|Br(x)| .

Next we specify how T can be used in a descent framework. For this purpose
assume that we have a geometrical implicit function φ satisfying (25)–(26) to
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represent Γ = ∂Ω. Let us assume that T is sufficiently smooth. We expect that
J can be reduced if T (x) < 0 for some x ∈ D. Since we use a geometrical implicit
function satisfying (25)–(26) we have to be careful in using T for updating the
geometrical variable. The subsequent discussion for computing a topological
descent direction DT is related to Burger, Hackl and Ring (2004), p. 351. Let
us assume that Ω = {φ(x, 0) < 0} and T (x) < 0.

• If x ∈ Ω, then φ(x, 0) < 0. Since T (x) < 0, the nucleation of a hole will
reduce J . This implies that a positive quantity has to be added to φ(x, 0)
in order to create a hole. One may use DT (x) = −T (x).

• If x ∈ D \ Ω, then φ(x, 0) > 0. Now, adding DT (x) = T (x) < 0 reduces
φ(x, 0) which is necessary for creating a new topological component which
decreases J .

While j(ω∗) = 0 implies that ω∗ is a stationary shape, the situation in the case
of the topological gradient is different. In fact, if T (x) ≥ 0 in D, then the
topology remains unchanged. However, the quantity

mT (x, 0) = max(sign (φ(x, 0)), 0)min(T (x), 0) −
min(sign (φ(x, 0)), 0)max(−T (x), 0).

is zero in such a situation. Hence it can be used as a (numerical) stationarity
measure. Note that in general we have to replace T (x) by T (x, t), φ(x, 0) by
φ(x, t) and Ω by Ω(t). Let Ω(t) = {φ(x, t) < 0} denote the actual shape. Then
the updated shape is given by

Ω(t + ∆t) = {φ(x, t + ∆t) < 0}
where φ satisfies

∂φ

∂t
(x, t) = DT (x, t). (30)

Definition 5.1 We call a shape Ω(t) stationary in the topological sense, if
mT (x, t) = 0 for almost all x ∈ D.

If Ω(t) is not stationary in the topological sense, then we can find ∆t > 0
such that

J(Ω(t + ∆t)) − J(Ω(t)) ≤ −γ∆t‖DT (0)‖2
W ,

where W denotes a suitable Banach space, and 0 < γ < 1 is fixed.
Next we specify our descent algorithm for optimizing the topology.

Algorithm 5.1
(i) Choose Ω0 = Ω(0) ⊂ D, and initialize φ0. Set k := 0 and t0 := 0. Choose

γ, ζ ∈ (0, 1) and α > 0.
(ii) Compute the topological gradient Tk of J at Ωk.
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(iii) Unless a stopping rule is satisfied, compute DTk
, and determine the first

element ∆tk,� of the sequence {∆tk,l} = {ζlα}∞l=0 such that
J(Ωk(∆tk,�)) − J(Ωk(0)) ≤ −γ∆tk,�‖DTk

‖2
W .

(iv) Set tk+1 = tk + ∆tk,�, Ωk+1(0) = Ωk(∆tk,�), and k := k + 1. Go to (ii).

In step (iii) of the above algorithm, for given ∆tk,l equation (30) is solved in
[0, ∆tk,l], and Ωk(∆tk,l) = {φ(tk + ∆tk,l) < 0} is set. If the line search criterion
in step (iii) is satisfied, then ∆tk,� := ∆tk,l; otherwise ∆tk,l is reduced, and step
(iii) is repeated.

6. Numerics

In this section we report on some numerical aspects in connection with Algo-
rithm 4.1 and Algorithm 5.1. Here we focus on applications coming from image
segmentation. In Example 2.1 we introduced the shape functional J(Γ) which is
related to edge detector based image segmentation; see, e.g., Yezzi et al. (1997).
The non-negative function g represents an edge detector which is zero at ideal
edges and positive elsewhere. Then the first integral in (6) aims at locating Γ
at places where g is zero, respectively very small. The second integral acts as a
regularization. It is sometimes referred to as a ”balloon force”. In fact, if ν < 0,
then it tends to maximize the area Ω with ∂Ω = Γ. Thus, if Algorithm 4.1 is
initialized by a closed curve which lies completely inside the feature of interest
(homogeneous region which has to be segmented), then the negative ν-value is
responsible for the growth of Ω as the iterations proceed, and analogously for
ν > 0. The parameter ν has to be chosen appropriately. On the one hand, it
has to cope with possible noise in an image and, hence, it has to be sufficiently
large; on the other, if it is too large, then the balloon force is too strong and the
segmentation fails. In Examples 2.1 and 2.2 the first and second order shape
derivatives of J are provided.

In our numerical tests we safeguard the line search in step (iii) of Algo-
rithm 4.1. In fact, we bound the step size in [tcfl, ρtcfl], where tcfl denotes
the time step size in the discretized level set equation according to the CFL-
condition (see Sethian, 1999) and ρ > 0 is fixed. The time step is a first order
explicit Euler step. If the line search yields no success after �max cycles, the
CFL-time step is used. This is necessary since J , dJ and d2J are discretized
separately and are thus subject to independent approximation and discretization
errors. For further numerical details of the discretization and implementation
we refer to Hintermüller and Ring (2003).

First we study the convergence rate of Algorithm 4.1. In Section 4 we
observed that whenever the bilinear form h(V, W ) associated with the shape
Hessian is uniformly positive and bounded, then it is a feasible choice when
computing the gradient-related direction. The resulting algorithm is a shape
Newton-type method. Therefore it is of interest to study the local convergence
speed. For both results in Fig. 1 the corresponding test problem is an edge
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Figure 1. Left plot: Convergence behavior of qk in W 1,∞(D) (solid) and of sk

(dashed). Right plot: Convergence behavior of J(Γk).

Figure 2. Left plot: Test image with Γ0. Right plot: Geometrical implicit
(here: signed distance) function φ∗ at the solution with zero-level set Γ∗ (white
contour).

detector based image segmentation problem for the image shown in Fig. 2 in
the left plot. In Fig. 1 (left plot) we show the behavior of the discrete versions
of the quotients

qk =
‖φk+1 − φ∗‖W 1,∞

‖φk − φ∗‖W 1,∞

and

sk =
|(Ωk+1 \ Ω∗) ∪ (Ω∗ \ Ωk+1)|

|(Ωk \ Ω∗) ∪ (Ω∗ \ Ωk)| .
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Here we set Ωk = {φk < 0} and Ω∗ = {φ∗ < 0}. The geometrical implicit
function φ∗ at the numerical solution is contained in the right plot of Fig. 2.
Note that qk allows to study the convergence behavior of the signed distance
function which can be considered in W 1,∞(D); see Delfour and Zolésio (2001).
The second quantity, sk, provides a rate for the ”convergence” of the sets Ωk.
We employed the line search with ρ = 3, �max = 3, and ε = 0.001. Since qk

exhibits a decreasing tendency, the results in Fig. 1 indicate that {φk} converges
eventually at a fast, i.e., superlinear rate to φ∗. A similar observation holds true
for {sk}. Fast local convergence is one of the benefits of Newton-type methods.
In the right plot of Fig. 1 {Jk} is depicted for a run with a more progressive
line search strategy (ρ = 5, �max = 4, ε = 0.001).

For the test runs, we used a modified version of h associated to (11) with
g(x) ≥ ε > 0, ε = 1e − 6. Further, the first term under the integral in (11) is
replaced by

s(x) = max{ε, ( ∂2g

∂n2
+ (2κ + ν)

∂g

∂n
+ ν κ g)(x)}.

This implies a uniformly positive bilinear form on H(Γ) = {VF = Fextn :
∇Fext · n = 0, Fext|Γ = F ∈ H1(Γ)}. For details on the problem formulation
and the choice of edge detector, we refer to Hintermüller and Ring (2003).

Next we study Algorithm 5.1. It can be used together with Algorithm 4.1 to
minimize (6). In our first test example we use Algorithm 5.1 as an initialization
procedure for edge detector based image segmentation. This is of interest be-
cause of the fact that many state-of-the-art techniques require a particular user
specified initial choice; see, e.g., Yezzi et al. (1997). Algorithm 5.1 is applied to
solve the following problem

minimize J(Ω) = α1‖u(Ω) − ud‖2
L2(D) + α2‖∇(u(Ω) − ud)‖2

L2(D) + µ

∫
Ω

1dx

with α1, α2 ≥ 0, α1 + α2 > 0, and µ ≥ 0. Further, u(Ω) is the solution of
(14). Here ud ∈ H1

0 (D) represents given (and possibly preprocessed) image
data. Therefore, the first two terms in J(Ω) above are tracking terms, i.e., the
reconstruction u(Ω) is required to be sufficiently close to ud. On the other hand,
ud might be contaminated by noise. In the context of topology optimization
this may result in a set Ω which consists of many small components, most of
them induced by noise patterns. To counteract this behavior we add the term
µ

∫
Ω 1dx, which acts as a volume penalty. In fact, for sufficiently large µ > 0

it penalizes the volume of Ω and tends to avoid noise induced components.
Note further that an application of the topological derivative to (6) is in general
infeasible. Indeed, in regions where g ≥ δ > 0 the topological derivative is +∞.

The topological derivative of J(Ω) is found to be

T (x) =
{ −p(x) − µ for a.a. x ∈ Ω

p(x) + µ for a.a. x ∈ D \ Ω.
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This implies the update direction

DT (x) = p(x) + µ for almost all x ∈ D,

where p ∈ H1
0 (D) solves

−∆p = α1(u(Ω) − ud) + α2∆(u(Ω) − ud) in D.

This implies that one has W = H1(D) in Algorithm 5.1. In our numerics we
use the standard five point stencil for the discretization of the Laplacian and
γ = 0.001 in the line search. The left plot of Fig. 3 shows the result obtained
from applying Algorithm 5.1 with µ = 25 after 14 iterations. It provides an
excellent start-up configuration for a subsequent application of Algorithm 4.1
(ν = −1.25 in (6)). The outcome of this application (after 14 iterations as well)
is shown in the right plot of Fig. 3.

Figure 3. Left plot: Result obtained from Algorithm 5.1. Right plot: Result
after applying Algorithm 4.1 initialized by the contour in the left plot.

In Fig. 4 (left plot) we show the result obtained by Algorithm 5.1 for µ = 0.01
after 34 iterations. The initial shape is depicted in the right plot. As we can see,
the topological derivative detects the homogeneous features of the image rather
well and may itself serve as a segmentation method. This, however, requires a
suitable preprocessing stage for producing ud. In our test runs we use a simple
thresholding technique for the given intensity map I of the image. After this
step we obtain a function f̃ with values in [0,1]. Then ud ∈ H1

0 (D) is computed
as the solution to −∆u = f̃ in D.

Finally we point out that for all the results discussed here we used α1 = 1
and α2 = 1.0e4.
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Figure 4. Left plot: Segmentation produced by Algorithm 5.1. Right plot:
Initialization.
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